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1 States

A Lorentz transformation A is implemented by a unitary operator U(A) which replaces the
state |p, o) of a massive particle of momentum p and spin o along the z-axis by the state

U(A)|p, o)

ZD ) [Ap, 5')

where W (A, p) is a Wigner rotation
W(A,p) = L™ (Ap)AL(p)

and L(p) is a standard Lorentz transformation that takes (m,0) to p.

2 Creation operators

The vacuum is invariant under Lorentz transformations and translations

U(A, a)[0) = 10).

A creation operator af(p, o) makes the state |p, o) from the vacuum state |0)

lpo) = al(p, 0)[0).

The creation and annihilation operators obey either the commutation relation

[a(p, 5)’ aT(p,7 S,)]— = a(p, S) CLT(p,, 5,) T(p S ) ( ) - 553 5( )(p - p,)

or the anticommutation relation

[a(p, s),a' (0, )], = a(p,s)al(p,s') +a' (¥, s") alp, 5) = 655 6P (p — P).

(1)



The two kinds of relations are written together as

[a(p, s),a (P, "))z = alp,s) a’ (v, &) F al (1, ) alp,

A bracket [A, B] with no signed subscript is interpreted as a commutator.
Equations (1) & [4)) give

U o0 = | S >0 ot (Ap, $)[0).
And (3)) gives
U (. oU )10 = S >0 ot (Ap, $)[0).
SW in chapter 4 concludes that
U)oU) = [ B8 > Dl At (Ap, ).

If U(A,b) follows A by a translation by b, then

U(A,b)al(p, o) U (A, b) = Ap Z DY at(Ap, s)

Ap)0 ; _
(P}?ZDL(?(W (A, p))al (Ap, )

A 0 *(7 _
S S D () a4
The adjoint of this equation is

JilAp)-a AP ZD*V (W(A, p)) a(Ap, s
p

U(A,b)a(p, o)UY (A,b) =

) 0
— et [0 5 51O wa gt

S/

= citwra, [API0 5= 16 gy

0 (A, p)) a(Ap, ).

S/

These equations & are (5.1.11 & 5.1.12) of SW.

2

5) = 055 03 (p — p).

(10)

(11)

(12)



3 How fields transform
The “positive frequency” part of a field is a linear combination of annihilation operators
=Y [ @puteip)alp.o) (13
g

The “negative frequency” part of a field is a linear combination of creation operators of
the antiparticles

=Y [ @put@ino)tlp.o) (14
To have the fields & [14)) transform properly under Poincaré transformations
U(A, a)y,) (z) Zpa Yyt (Az + a)

- ZDa(A‘l) Z / d’p ug(Ax +a;p, o) a(p, 0)
U(A, a); () ZDN “(Az+a)

= > Dy(A )] / dpvg(Az + a;p,0) bl (p, 0)
2 o

the spinors wu(x; p, o) and vy(z; p, o) must obey certain rules which we’ll now determine.

First & give
U(A,a)w;(x) Y(A,a) =U(A,a Z/d pug(z;p,0)a(p, o)U (A, a)

(15)

= Z/d3p ug(z;p,0) U(A, a)a(p, o) UL (A, a) (16)
3 i(Ap)-a Ap A /
_Z d’p ug(z;p, o) e ZDJS ,p)) a(Ap,s’).
Now we use the identity
3 3 A
dTp _ 2 1(’)) (17)
p (Ap)
to turn (16 into
UM, a) (1)U (A, a) Z/ (Ap) ue(wsp. ) A7)
P° P
5 2 D (WA ) aAp, o). (18)



Similarly & give
U @) @V (0) = U4 S [ @pertaip o) ¥ (o) (A a)

=Y [ dpowin.o) U b .00 (A0 (19)
= Z/d pve(a;p, o) e AP Ap ZD*U A,p)) b (Ap, s')

—Z/d3Ap ve(w; p, o) €=MV

So to get the fields to transform as in , equations & say that we need

S 0aA e+ = DA S [ Eputhn +aino)atpo)
= Z Dy(A™1) Z / d3(Ap) up(Azx + a; Ap, o) a(Ap, o)
A o

= Z/d?’(/\p) we(z; p, o) e'Ap)a (20)

Ap Z U ,p)) a(Ap, s')
= Z/d?’(/\p) ug(;p, s') ')

po)o S DO WA, p)) a(Ap. o)

Z DD WA, p)) bl (Ap, §).




and

ZDZE ; (Az+a) = ZDZZ I)Z/d3pvz(/\$+a;p70) b (p, o)
S Z DAY [ d*(ap) vz + ai Ap,0) bl (Ap.o)
2 o

_ Z/ds(Ap) ve(m; p, o) e~iAP)a (21)

G 2 Do T (A b (4. s)

= Z/dg(Ap) ve(w; p, s') e~ APV

pO *(7 _
Ay 2 D (7 (AL p) bl (A o)

Equating coefficients of the red annihilation and blue creation operators, we find that the
fields will transform properly if the spinors u and v satisfy the rules

ZD” ) up(Az + a; Ap, o) \/>ZD A ,p))ug(z;p, 8') e i(Ap)-a (22)

Z “HA, p))ve(w; p, o )e AP (23)

Z Dyg(A Y vp(Ax + a; Ap, o

which differ from SW’s by an interchange of the subscripts o, s’ on the rotation matrices
DU, (I think SW has a typo there.) If we multiply both sides of these equations &
by the two kinds of D matrices, then we get first

