204 Complez- Variable Theory

We can relate this to a Bessel function by setting A = (|z|/2m) exp(—«)
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where z = |z| = V22 and K is a modified Bessel function of the second kind
(9.98). If n = 3, this is (exercise 5.27) the Yukawa potential (5.141). O

Example 5.24 (A Fourier Transform) As another example, let’s consider
the integral
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We may add ghost contours as in the preceding example, but now the inte-
grand has double poles at k = +im, and so we must use Cauchy’s integral

formula (5.36) for the case of n = 1, which is Eq.(5.34). For z > 0, we add
a ghost contour in the UHP and find
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If z < 0, then we add a ghost contour in the LHP and find
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Putting the two together, we get
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as the Fourier transform of 1/(k? + m?)2. O

Example 5.25 (Integral of a Complex Gaussian) As another example of
the use of ghost contours, let us use one to do the integral

I= / e dx (5.156)
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