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We can relate this to a Bessel function by setting � = (|x|/2m) exp(�↵)
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where x = |x| =
p
x2 and K is a modified Bessel function of the second kind

(9.98). If n = 3, this is (exercise 5.27) the Yukawa potential (5.141).

Example 5.24 (A Fourier Transform) As another example, let’s consider
the integral
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We may add ghost contours as in the preceding example, but now the inte-
grand has double poles at k = ±im, and so we must use Cauchy’s integral
formula (5.36) for the case of n = 1, which is Eq.(5.34). For x > 0, we add
a ghost contour in the UHP and find
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If x < 0, then we add a ghost contour in the LHP and find
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Putting the two together, we get
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as the Fourier transform of 1/(k2 +m2)2.

Example 5.25 (Integral of a Complex Gaussian) As another example of
the use of ghost contours, let us use one to do the integral
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