To see why a normal matrix can be diagonalized by a unitary transformation, let us consider an $N \times N$ normal matrix V which (since it is square (section 1.25)) has N eigenvectors $|n\rangle$ with eigenvalues v_{n}

$$
\begin{equation*}
\left(V-v_{n} I\right)|n\rangle=0 \tag{1.311}
\end{equation*}
$$

The square of the norm (1.80) of this vector must vanish

$$
\begin{equation*}
\|\left(V-v_{n} I\right)|n\rangle \|^{2}=\langle n|\left(V-v_{n} I\right)^{\dagger}\left(V-v_{n} I\right)|n\rangle=0 . \tag{1.312}
\end{equation*}
$$

But since V is normal, we also have

$$
\begin{equation*}
\langle n|\left(V-v_{n} I\right)^{\dagger}\left(V-v_{n} I\right)|n\rangle=\langle n|\left(V-v_{n} I\right)\left(V-v_{n} I\right)^{\dagger}|n\rangle . \tag{1.313}
\end{equation*}
$$

So the square of the norm of the vector $\left(V^{\dagger}-v_{n}^{*} I\right)|n\rangle=\left(V-v_{n} I\right)^{\dagger}|n\rangle$ also vanishes $\|\left(V^{\dagger}-v_{n}^{*} I\right)|n\rangle \|^{2}=0$ which tells us that $|n\rangle$ also is an eigenvector of V^{\dagger} with eigenvalue v_{n}^{*}

$$
\begin{equation*}
V^{\dagger}|n\rangle=v_{n}^{*}|n\rangle \quad \text { and so } \quad\langle n| V=v_{n}\langle n| . \tag{1.314}
\end{equation*}
$$

If now $|m\rangle$ is an eigenvector of V with eigenvalue v_{m}

$$
\begin{equation*}
V|m\rangle=v_{m}|m\rangle \tag{1.315}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\langle n| V|m\rangle=v_{m}\langle n \mid m\rangle \tag{1.316}
\end{equation*}
$$

and from (1.314)

$$
\begin{equation*}
\langle n| V|m\rangle=v_{n}\langle n \mid m\rangle . \tag{1.317}
\end{equation*}
$$

Subtracting (1.316) from (1.317), we get

$$
\begin{equation*}
\left(v_{n}-v_{m}\right)\langle n \mid m\rangle=0 \tag{1.318}
\end{equation*}
$$

which shows that any two eigenvectors of a normal matrix V with different eigenvalues are orthogonal.

Usually, all N eigenvalues of an $N \times N$ normal matrix are different. In this case, all the eigenvectors are orthogonal and may be individually normalized. But even when a set D of eigenvectors has the same (degenerate) eigenvalue, one may use the argument (1.291-1.297) to find a suitable set of orthonormal eigenvectors with that eigenvalue. Thus every $N \times N$ normal matrix has N orthonormal eigenvectors. It follows then from the argument of equations (1.300-1.303) that every $N \times N$ normal matrix V can be diagonalized by an $N \times N$ unitary matrix U

$$
\begin{equation*}
V=U V^{(d)} U^{\dagger} \tag{1.319}
\end{equation*}
$$