Z Dyrg(AN)Dg(A -1 ug(Az + a; Ap, o) = up (Ax + a; Ap, o)

Ap ZD (A p) Dee(Mug(s p, s AP (24)

Z Dyo(A)D (A )vg(Ax +a;Ap, o) = vy (Ax + a; Ap, o)

Z "(A,p)) Dog(A)vg (s p, o )e " AP) (25)



and then with W = W (A, p)

S DY (W)up(Az + a; Ap, o)

o

Z ) DY) (W) Dye(Aug(z; p, ') /AP

s',0,l

\/ ZDM Jug(w; p, 5) €9 (26)

ZD*(J Ug/ ACC + a; Ap, )

A Z Dy DY (W) Dyo(A)we(a; p, s')e AP
p)°
0,8’k

\/ ZDM Yo (s p, 5)e APV (27)

which are equations (5.1.13 & 5.1.14) of SW:

Zue Az +a; Ap, 5D (W (A, p)) \/ Z Aug(w; p, o) e/ P)@

va (Az + a; Ap, 5) Dy * )(W(A p)) ZD” Yog(; p, o) HAP)a,

(28)

These are the equations that determine the spinors u and v up to a few arbitrary phases.

4 Translations

When A = I, the D matrices are equal to unity, and these last equations say that for
z=0

wi(a;p,o) = ue(0;p, o) P
(a;p, o) = us(0;p, o) €¥ (20)
ve(a;p, o) = ve(0; p, o).
Thus the spinors u and v depend upon spacetime by the usual phase e*?*
. _ -3/2 ipT
ug(x;p,o) = (2w up(p,o)e
(@:p.0) = (27)"2us(p,0) .

ve(a;p, o) = (21) 73 2v(p, )e P



in which the 27’s are conventional. The fields therefore are Fourier transforms:
v @) = 20 2 [ @perulp.o)alp.o)
by () = (2m)*2> / d*p e vy(p, o) bl (p, o)

and every field of mass m obeys the Klein-Gordon equation

(V2 =05 —m?)hy(x) = (O — m?) dy(x) = 0. (32)

Since expli(Ap - (Ax + a))] = exp(ip - v + iAp - a), the conditions (28] simplify to

Z ug(Ap, §)D =4 / Z A)ue(p, o

(33)
ZUZ Ap, 5)Dy (])(W(A D)) Z MNve(p,o
for all Lorentz transformations A.
5 Boosts
Set p =k = (m,0) and A = L(q) where L(¢)k = q. So L(p) =1 and
W(A,p) = L' (Ap)AL(p) = L™ (q)L(q) = 1. (34)
Then the equations are
up =4 / Z Dyy(L(q))ue(0, o)
(35)

vi(@,0) = /=57 Dyy(L(q))ve(D, o).
7\4 \/;ZZ: 20\ 1\q)) Vg

Thus a spinor at finite momentum is given by a representation D(A) of the Lorentz group
(see the online notes of chapter 10 of my book for its finite-dimensional nonunitary rep-
resentations) acting on the spinor at zero 3-momentum p = k = (m, 6) We need to find
what these spinors are.



6 Rotations

Now set p = k = (m, 6) and A = R a rotation so that W = R. For rotations, the spinor

conditions are
Zu 0,5) ZDM ,0)
ZW ZDM Jve( O ,0).

(36)

The representations Dg,)(R) of the rotation group are (25 + 1) x (2j + 1)-dimensional
unitary matrices. For a rotation of angle 6 about the 8 = 0 axis, they are the ones taught
in courses on quantum mechanics (and discussed in the notes of chapter 10)

ng)(g) _ [efiG-J(j)} (37)

SO —
SO

where [Jg, Jp] = t€gpede. The representations Dy, (R) of the rotation group are finite-
dimensional unitary matrices. For a rotation of angle # about the 8 = 0 axis, they are

Dy(0) = [T (38)

in which [Ja, Jp] = t€apeT . For tiny rotations, the conditions require (because of the
complex conjugation of the antiparticle condition) that the spinors obey the rules

ZUZ 6 5 (j) 50 = Z(ja)féuf(ﬁa U)

4

Zw T = 3 (Ta)gwe(0, 0)

L

fora=1,2,3.

7 Spin-zero fields

Spin-zero fields have no spin or Lorentz indexes. So the boost conditions (207)) merely

require that u(q) = /m/q°u(0) and v(q) = \/m/q"(0). The conventional normalization
is u(0) = 1/v/2m and v(0) = 1/v/2m. The spin-zero spinors then are

u(p) = (2p°)"* and w(p) = (2p°) 7 (40)

For simpicity, let’s first consider a neutral scalar field so that b(p,s) = a(p,s). The
definitions and of the positive-frequency and negative-frequency fields and their



behavior under translations then give us

t(x) = 7d3p a(p) e
0@ = [ g "
— o d3p CLT e—ip-m
@)= [ g o)
Note that
[¢*(@)]" = 67 (@). (42)
Since [a(p),a(p’)]+ = 0, it follows that
(67 (@), 6" ()]; =0 and 6 (), 6~ (y)] = 0 (13)

whatever the values of x and y as long as we use commutators for bosons and anticommu-
tators for fermions.
But the commutation relation

[a(p, s),a' (¢, )] = 6 6 (p — q) (44)

makes the commutator

6+ (@), 6~ ()] = /

d3pd3p/ ; ,
P T o=y 53 p— p/

(27r)3 2p02p’0 ( ) (45)

d3p i
- p(z—y) — A —
/(27T)32p0 € +(.Z’ y)
nonzero even for (z — y)? > 0 as we’ll now verify.

