a result known as the Cayley-Hamilton theorem (Arthur Cayley, 18211895, and William Hamilton, 1805-1865). This derivation is due to Israel Gelfand (1913-2009) (Gelfand, 1961, pp. 89-90).

Because every $N \times N$ matrix A obeys its characteristic equation, its N th power A^{N} can be expressed as a linear combination of its lesser powers

$$
\begin{equation*}
A^{N}=(-1)^{N-1}\left(|A| I+p_{1} A+p_{2} A^{2}+\cdots+(-1)^{N-1}(\operatorname{Tr} A) A^{N-1}\right) \tag{1.265}
\end{equation*}
$$

For instance, the square A^{2} of every 2×2 matrix is given by

$$
\begin{equation*}
A^{2}=-|A| I+(\operatorname{Tr} A) A \tag{1.266}
\end{equation*}
$$

Example 1.35 (Spin-one-half rotation matrix) If $\boldsymbol{\theta}$ is a real 3-vector and $\boldsymbol{\sigma}$ is the 3 -vector of Pauli matrices (1.32), then the square of the traceless 2×2 matrix $A=\boldsymbol{\theta} \cdot \boldsymbol{\sigma}$ is

$$
(\boldsymbol{\theta} \cdot \boldsymbol{\sigma})^{2}=-|\boldsymbol{\theta} \cdot \boldsymbol{\sigma}| I=-\left|\begin{array}{cc}
\theta_{3} & \theta_{1}-i \theta_{2} \tag{1.267}\\
\theta_{1}+i \theta_{2} & -\theta_{3}
\end{array}\right| I=\theta^{2} I
$$

in which $\theta^{2}=\boldsymbol{\theta} \cdot \boldsymbol{\theta}$. One may use this identity to show (exercise (1.28)) that

$$
\begin{equation*}
\exp (-i \boldsymbol{\theta} \cdot \boldsymbol{\sigma} / 2)=\cos (\theta / 2) I-i \hat{\boldsymbol{\theta}} \cdot \boldsymbol{\sigma} \sin (\theta / 2) \tag{1.268}
\end{equation*}
$$

in which $\hat{\boldsymbol{\theta}}$ is a unit 3 -vector. For a spin-one-half object, this matrix represents a right-handed rotation of θ radians about the axis $\hat{\boldsymbol{\theta}}$.

1.27 Functions of Matrices

What sense can we make of a function f of an $N \times N$ matrix A ? and how would we compute it? One way is to use the characteristic equation (1.265) to express every power of A in terms of I, A, \ldots, A^{N-1} and the coefficients $p_{0}=|A|, p_{1}, p_{2}, \ldots, p_{N-2}$, and $p_{N-1}=(-1)^{N-1} \operatorname{Tr} A$. Then if $f(x)$ is a polynomial or a function with a convergent power series

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} c_{k} x^{k} \tag{1.269}
\end{equation*}
$$

in principle we may express $f(A)$ in terms of N functions $f_{k}(\boldsymbol{p})$ of the coefficients $\boldsymbol{p} \equiv\left(p_{0}, \ldots, p_{N-1}\right)$ as

$$
\begin{equation*}
f(A)=\sum_{k=0}^{N-1} f_{k}(\boldsymbol{p}) A^{k} \tag{1.270}
\end{equation*}
$$

The identity (1.268) for $\exp (-i \boldsymbol{\theta} \cdot \boldsymbol{\sigma} / 2)$ is an $N=2$ example of this technique which can become challenging when $N>3$.

