THE ENTROPY, S

The second law (but not the first law) allows one to predict the *direction* of a particular reaction. But to make it useful for this purpose, one needs a convenient measure of the probability or, equivalently, the degree of disorder of a state. The entropy (*S*) is such a measure. It is a logarithmic function of the probability such that the *change in entropy* (ΔS) that occurs when the reaction A \rightarrow B converts one mole of A into one mole of B is

$\Delta S = R \ln p_{\rm B} / p_{\rm A}$

where p_A and p_B are the probabilities of the two states A and B, *R* is the gas constant (2 cal deg⁻¹ mole⁻¹), and ΔS is measured in entropy units (eu). In our initial example of 1000 coins, the relative probability of all heads (state A) versus half heads and half tails (state B) is equal to the ratio of the number of different ways that the two results can be obtained. One can calculate that $p_A = 1$ and $p_B = 1000!(500! \times 500!) = 10^{298}$. Therefore, the entropy change for the reorientation of the coins when their container is vigorously shaken and an equal mixture of heads and tails is obtained is $R \ln (10^{298})$, or about 1370 eu per mole of such containers (6 x 10^{23} containers). We see that, because ΔS defined above is positive for the transition from state A to state B ($p_B/p_A > 1$), reactions with a large *increase* in S (that is, for which $\Delta S > 0$) are favored and will occur spontaneously.

As discussed in Chapter 2, heat energy causes the random commotion of molecules. Because the transfer of heat from an enclosed system to its surroundings increases the number of different arrangements that the molecules in the outside world can have, it increases their entropy. It can be shown that the release of a fixed quantity of heat energy has a greater disordering effect at low temperature than at high temperature and that the value of ΔS for the surroundings, as defined above (ΔS_{sea}) , is precisely equal to the amount of heat transferred to the surroundings from the system (*h*) divided by the absolute temperature (*T*):

 $\Delta S_{\text{sea}} = h/T$

THE GIBBS FREE ENERGY, G

When dealing with an enclosed biological system, one would like to have a simple way of predicting whether a given reaction will or will not occur spontaneously in the system. We have seen that the crucial question is whether the entropy change for the universe is positive or negative when that reaction occurs. In our idealized system, the cell in a box, there are two separate components to the entropy change of the universe-the entropy change for the system enclosed in the box and the entropy change for the surrounding "sea"-and both must be added together before any prediction can be made. For example, it is possible for a reaction to absorb heat and thereby decrease the entropy of the sea ($\Delta \textit{S}_{sea}$ < 0) and at the same time to cause such a large degree of disordering inside the box ($\Delta S_{box} > 0$) that the total $\Delta S_{universe} = \Delta S_{sea} + \Delta S_{box}$ is greater than 0. In this case the reaction will occur spontaneously, even though the sea gives up heat to the box during the reaction. An example of such a reaction is the dissolving of sodium chloride in a beaker containing water (the "box"), which is a spontaneous process even through the temperature of the water drops as the salt goes into solution.

Chemists have found it useful to define a number of new "composite functions" that describe *combinations* of physical properties of a system. The properties that can be combined include the temperature (T), pressure (P), volume (V), energy (E), and entropy (S). The enthalpy (H) is one such composite function. But by far the most useful composite function for biologists is the *Gibbs free energy*, *G*. It serves as an accounting device that allows one to deduce the entropy change of the universe resulting from a chemical reaction in the box, while avoiding any separate consideration of the entropy change in the sea. The definition of *G* is

G = H - TS

where, for a box of volume *V*, *H* is the enthalpy described above (E + PV), *T* is the absolute temperature, and *S* is the entropy. Each of these quantities applies to the inside of the box only. The change in free energy during a reaction in the box (the *G* of the products minus the *G* of the starting materials) is denoted as ΔG and, as we shall now demonstrate, it is a direct measure of the amount of disorder that is created in the universe when the reaction occurs. At constant temperature the change in free energy (ΔG) during a reaction equals $\Delta H - T\Delta S$. Remembering that $\Delta H = -h$, the heat absorbed from the sea, we have

But h/T is equal to the entropy change of the sea (ΔS_{sea}), and the ΔS in the above equation is ΔS_{box} . Therefore

 $-\Delta G/T = \Delta S_{sea} + \Delta S_{box} = \Delta S_{universe}$

We conclude that the free-energy change is a direct measure of the entropy change of the universe. A reaction will proceed in the direction that causes the change in the free energy (ΔG) to be less than zero, because in this case there will be a positive entropy change in the universe when the reaction occurs.

For a complex set of coupled reactions involving many different molecules, the total free-energy change can be computed simply by adding up the free energies of all the different molecular species after the reaction and comparing this value to the sum of free energies before the reaction; for common substances the required free-energy values can be found from published tables. In this way one can predict the direction of a reaction and thereby readily check the feasibility of any proposed mechanism. Thus, for example, from the observed values for the magnitude of the electrochemical proton gradient across the inner mitochondrial membrane and the ΔG for ATP hydrolysis inside the mitochondrion, one can be certain that ATP synthase requires the passage of more than one proton for each molecule of ATP that it synthesizes.

The value of ΔG for a reaction is a direct measure of how far the reaction is from equilibrium. The large negative value for ATP hydrolysis in a cell merely reflects the fact that cells keep the ATP hydrolysis reaction as much as 10 orders of magnitude away from equilibrium. If a reaction reaches equilibrium, $\Delta G = 0$, the reaction then proceeds at precisely equal rates in the forward and backward direction. For ATP hydrolysis, equilibrium is reached when the vast majority of the ATP has been hydrolyzed, as occurs in a dead cell.