For space-like x, the Lorentz-invariant function Ay (z) can only depend upon z? > 0

since the time z° and its sign are not Lorentz invariant. So we choose a Lorentz frame
with 2° = 0 and || = V22 In this frame,

d®p ;
A (x :/ P
+() (2m)324/p? + m?

46
o / p2dp dcos eip:): cos ( )
(27)22+/p? + m?

where p = |p| and = = |z|. Now

/dcos@ etz cost (eipx - e_ipx) /(ipx) = 2sin(px)/(px), (47)
so the integral is
1 °° sin(px) pdp
A pu—

+(2) Arly /0 /D2 + m?2 (48)



with u = p/m

m [ sin(mzu) udu m 9
o) =g [ e K (ma?) (49)

a Hankel function.
To get a Lorentz-invariant, causal theory, we use the arbitrary parameters x and A
setting

$(x) = k" (z) + Ao~ () (50)
Now the adjoint rule and the commutation relations and give

[6(2), 6T ()] = [rdT () + Ao~ (2), "0~ (y) + AT (¥)]+
= [kl [¢7 (), 0~ ()5 + NP (2), 6T (0)]+
= [k Ai(z—y) FINP AL (y — ) (51)
[ko™ () + Ao (2), k0T (y) + Ao~ (v)] 2
rA ([T (2), ¢~ ()]: + [97 (2), 0T (y)]3)
=RA (Ap(z —y) FAL(y —2)).

But when (z —)? >0, A (x —y) = Ay (y — x). Thus these conditions are

[6(x), 6" ()] = (|6 FAP) Ap(z —y)
[$(x), p(y)]+ = KAA L (z — y)(1 F 1).

The first of these equations implies that we choose the minus sign and so that we use
commutation relations and not anticommutation relations for spin-zero fields. This is the
spin-statistics theorem for spin-zero fields. SW proves the theorem for arbitrary massive
fields in section 5.7.

We also must set

[¢(2), 6(y)] 5

(52)

|k = [Al- (53)

The second equation then is automatically satisfied. The common magnitude and the
phases of k and A are arbitrary, so we choose kK = A = 1. We then have

$(x) = ¢*(2) + ¢~ (x) = ¢ (2) + ¢ (2) = ¢l (). (54)

Now the interaction density H(z) will commute with H(y) for (z — y)? > 0, and we have
a chance of having a Lorentz-invariant, causal theory.

8 Conserved charges

If the field ¢ adds and deletes charged particles, an interaction H(z) that is a polynomial
in ¢ will not commute with the charge operator ) because ¢ will lower the charge and

10



¢~ will raise it. The standard way to solve this problem is to start with two hermitian
fields ¢1 and ¢9 of the same mass. One defines a complex scalar field as a complex linear
combination of the two fields

1
6(2) = = (61() + in(a)
V2 & 1 , e . 1 (4 iy e (55)
= | Tt | 5 @0 i) 7 (6l + i) ).
Setting . .
a(p) = 5 (@(p) +iaa(p)) and 8(p) = =5 (a}(p) +iak)) (56)
so that ! !
o) = 5 () —iaz(p) and o' (p) = 5 (a}(p) —iabr)) (57)
we have
3 . .
¢z) = / \/(Qdﬂ%po [ a(p) €77 + b (p) 77| (58)
and
3 . .
o'(x) = / \/(;W;'%QPO b(p) €7 + ol (p) 777 (59)

Since the commutation relations of the real creation and annihilation operators are for
i,j=1,2

[ai(p), al (1)) = 65 *(p —p') and  [as(p), ;)] = 0 = [af (p), al ()] (60)
the commutation relations of the complex creation and annihilation operators are
[a(p), a' ()] = 6°(p — p/) and  [b(p),b'(p)] = 8*(p — P') (61)

with all other commutators vanishing.
Now ¢(z) lowers the charge of a state by ¢ if al adds a particle of charge ¢ and if b
adds a particle of charge —q. Similarly, ¢'(z) raises the charge of a state by ¢

[Q.¢(x)] = — gp(z) and [Q,¢'(z)] = o' (). (62)

So an interaction with as many ¢(z)’s as ¢f(x)’s conserves charge.

11



9 Parity, charge conjugation, and time reversal

If the unitary operator P represents parity on the creation operators
Paf(p)P™" =naj(~p) and Pal(p)P~" = 7ai(-—p) (63)

with the same phase 7. Then

Pai(p)P~" = n*ai(—p) and Pay(p)P~' = n"az(—p) (64)
and so both
Pal(p)P™" =na'(-p) and Pa(p)P™' =n*a(—p) (65)
and
Pbi(p)P~" =nb'(—p) and Pb(p)P~' = n*b(—p). (66)

Thus if the field

(p) €™ + al(p) e~ P (67)

3
P1(z) = /\/(2(17;;32])0 [al

or ¢a(x), or the complex field is to go into a multiple of itself under parity, then we
need n = n* so that 7 is real. Then the fields transform under parity as

P¢1 (w)P_l = 7’]*¢1($0, —Lll) = 77¢1 (1’0, —ZII)
Poo(z)P~! = n*¢(2°, —x) = npa(a’, —x) (68)
Po(z)P~' = n*p(a°, —) = no(a”, —).

