and the formula (1.118) for the $k$ th orthonormal linear combination of the vectors $\left|V_{\ell}\right\rangle$ is

$$
\begin{equation*}
\left|U_{k}\right\rangle=\frac{\left|u_{k}\right\rangle}{\sqrt{\left\langle u_{k} \mid u_{k}\right\rangle}} \tag{1.139}
\end{equation*}
$$

The vectors $\left|U_{k}\right\rangle$ are not unique; they vary with the order of the $\left|V_{k}\right\rangle$.
Vectors and linear operators are abstract. The numbers we compute with are inner products like $\langle g \mid f\rangle$ and $\langle g| A|f\rangle$. In terms of $N$ orthonormal basis vectors $|n\rangle$ with $f_{n}=\langle n \mid f\rangle$ and $g_{n}^{*}=\langle g \mid n\rangle$, we can use the expansion (1.131) to write these inner products as

$$
\begin{align*}
\langle g \mid f\rangle & =\langle g| I|f\rangle=\sum_{n=1}^{N}\langle g \mid n\rangle\langle n \mid f\rangle=\sum_{n=1}^{N} g_{n}^{*} f_{n} \\
\langle g| A|f\rangle & =\langle g| I A I|f\rangle=\sum_{n, \ell=1}^{N}\langle g \mid n\rangle\langle n| A|\ell\rangle\langle\ell \mid f\rangle=\sum_{n, \ell=1}^{N} g_{n}^{*} A_{n \ell} f_{\ell} \tag{1.140}
\end{align*}
$$

in which $A_{n \ell}=\langle n| A|\ell\rangle$. We often gather the inner products $f_{\ell}=\langle\ell \mid f\rangle$ into a column vector $f$ with components $f_{\ell}=\langle\ell \mid f\rangle$

$$
f=\left(\begin{array}{c}
\langle 1 \mid f\rangle  \tag{1.141}\\
\langle 2 \mid f\rangle \\
\vdots \\
\langle N \mid f\rangle
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{3}
\end{array}\right)
$$

and the $\langle n| A|\ell\rangle$ into a matrix $A$ with matrix elements $A_{n \ell}=\langle n| A|\ell\rangle$. If we also line up the inner products $\langle g \mid n\rangle=\langle n \mid g\rangle^{*}$ in a row vector that is the transpose of the complex conjugate of the column vector $g$

$$
\begin{equation*}
g^{\dagger}=\left(\langle 1 \mid g\rangle^{*},\langle 2 \mid g\rangle^{*}, \ldots,\langle N \mid g\rangle^{*}\right)=\left(g_{1}^{*}, g_{2}^{*}, \ldots, g_{N}^{*}\right) \tag{1.142}
\end{equation*}
$$

then we can write inner products in matrix notation as $\langle g \mid f\rangle=g^{\dagger} f$ and as $\langle g| A|f\rangle=g^{\dagger} A f$.

If we switch to a different basis, say from $|n\rangle$ 's to $\left|\alpha_{n}\right\rangle$ 's, then the components of the column vectors change from $f_{n}=\langle n \mid f\rangle$ to $f_{n}^{\prime}=\left\langle\alpha_{n} \mid f\right\rangle$, and similarly those of the row vectors $g^{\dagger}$ and of the matrix $A$ change, but the bras, the kets, the linear operators, and the inner products $\langle g \mid f\rangle$ and $\langle g| A|f\rangle$

