that is nonnegative when the matrices are the same

$$
\begin{equation*}
(A, A)=\operatorname{Tr} A^{\dagger} A=\sum_{i=1}^{N} \sum_{j=1}^{L} A_{i j}^{*} A_{i j}=\sum_{i=1}^{N} \sum_{j=1}^{L}\left|A_{i j}\right|^{2} \geq 0 \tag{1.87}
\end{equation*}
$$

which is zero only when $A=0$. So this inner product is positive definite.
A vector space with a positive-definite inner product (1.73-1.76) is called an inner-product space, a metric space, or a pre-Hilbert space.

A sequence of vectors f_{n} is a Cauchy sequence if for every $\epsilon>0$ there is an integer $N(\epsilon)$ such that $\left\|f_{n}-f_{m}\right\|<\epsilon$ whenever both n and m exceed $N(\epsilon)$. A sequence of vectors f_{n} converges to a vector f if for every $\epsilon>0$ there is an integer $N(\epsilon)$ such that $\left\|f-f_{n}\right\|<\epsilon$ whenever n exceeds $N(\epsilon)$. An inner-product space with a norm defined as in (1.80) is complete if each of its Cauchy sequences converges to a vector in that space. A Hilbert space is a complete inner-product space. Every finite-dimensional inner-product space is complete and so is a Hilbert space. But the term Hilbert space more often is used to describe infinite-dimensional complete inner-product spaces, such as the space of all square-integrable functions (David Hilbert, 1862-1943).

Example 1.17 (The Hilbert Space of Square-Integrable Functions) For the vector space of functions (1.55), a natural inner product is

$$
\begin{equation*}
(f, g)=\int_{a}^{b} d x f^{*}(x) g(x) \tag{1.88}
\end{equation*}
$$

The squared norm $\|f\|$ of a function $f(x)$ is

$$
\begin{equation*}
\|f\|^{2}=\int_{a}^{b} d x|f(x)|^{2} . \tag{1.89}
\end{equation*}
$$

A function is square integrable if its norm is finite. The space of all square-integrable functions is an inner-product space; it also is complete and so is a Hilbert space.

Example 1.18 (Minkowski Inner Product) The Minkowski or Lorentz inner product (p, x) of two 4 -vectors $p=\left(E / c, p_{1}, p_{2}, p_{3}\right)$ and $x=\left(c t, x_{1}, x_{2}, x_{3}\right)$ is $\boldsymbol{p} \cdot \boldsymbol{x}-E t$. It is indefinite, nondegenerate (1.79), and invariant under Lorentz transformations, and often is written as $p \cdot x$ or as $p x$. If p is the 4 -momentum of a freely moving physical particle of mass m, then

$$
\begin{equation*}
p \cdot p=\boldsymbol{p} \cdot \boldsymbol{p}-E^{2} / c^{2}=-c^{2} m^{2} \leq 0 . \tag{1.90}
\end{equation*}
$$

The Minkowski inner product satisfies the rules (1.73, 1.74, and 1.79), but