Since P? = I, we must have n = £1. SW allows for a more general phase by having parity
act with the same phase on a and bf. Both schemes imply that the parity of a hermitian
field is +1 and that the state

ab) = [ &0 70" al®)V (-p) 0) (69)
has even or positive parity, P|lab) = |ab).

Charge conjugation works similarly. If the unitary operator C represents charge conju-
gation on the creation operators

Caj(p)C' =¢al(p) and Cal(p)C™' = — cal(p) (70)

with the same phase €. Then

Car(p)C" = ai(p) and Caz(p)C ' = — Faz(p) (71)

12



and so since a = (a1 + iaz)/v2 and b = (a3 — iag)/V/2
Ca(p)C' =¢*b(p) and Ch(p)C™' =& a(p) (72)
and since a = (al —ial)/v/2 and bT = (al 4 ial)/v/2
Cal(p)C™t =¢bf(p) and Cbi(p)C" = &al(p). (73)

Thus under charge conjugation, the field becomes

Eb(p) e + Eal (p) e (74)

3
< = | |

and so if it is to go into a multiple of itself or of its adjoint under charge conjugation then
we need £ = £* so that £ is real. We then get

Co(z)C ! =€ ¢l (z) = €9 (). (75)

Since C? = I, we must have ¢ = +1. SW allows for a more general phase by having
charge conjugation act with the same phase on a and bf. Both schemes imply that the
charge-conjugation parity of a hermitian field is +1 and that the state

jab) = / &p F(w?) ol (p) b (p) [0) (76)

has even or positive charge-conjugation parity, Clab) = |ab).
The time-reversal operator T is antilinear and antiunitary. So if

Tay(p)T ' =C*ar(—p) and Tax(p)T ' = — (*az(—p)

Tal(p)T~! = Cal(-p) and Tal(p)T~' = —Cal(-p) 7
then
Ta(p)T~! = T\}i(al(p) + iag(p))T 1 \}i(Tal(p)T L iTay(p)T 1) .
- C*Jg(al(—p) +ias(~p)) = C*a(~p)
and
ol (p) T~ = T\}i(akp) T iab(p) T = ji(Tc&(p)Tl — iTa}(p)T~) -
— c%(au—p) +ia}(~p)) = (bl (~p)

13



then one has

T (p) €™ + b1 (p) 6’“’“] T!

-1 _ d®p a
)T = T/ V/(27)32p0 [
)T e 4 Tol (p) T~ | (80)

3
- | T T
d®p ;
Z/W[C a(—p)e

So if ( is real, then after replacing —p by p, we get

)

To (p) PP 4 pT(p) e"'poxmpm}

-1 _ % d3p a
=6 [ i |
= C*¢(—$O, .’E) = C‘b(_mO?x)'

Since T? = I, the phase ¢ = 1. SW lets ¢ be complex but defined only for complex scalar
fields and not for their real and imaginary parts.

(81)

10 Vector fields

Vector fields transform like the 4-vector z* of spacetime. So
DZE(A) = Aﬁg (82)
for ¢, =0,1,2,3. Again we start with a hermitian field labelled by i = 0,1,2,3

oti(x) = (2m)73/? Z/d3p eP %yt (p, s) alp, s)

(83)
¢~ (x) = (2m) 32 Y / d’p e 7' (p, 5) al (p, 5).
The boost conditions (207)) say that
. m . N
u'(p,s) = \ 0 > L)t (0,s)
) (84)
. m . N
v'(p, s) = \ 0 Z L(p)'v* (0, s).
k
The rotation conditions (39) give
D u(0,8)(J)ss = D (Ta)u* (0, 9)
5 k
- . R (85)
=Y V0.8 D)ss = Y (Ta)k0" (0, 9).
3 k

14



The (25 + 1) x (2§ + 1) matrices ( C(Lj))gs are the generators of the (2j + 1) x (25 + 1)
representation of the rotation group. (See my online notes on group theory.) You learned
that

3 J
STUDR] =303 ()5 (I ew = 5+ )i (86)
a=1 5 a=ls=—j
and that
L {010 L (0 =i 0 10 0
J=—|10 1], m=—"[i 0 —i|, =00 o0 (87)
vV2\y 1 o 2\o0 i o0 00 —1

in courses on quantum mechanics.
For k = 1,2, 3, the three 4 x 4 matrices (jk)zj are the generators of rotations in the
vector representation of the Lorentz group. Their nonzero components are

(jk)ij = — i€k (88)
for i, 5,k = 1,2,3, while (Jx)% = 0, (Jx)% = 0, and (J3)’y = 0 for 4,4,k = 1,2,3. So

with (72%)% =0, (7%)%; = 0, and (J?)’, = 0 for i,5 = 1,2,3. Apart from a factor of i, the
Ji’s are the 4 x 4 matrices J, = iR, of my online notes on the Lorentz group

000 O 0 0 0O 00 0 O
aefose ) wefooos) aefrevr) w
0 0 ¢« O 0 — 0 0 00 0 O
Since (J,)%, = 0 for a,k = 1,2, 3, the spin conditions (85) give for i =0
D w055 =0 and =3 0%(0,5)(/;)s = 0. (91)

Multiplying these equations from the right by (Jéj))ss/ while summing over ¢ = 1,2,3 and
using the formula [(JU)2e = 5(j + 1) b4y, we find

jG+1)ul0,s) =0 and j(j+1)v°(0,s) = 0. (92)

Thus uo(ﬁ, o) and 00(6, o) can be anything if the field represents particles of spin j = 0,
but ©°(0, o) and v°(0, o) must both vanish if the field represents particles of spin j > 0.

