i with the column index k held fixed

$$
\begin{equation*}
\operatorname{det} A=\sum_{i=1}^{N} A_{i k} C_{i k}=\sum_{i=1}^{N} A_{k i} C_{k i} \tag{1.195}
\end{equation*}
$$

in order to prove that

$$
\begin{equation*}
\delta_{k \ell} \operatorname{det} A=\sum_{i=1}^{N} A_{i k} C_{i \ell}=\sum_{i=1}^{N} A_{k i} C_{\ell i} . \tag{1.196}
\end{equation*}
$$

For $k=\ell$, this formula just repeats Laplace's expansion (1.195). But for $k \neq \ell$, it is Laplace's expansion for the determinant of a matrix A^{\prime} that is the same as A but with its ℓ th column replaced by its k th one. Since the matrix A^{\prime} has two identical columns, its determinant vanishes, which explains (1.196) for $k \neq \ell$.
This rule (1.196) provides a formula for the inverse of a matrix A whose determinant does not vanish. Such matrices are said to be nonsingular. The inverse A^{-1} of an $N \times N$ nonsingular matrix A is the transpose of the matrix of cofactors divided by $\operatorname{det} A$

$$
\begin{equation*}
\left(A^{-1}\right)_{\ell i}=\frac{C_{i \ell}}{\operatorname{det} A} \quad \text { or } \quad A^{-1}=\frac{C^{\top}}{\operatorname{det} A} . \tag{1.197}
\end{equation*}
$$

To verify this formula, we use it for A^{-1} in the product $A^{-1} A$ and note that by (1.196) the ℓk th entry of the product $A^{-1} A$ is just $\delta_{\ell k}$

$$
\begin{equation*}
\left(A^{-1} A\right)_{\ell k}=\sum_{i=1}^{N}\left(A^{-1}\right)_{\ell i} A_{i k}=\sum_{i=1}^{N} \frac{C_{i \ell}}{\operatorname{det} A} A_{i k}=\delta_{\ell k} \tag{1.198}
\end{equation*}
$$

Example 1.26 (Inverting a 2×2 Matrix) Let's apply our formula (1.197) to find the inverse of the general 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \tag{1.199}\\
c & d
\end{array}\right)
$$

We find then

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \tag{1.200}\\
-c & a
\end{array}\right)
$$

which is the correct inverse as long as $a d \neq b c$.
The simple example of matrix multiplication

$$
\left(\begin{array}{lll}
a & b & c \tag{1.201}\\
d & e & f \\
g & h & i
\end{array}\right)\left(\begin{array}{lll}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
a & x a+b & y a+z b+c \\
d & x d+e & y d+z e+f \\
g & x g+h & y g+z h+i
\end{array}\right)
$$

