Often one uses the notation $|A|=\operatorname{det} A$ to denote a determinant. In this more compact notation, the obvious generalization of the product rule is

$$
\begin{equation*}
|A B C \ldots Z|=|A||B| \ldots|Z| \tag{1.207}
\end{equation*}
$$

The product rule (1.204) implies that $\operatorname{det}\left(A^{-1}\right)$ is $1 / \operatorname{det} A$ since

$$
\begin{equation*}
1=\operatorname{det} I=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det} A \operatorname{det}\left(A^{-1}\right) \tag{1.208}
\end{equation*}
$$

Example 1.28 (Derivative of the logarithm of a determinant) We see from our formula (1.195) for $\operatorname{det} A$ that its derivative with respect to any given element $A_{i k}$ is the corresponding cofactor $C_{i k}$

$$
\begin{equation*}
\frac{\partial \operatorname{det} A}{\partial A_{i k}}=C_{i k} \tag{1.209}
\end{equation*}
$$

since the cofactors $C_{i j}$ and $C_{j k}$ for all j are independent of $A_{i k}$. Thus the derivative of the logarithm of this determinant with respect to any parameter β is

$$
\begin{align*}
\frac{\partial \ln \operatorname{det} A}{\partial \beta} & =\frac{1}{\operatorname{det} A} \sum_{i k} \frac{\partial \operatorname{det} A}{\partial A_{i k}} \frac{\partial A_{i k}}{\partial \beta}=\sum_{i k} \frac{C_{i k}}{\operatorname{det} A} \frac{\partial A_{i k}}{\partial \beta} \\
& =\sum_{i k} A_{k i}^{-1} \frac{\partial A_{i k}}{\partial \beta}=\operatorname{Tr}\left(A^{-1} \frac{\partial A}{\partial \beta}\right) \tag{1.210}
\end{align*}
$$

Incidentally, Gauss, Jordan, and modern mathematicians have developed much faster ways of computing determinants and matrix inverses than those (1.183 \& 1.197) due to Laplace. Sage, Octave, Matlab, Maple, Mathematica, and Python use these modern techniques, which also are freely available as programs in C and FORTRAN from www.netlib.org/lapack.

Example 1.29 (Numerical Tricks) Adding multiples of rows to other rows does not change the value of a determinant, and interchanging two rows only changes a determinant by a minus sign. So we can use these operations, which leave determinants invariant, to make a matrix upper triangular, a form in which its determinant is just the product of the factors on its diagonal. For instance, to make the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \tag{1.211}\\
-2 & -6 & 3 \\
4 & 2 & -5
\end{array}\right)
$$