15



Now we set ¢ = 1,2, 3 in the spin conditions and again multiply from the right by
( (SJ))SS/ while summing over a = 1,2, 3 and using the formula (JU)2 = j(j+1). The
Lorentz rotation matrices generate a j = 1 representation of the group of rotations.

3

D (Ja)' (T =3 +1) 6 = 25}, (93)

ka=1

So the remaining conditions on the fields are

](] + 1 ZU 0 3 S (thj))ss’ = Z(ja)lkuk((_)” 3) (J(gj))ss’
ssa ksa
= Z(ja) (ja gu O 5 225 1(6’ S/)
o kla o 4 (94)
(G +1)v"(0,8) = ZU’(O,E)(J;( )35 (T30 ))ss’ = Z(ja) 10F(0,8) (J9)sw
ssa ksa
= D (Ja)i (Ja)y (0, 9) 226 20'(0,5).
kla

Thus if j = 0, then for i = 1,2, 3 both (0, s) and v*(0, s) must vanish, while if j > 0, then
since j(j + 1) = 2, the spin j must be unity, j = 1.

11 Vector field for spin-zero particles

The only nonvanishing components are constants taken conventionally as

u’(0) =iy/m/2 and °(0) = —iv/m/2. (95)
At finite momentum the boost conditions (207) give them as
“(p) =ip"/v2p® and oM(p) = —ip"/v/2p0. (96)

The vector field ¢*(x) of a spin-zero particle is then the derivative of a scalar field ¢(z)

¢"(2) = I6(x () € — ip bl (p) 7] (97)

/\/27132]) ipta

12 Vector field for spin-one particles

We start with the s = 0 spinors u*(0,0) and v*(0,0) and note that since (Jéj))go =0, the
a = 3 rotation conditions imply that

(J3)% u*(0,0) = iR3u*(0,0) =0 and (J3)% v"(0,0) = iR3v'(0,0) =0.  (98)

16



Referring back to the explicit formulas for the generators of rotations and setting u,v =
(0,x,y, z) we see that

00 0 O 0 0 0
100 —i O x| | —wy| |0
Bu=10 43 o of|ly|=| = [T o (99)
00 0 O z 0 0
and
00 0 0 0 0 0
[0 0 =i 0 x| | -y 0
Jv=10 3 o oflly|=| 2 |~ |o (100)
00 0 O z 0 0
Thus only the 3-component z can be nonzero. The conventional choice is
0
W (0,0) = v(0,0) = —— | © (101)
Y ? /Tm 0
1

We now form the linear combinations of the rotation conditions that correspond
to the raising and lowering matrices J(l) J{l) + iJQ(I)

01 0 000
JV=v2{0 0 1| and JY=v2|1 0 0]. (102)
00 0 010

Their Lorentz counterparts are

0 0 0 O
(1) _ wm_10 0 0 ¥l
Ji —J izj 0 0 0 —i (103)
0 £1 ¢ O
In these terms, the rotation conditions for the j = 1 spinors ul(ﬁ, s) are
iq ey 7 i a
S ul(0.5) ()5 = D 0(Ta)ru (0, 5). (104)
5 k
But
J{‘“) +iW =g i = g (105)
So the rotation conditions (85) for the j = 1 spinors v*(0, s) are
- Z (0,8)(I)ss = 3 (T2)" (0, 5). (106)

k

17



So for the plus sign and the choice s = 0, the condition 1D gives u'(0,1) as

000 O 0
irm = (1) T i ke |0 0 0 -1 1 0
01 ¢ O 1
or
(0,1 108
w(0.0) = 5o ) (108)
Similarly, the minus sign and the choice s = 0 give for u’( 0 -1)
0 0 0 O 0
= ; > 0 0 0 1 1 0
i 1) — i .k —
Zu ©,5) 7Y, = V2ui(0,-1) = (J.)",u"(0,0) 0 0 0 —i| Va0 (109)
0 -1 4 0 1
or
I 1 1
"0,-1) = — _ 110
w1 = 5| (110)
0

The rotation condition 1) for the j = 1 spinors vi(ﬁ, s) with the minus sign and the
choice s = 0 gives

0 00 O 0
_ irm (1) _ i kmen [0 0 0 —1 1 0
;U (07 S)J— \/i’l} (0 1) (j-i-) kY (070) “ 1o 0 o =i \/% 0
01 ¢ O 1
(111)
or
0
- 1 1
O, -1)=——=1". 112
V(1) = 5o | (112)
0
Similarly, the plus sign and the choice s = 0 give
0 0 0 O 0
_ i a7 i _ i = 0 0 0 1| 1 10
ES: (078)J+§0 \/§U (07 1) - (‘-7—) LV (070) - 0 0 0 —i \/ﬂ 0 (113)
0 -1 ¢ O 1
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or

0
- 1 -1
0,1)=——=1 . 114
VO = o= | (114)
0
The boost conditions (207)) now give for i,k =0, 1,2, 3
u'(p,s) = 0" (B, s) = /m/p® L'y (5) u* (0, 5) = €' (5, 5)/ /2" (115)
where ' '
¢'(,s) = L'y(9) €"(0, 5) (116)
and
0 0 0
. 0 S 1 |1 1 1
0,0) = , 0,1))= — — , and ¢e(0,—1 — . 117
(@0 = o] e@n=-—|; G-n=—>12 (117)
1 0 0
A single massive vector field is then
7 ) = +1 + —z / 7 s eip~x+e*i ﬁ,s aT ﬁ,s e—ip-z.
¢'(x) = ¢*'(z) + ¢ SZIW )a (7, s) (7, 5) al (7, )
(118)

