To see why a normal matrix can be diagonalized by a unitary transformation, let us consider an \(N \times N \) normal matrix \(V \) which (since it is square (section 1.25)) has \(N \) eigenvectors \(|n\rangle \) with eigenvalues \(v_n \)

\[
(V - v_n I) |n\rangle = 0.
\]
(1.311)

The square of the norm (1.80) of this vector must vanish

\[
\| (V - v_n I) |n\rangle \|^2 = \langle n | (V - v_n I) \dagger (V - v_n I) |n\rangle = 0.
\]
(1.312)

But since \(V \) is normal, we also have

\[
\langle n | (V - v_n I) \dagger (V - v_n I) |n\rangle = \langle n | (V - v_n I) \dagger (V - v_n I) \dagger |n\rangle.
\]
(1.313)

So the square of the norm of the vector \((V - v_n I) |n\rangle \) also vanishes \(\| (V - v_n I) |n\rangle \|^2 = 0 \) which tells us that \(|n\rangle \) also is an eigenvector of \(V \) with eigenvalue \(v_n \)

\[
V |n\rangle = v_n |n\rangle \quad \text{and so} \quad \langle n | V = v_n \langle n |.
\]
(1.314)

If now \(|m\rangle \) is an eigenvector of \(V \) with eigenvalue \(v_m \)

\[
V |m\rangle = v_m |m\rangle
\]
(1.315)

then we have

\[
\langle n | V |m\rangle = v_m \langle n |m\rangle
\]
(1.316)

and from (1.314)

\[
\langle n | V |m\rangle = v_n \langle n |m\rangle.
\]
(1.317)

Subtracting (1.316) from (1.317), we get

\[
(v_n - v_m) \langle n |m\rangle = 0
\]
(1.318)

which shows that any two eigenvectors of a normal matrix \(V \) with different eigenvalues are orthogonal.

Usually, all \(N \) eigenvalues of an \(N \times N \) normal matrix are different. In this case, all the eigenvectors are orthogonal and may be individually normalized. But even when a set \(D \) of eigenvectors has the same (degenerate) eigenvalue, one may use the argument (1.291–1.297) to find a suitable set of orthonormal eigenvectors with that eigenvalue. Thus every \(N \times N \) normal matrix has \(N \) orthonormal eigenvectors. It follows then from the argument of equations (1.300–1.303) that every \(N \times N \) normal matrix \(V \) can be diagonalized by an \(N \times N \) unitary matrix \(U \)

\[
V = U V^{(d)} U^\dagger
\]
(1.319)