We use them to represent rotations, translations, Lorentz transformations, and internal-symmetry transformations.

1.20 Determinants

The determinant of a 2×2 matrix A is

$$
\begin{equation*}
\operatorname{det} A=|A|=A_{11} A_{22}-A_{21} A_{12} . \tag{1.175}
\end{equation*}
$$

In terms of the 2×2 antisymmetric $\left(e_{i j}=-e_{j i}\right)$ matrix $e_{12}=1=-e_{21}$ with $e_{11}=e_{22}=0$, this determinant is

$$
\begin{equation*}
\operatorname{det} A=\sum_{i=1}^{2} \sum_{j=1}^{2} e_{i j} A_{i 1} A_{j 2} . \tag{1.176}
\end{equation*}
$$

It's also true that

$$
\begin{equation*}
e_{k \ell} \operatorname{det} A=\sum_{i=1}^{2} \sum_{j=1}^{2} e_{i j} A_{i k} A_{j \ell} . \tag{1.177}
\end{equation*}
$$

These definitions and results extend to any square matrix. If A is a 3×3 matrix, then its determinant is

$$
\begin{equation*}
\operatorname{det} A=\sum_{i j k=1}^{3} e_{i j k} A_{i 1} A_{j 2} A_{k 3} \tag{1.178}
\end{equation*}
$$

in which $e_{i j k}$ is totally antisymmetric with $e_{123}=1$, and the sums over i, j, $\& k$ run from 1 to 3 . More explicitly, this determinant is

$$
\begin{align*}
\operatorname{det} A= & \sum_{i j k=1}^{3} e_{i j k} A_{i 1} A_{j 2} A_{k 3} \\
= & \sum_{i=1}^{3} A_{i 1} \sum_{j k=1}^{3} e_{i j k} A_{j 2} A_{k 3} \\
= & A_{11}\left(A_{22} A_{33}-A_{32} A_{23}\right)+A_{21}\left(A_{32} A_{13}-A_{12} A_{33}\right) \\
& \quad+A_{31}\left(A_{12} A_{23}-A_{22} A_{13}\right) . \tag{1.179}
\end{align*}
$$

The minor $M_{i \ell}$ of the matrix A is the 2×2 determinant of the matrix A without row i and column ℓ, and the cofactor $C_{i \ell}$ is the minor $M_{i \ell}$ multiplied by $(-1)^{i+\ell}$. Thus $\operatorname{det} A$ is the sum

$$
\begin{align*}
\operatorname{det} A= & A_{11}(-1)^{2}\left(A_{22} A_{33}-A_{32} A_{23}\right)+A_{21}(-1)^{3}\left(A_{12} A_{33}-A_{32} A_{13}\right) \\
& +A_{31}(-1)^{4}\left(A_{12} A_{23}-A_{22} A_{13}\right) \\
= & A_{11} C_{11}+A_{21} C_{21}+A_{31} C_{31} \tag{1.180}
\end{align*}
$$

of the products $A_{i 1} C_{i 1}=A_{i 1}(-1)^{i+1} M_{i 1}$ where

$$
\begin{align*}
& C_{11}=(-1)^{2} M_{11}=A_{22} A_{33}-A_{23} A_{32} \\
& C_{21}=(-1)^{3} M_{21}=A_{32} A_{13}-A_{12} A_{33} \tag{1.181}\\
& C_{31}=(-1)^{4} M_{31}=A_{12} A_{23}-A_{22} A_{13}
\end{align*}
$$

Example 1.25 (Determinant of a 3×3 Matrix) The determinant of a 3×3 matrix is the dot product of the vector of its first row with the cross-product of the vectors of its second and third rows:
$\left|\begin{array}{ccc}U_{1} & U_{2} & U_{3} \\ V_{1} & V_{2} & V_{3} \\ W_{1} & W_{2} & W_{3}\end{array}\right|=\sum_{i j k=1}^{3} e_{i j k} U_{i} V_{j} W_{k}=\sum_{i=1}^{3} U_{i}(\boldsymbol{V} \times \boldsymbol{W})_{i}=\boldsymbol{U} \cdot(\boldsymbol{V} \times \boldsymbol{W})$
which is called the scalar triple product.
Laplace used the totally antisymmetric symbol $e_{i_{1} i_{2} \ldots i_{N}}$ with N indices and with $e_{123 \ldots N}=1$ to define the determinant of an $N \times N$ matrix A as

$$
\begin{equation*}
\operatorname{det} A=\sum_{i_{1} i_{2} \ldots i_{N}=1}^{N} e_{i_{1} i_{2} \ldots i_{N}} A_{i_{1} 1} A_{i_{2} 2} \ldots A_{i_{N} N} \tag{1.182}
\end{equation*}
$$

in which the sums over $i_{1} \ldots i_{N}$ run from 1 to N. In terms of cofactors, two forms of his expansion of this determinant are

$$
\begin{equation*}
\operatorname{det} A=\sum_{i=1}^{N} A_{i k} C_{i k}=\sum_{k=1}^{N} A_{i k} C_{i k} \tag{1.183}
\end{equation*}
$$

in which the first sum is over the row index i but not the (arbitrary) column index k, and the second sum is over the column index k but not the (arbitrary) row index i. The cofactor $C_{i k}$ is $(-1)^{i+k} M_{i k}$ in which the minor $M_{i k}$ is the determinant of the $(N-1) \times(N-1)$ matrix A without its i th row and k th column. It's also true that

$$
\begin{equation*}
e_{k_{1} k_{2} \ldots k_{N}} \operatorname{det} A=\sum_{i_{1} i_{2} \ldots i_{N}=1}^{N} e_{i_{1} i_{2} \ldots i_{N}} A_{i_{1} k_{1}} A_{i_{2} k_{2}} \ldots A_{i_{N} k_{N}} \tag{1.184}
\end{equation*}
$$

The key feature of a determinant is that it is an antisymmetric combination of products of the elements $A_{i k}$ of a matrix A. One implication of this antisymmetry is that the interchange of any two rows or any two columns changes the sign of the determinant. Another is that if one adds a multiple of one column to another column, for example a multiple $x A_{i 2}$ of column 2