The commutator /anticommutator of the positive and negative frequency parts of the field
is

[67" (), 0" (y)] e (@=9) 1% (i) (119)

_ / d’p
T V2n)3yP

where II is a sum of outer products of 4-vectors

1
I*p) = ) €@, s)e™ (7. 5)- (120)

s=—1

At p= 0, the matrix II is the unit matrix on the spatial coordinates

X 0000
- : - 0100
_ % *k _
11(0) = Zle(o,s)e 0)=1y 0 1 0 (121)
. 0001
So II(p) is
1000
(p) = LII(0)LT = LyL" + L 8 8 8 8 LT (122)
0000

19



or
()™ =™ + p'p* /m?. (123)
This equation lets us write the commutator (124]) in terms of the Lorentz-invariant function

Ar(a—y) (@) as

+ig) Bk — (% _ 5ok I dgipeip'(aﬁ—y)
(67" (2), ¢ (y)]¥ (n 9'9" /m?) \/(27_‘_)—32]?0 (124)
= (" = 0" Im®) Ay (x — ).

As for a scalar field, we set
v'(z) = ko™ (2) + Ao (2) (125)
and find for (x —y)? > 0 since Ay (x —y) = A, (y — ) for x,y spacelike

[o(@). o' ()]s = (I F A7) (0 — 00" /m?) A (a —y)

’ ik _ gigk /.2 (126)
[v(@),v(Y)]g = LF 1) RA(N™ = 0°0%/m7) Ay (z —y).
So we must choose the minus sign and set |k| = |A|. So then
vi(z) = v (2) + o7 (2) = vHi(x) + 0T () (127)

is real. This is a second example of the spin-statistics theorem.

If two such fields have the same mass, then we can combine them as we combined scalar
fields

vi(z) = v () + vy (). (128)
These fields obey the Klein-Gordon equation

(O — m?)vi(z) = 0. (129)
And since both ‘ o
p' =LK and e"(p) = L%e(0) (130)
it follows that
p-e(p) =k-e(0)=0. (131)
So the field v* also obeys the rule A
0;v'(x) = 0. (132)

These equations (131) and are like those of the electromagnetic field in Lorentz
gauge. But one can’t get quantum electrodynamics as the m — 0 limit of just any such
theory. For the interaction H = J; v* would lead to a rate for v-boson production like

Ji e IT* () (133)
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which diverges as m — 0 because of the p'p*/m? term in IT%*(j5). One can avoid this
divergence by requiring that 9;J° = 0 which is current conservation.
Under parity, charge conjugation, and time reversal, a vector field transforms as
Pvi(z)P~L = — n*P%(Px)
Cot(z)C™ 1 = v (x) (134)
To(2)T~" = ¢*PY’(—Pa).

13 Lorentz group

The Lorentz group O(3,1) is the set of all linear transformations L that leave invariant the
Minkowski inner product
zy=xz-y—a'y’ =zTny (135)

in which 7 is the diagonal matrix

-1 0 0 O
SNEREE o
0 0 01
So L is in O(3,1) if for all 4-vectors x and y
(Lx) "TnLy=2"L"nLy =x"ny. (137)
Since z and y are arbitrary, this condition amounts to
L™nL=n. (138)

Taking the determinant of both sides and recalling that det AT = det A and that det(AB) =
det Adet B, we have
(det L)* = 1. (139)

So det L = £1, and every Lorentz transformation L has an inverse. Multiplying (138]) by
n, we get
nL™nL=n*=1 (140)

which identifies L~1 as
L~ t=nLTy. (141)

The subgroup of O(3, 1) with det L = 1 is the proper Lorentz group SO(3, 1). The subgroup
of SO(3,1) that leaves invariant the sign of the time component of timelike vectors is the
proper orthochronous Lorentz group SO™(3,1).
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To find the Lie algebra of SO*(3,1), we take a Lorentz matrix L = I + w that differs
from the identity matrix I by a tiny matrix w and require L to obey the condition ((138])
for membership in the Lorentz group

I+w)nI4+w)=n+wn+nwt+ww=n. (142)
Neglecting w'w, we have w'n = —nw or since n? = I
wlh = —nuwn. (143)

This equation says that under transposition the time-time and space-space elements of w
change sign, while the time-space and spacetime elements do not. That is, the tiny matrix
w is for infinitesimal @ and X a linear combination

w=60-R+\-B (144)

of three antisymmetric space-space matrices

0 0 0 O 0O 0 00 00 0 O
000 O 0 0 01 00 -1 0
B=19 00 -1] |0 0 00| |01 0 o (145)
001 0 0 -1 0 0 00 0 O
and of three symmetric time-space matrices
01 00 00 10 00 01
10 00 0000 0000
Bi=loo000] 5 1000l ®Tloo o0 o0 (146)
0000 0 00O 1 0 00

all of which satisfy condition (143). The three R, are 4 x 4 versions of the familiar rotation
generators; the three By generate Lorentz boosts.
If we write L = [ + w as

L=1- i@g iRe — i/\g iBg =1-— Zﬂgjg — i)\gKg (147)

then the three matrices Jy = iRy are imaginary and antisymmetric, and therefore hermitian.
But the three matrices Ky = iBy are imaginary and symmetric, and so are antihermitian.
The 4 x 4 matrix L = exp(ifyJy —i\¢K/) is not unitary because the Lorentz group is not
compact.
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14 Gamma matrices and Clifford algebras

