a result known as the **Cayley-Hamilton theorem** (Arthur Cayley, 1821–1895, and William Hamilton, 1805–1865). This derivation is due to Israel Gelfand (1913–2009) (Gelfand, 1961, pp. 89–90).

Because every $N \times N$ matrix A obeys its characteristic equation, its Nth power A^N can be expressed as a linear combination of its lesser powers

$$A^{N} = (-1)^{N-1} \left(|A| I + p_{1}A + p_{2}A^{2} + \dots + (-1)^{N-1} (\operatorname{Tr} A) A^{N-1} \right).$$
(1.265)

For instance, the square A^2 of every 2×2 matrix is given by

$$A^{2} = -|A|I + (TrA)A.$$
(1.266)

Example 1.35 (Spin-one-half rotation matrix) If $\boldsymbol{\theta}$ is a real 3-vector and $\boldsymbol{\sigma}$ is the 3-vector of Pauli matrices (1.32), then the square of the traceless 2×2 matrix $A = \boldsymbol{\theta} \cdot \boldsymbol{\sigma}$ is

$$(\boldsymbol{\theta} \cdot \boldsymbol{\sigma})^2 = - |\boldsymbol{\theta} \cdot \boldsymbol{\sigma}| \boldsymbol{I} = - \begin{vmatrix} \theta_3 & \theta_1 - i\theta_2 \\ \theta_1 + i\theta_2 & -\theta_3 \end{vmatrix} \boldsymbol{I} = \theta^2 \boldsymbol{I}$$
(1.267)

in which $\theta^2 = \boldsymbol{\theta} \cdot \boldsymbol{\theta}$. One may use this identity to show (exercise (1.28)) that

$$\exp\left(-i\boldsymbol{\theta}\cdot\boldsymbol{\sigma}/2\right) = \cos(\theta/2)\,\boldsymbol{I} - i\hat{\boldsymbol{\theta}}\cdot\boldsymbol{\sigma}\,\sin(\theta/2) \tag{1.268}$$

in which $\hat{\theta}$ is a unit 3-vector. For a spin-one-half object, this matrix represents a right-handed rotation of θ radians about the axis $\hat{\theta}$.

1.27 Functions of Matrices

What sense can we make of a function f of an $N \times N$ matrix A? and how would we compute it? One way is to use the characteristic equation (1.265) to express every power of A in terms of I, A, \ldots, A^{N-1} and the coefficients $p_0 = |A|, p_1, p_2, \ldots, p_{N-2}$, and $p_{N-1} = (-1)^{N-1} \text{Tr} A$. Then if f(x) is a polynomial or a function with a convergent power series

$$f(x) = \sum_{k=0}^{\infty} c_k x^k$$
 (1.269)

in principle we may express f(A) in terms of N functions $f_k(\mathbf{p})$ of the coefficients $\mathbf{p} \equiv (p_0, \ldots, p_{N-1})$ as

$$f(A) = \sum_{k=0}^{N-1} f_k(\mathbf{p}) A^k.$$
 (1.270)

The identity (1.268) for $\exp(-i\boldsymbol{\theta}\cdot\boldsymbol{\sigma}/2)$ is an N=2 example of this technique which can become challenging when N>3.