In component notation, L = I + w is

Lab = (5ab =+ wab, (148)
the matrix 7 is 1. = n°¢, and W' = —nwn is
wh = (W)t = — (wn)y® = — MewSyn™ = —wpan®™ = — w2 (149)
b b nwn )y Moc W q 7 bd T b
Lowering index a we get
Web = Tlea Wab = —Whd nda TNlea = —Whd 5de = — Wpe (150)
That is, wyyp is antisymmetric
Wah = — Whg- (151)

A representation of the Lorentz group is generated by matrices D(L) that represent
matrices L close to the identity matrix by sums over a,b =0,1,2,3

D(L) =1+ %wab J». (152)

The generators J ab must obey the commutation relations
’i[jab, jcd] — nbc jad _ nac jbd _ nda jcb + ndb Jgee. (153)

A remarkable representation of these commutation relations is provided by matrices v*
that obey the anticommutation relations

{v*,7"} =29, (154)

One sets )
ab__i a b 155
T = - 10" (155)

where 7 is the usual flat-space metric (136[). Any four 4 x 4 matrices that satisfy these
anticommutation relations form a set of Dirac gamma matrices. They are not unique. Is
S is any nonsingular 4 x 4 matrix, then the matrices

y=8y"57" (156)

also are a set of Dirac’s gamma matrices.
Any set of matrices obeying the anticommutation relations (154)) for any n x n diagonal
matrix n with entries that are £1 is called a Clifford algebra.
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As a homework problem, show that
ab .c1 _ _ :.a,bc . b _ac
[T AT = =iy + iy n™. (157)

One can use these commutation relations to derive the commutation relations (153) of the
Lorentz group.
The gamma matrices are a vectors in the sense that for L near the identity

D(L)v* DY L) ~ (I + 2w T 4 (I — ~wap T®)

2 2
— AC E ab _c
="+ 5wa [T 7]
="+ gwa (=17 1" +i9" ")
1 1
=7+ Gwap 1" 0" = Swan 1"
1 1 158
=7 = P wha V" = 5wy (158)
1 1
:,yc_iwca,ya _§ch’)/b
= 76 - wca ’7(1
— ,YC + waC ,ya
= (0,5 +w,) "
— LaC /_yCL
in which we used (|149)) to write — w®, = w,®. The finite w form is
D(L)y* D™(L) = L+, (159)
The unit matrix is a scalar
DL IDY(L)=1. (160)
The generators of the Lorenz group form an antisymmetric tensor
DL)J*D Y (L) =L2L,S T (161)

Out of four gamma matrices, one can also make totally antisymmetric tensors of rank-3
and rank-4
Aabc = ,y[a ’}/b ,yc} and Babcd = ,}/[a ’Yb ’76 ’)/d] (162)

where the brackets mean that one inserts appropriate minus signs so as to achieve total
antisymmetry. Since there are only four + matrices in four spacetime dimensions, any
rank-5 totally antisymmetric tensor made from them must vanish, C%¢d¢ = (.
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Notation: The parity transformation is
B =", (163)
It flips the spatial gamma matrices but not the temporal one
By B = =4 and B4°871 =7 (164)
It flips the generators of boosts but not those of rotations

Bji() ﬁ_l - _ jiO and ﬁjzk B_l — jzk (165)

15 Dirac’s gamma matrices

Weinberg’s chosen set of Dirac matrices is

'yoz—z‘<(1) (1)>:_70T and VZZ—Z'( v, %)Z’Y” (166)

— 0

in which the o’s are Pauli’s 2 x 2 hermitian matrices

0 1 0 —1 1 0
01:<1 0>, 02:(1, OZ), and 03:<0 _1>, (167)

which are the gamma matrices of 3-dimensional spacetime. With this choice of v’s, the
matrix [ is

=it = <(1’ é) — 5. (168)

In spacetimes of five dimensions, the fifth gamma matrix 4* which traditionally is called
5 .
Y =718

. 1 0
VP =75 = —ir¥yly?y = (0 _1> : (169)

It anticommutes with all four Dirac gammas and its square is unity, as it must if it is to
be the fifth gamma in 5-space:

{v*,7"} =29 (170)
for a,b=0,1,2,3,4 with n** = 1 and 7% = % = 0.
With Weinberg’s choice of 4’s, the Lorentz boosts are

1 R B 6]
46 -G )

(171)



The Lorentz rotation matrices are

ik 1 i k1 _z o 0 O'i o 0 O'k

J" = 4[77’7]_ 4|:Z(_ 7 0)7 Z(_O.k 0>:|
_ L —olgh 0 (- kg 0
4 0 —olok 0 —okgt
_ i [o?, o%] 0 _ i 2i€;p;07 0
4 0 [0',0%]) — 4 0 i€ 07
1L (ol 0
T\ g 4i)-

The Dirac representation of the Lorentz group is reducible, as SW’s choice of gamma
matrices makes apparent. The Dirac rotation matrices are

(172)

Ji = % (‘B f) . (173)
Some useful relations are
By B= =" BIMB=T" and FD(L)'S=D(L) (174)
as well as
BYB= -7 and B(17") 8= — 757" (175)

16 Dirac fields

The positive- and negative-frequency parts of a Dirac field are

G () = (2m) 2 Y / &p (7, 5) €7 a(f,5)

. (176)
v (@)= @0 Y [y ulps)e b 5)
The rotation conditions are
S up(0,8)(I)ss = Y (T gue(0, 5)
‘ (177)

S
D ur(0.8)(=17)5) = D (T)zve(d. ).
The Dirac rotation matrices (173)) are

1 (a0
ji:Z(O ai> (178)



so we set the four values £,/ = 1,2,3,4 to £ = (m,+) with m = j:%. And we consider uy(s)
to be u; (s) stacked upon u, (s) and similarly take v,(s) to be v, (s) above v, (s) where
ut(s) and v (s) are, a priori, 2 x (2j 4 1)-dimensional matrices with indexes m = +1/2

and s = —j,...,j. That is,

ui(s) uH/?ES; v1(s) 11/2?9%
u(s) | _ | Uo1yal8 an va(s) | _ | viupels
us(s) | [ uy)a(s) d v3(s) Vi) | (179)
UQV u_l/z(s) v4(8) v:1/2(3)

We then have four equations

Zu 08 Jz(j 53_22 Omm m )
Zu OS Jz(] 35_22 Omm m )

(180)
Z Um, §s - Z 2 Urhmvm
va (=) = 3 5 Ohmvm(0,9)
SW defines the four 2 x (2j + 1) matrices
Unts = u7—!r—7,(67 5) and Ums = u;l(67 S) (181)
Vo= vrfl(ﬁ, s) and V.. =uv(0,s)
in terms of which the four Dirac rotation conditions (180)) are
U+JZ(]) mUJr and U*Ji(j):%ai -
. (182)
VT (—J;(])) =10Vt and V~(-J] ])) =io,V".
Taking the complex conjugate of the second of these equations, we get
_Ji(J) V- 1( )V—i-* V+*_1(—%(72 o.i 02)V+* (183)
—JD v Aoy =V (loy ot o)V
or more simply
(J) _ +ay—1 1 i +x
J = (goV o' (o9V
;= (o2VT) T 50" (02VTT) (184)

JI = (02V ) Lo" (02V 7).
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The 2 x 2 Pauli matrices @ and the (2j+1) x (2j+1) matrices JU) both generate irreducible
representations of the rotation group. So by writing

Ut JZ(J) J]EJ) — %O'i Ut JIE]) — — %O'i % ok Ut (185)

and similar equations for U~, VT, V™, we see that
Ut D(j)(é‘) _ut 6—i9~f(j) _ e—w“-a Ut — D(1/2)(*) U+
o ﬂ 186
U~ DW@G) = U~ e 0T = =07 y— = pU/2(G) U 50

and similar equations for V7.

0.2V+>k 6—i9~j(j) _ 6—i§~5’ O'2V+* _ D(1/2) (0_‘) 0.2V+>k

—

0_2V—>|< e—i6’~j(j) — 6_i56 0_2V—* _ D(1/2)( )0_2‘/—*.

ooV DY (6)

—

ooV * DU)(6)

(187)

Now recall Schur’s lemma (section 10.7 of PM):

Part 1: If Dy and Ds are inequivalent, irreducible representations of a group
G, and if Dy(g)A = ADy(g) for some matrix A and for all g € G, then the
matrix A must vanish, A = 0.

Part 2: If for a finite-dimensional, irreducible representation D(g) of a group
G, we have D(g)A = AD(g) for some matrix A and for all g € G, then A = cI.
That is, any matrix that commutes with every element of a finite-dimensional,
irreducible representation must be a multiple of the identity matrix.

Part 1 tells us that D@ (4) and DA/ (4) must be equivalent. So j = 1/2 and 2j + 1 = 2.
A Dirac field must represent particles of spin 1/2.
Part 2 then says that the matrices U must be multiples of the 2 x 2 identity matrix

Ut=c, I and U =c_1I (188)

and that the matrices oo V** must be multiples of the 2 x 2 identity matrix

ooVt =d\ I and oV *=d 1 (189)
or more simply
V= —idyoy and V= —id_oo. (190)
That is,
= 0 -1 = 0 -1
+ _ - J—
v (0,s) =dy (1 0 ) and v,,(0,s) =d_ (1 0 ) . (191)
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Going back to £ = (m, %) by using the index code ((179)

+ +
u1(s) uil/Z(s) Cy 01725 v1(s) 011/2(8) did 1/
u(s) | _ “—1/2(5) _ e 01y and va(s)| _ U—1/2(s) _ | 4y 012
us(s) Uy j(8) c— 0172, v3(s) V1 /9(5) d—0_1/25
us(s) “_1/2(3) c—0_1/2¢ v4(s) 0:1/2(3) d—041/2.s
(192)
we have for the u’s
u;2(1/2) =cy and u’,(1/2)=0 (193)
u;/2(1/2) =c_ and wu 1/2(1/2) =0 (194)
u1+/2(—1/2) =0 and u 1/2( 1/2) = ¢t (195)
u;/2(71/2) =0 and wu 1/2(71/2) =c_ (196)
v1+/2(1/2) =0 and v+1/2(1/2) =d; (197)
vl_/2(1/2) =0 and v 1/2(1/2) =d_ (198)
vj/Q(—1/2) = —d; and vf1/2(—1/2) =0 (199)
vl_/Q(—l/2) = —d- and v 1/2(—1/2) =0 (200)
So
u1/2(1/2) )] “1/2( 1/2) 0
- (1/2) - -1/2) c
u(0,m = 1) = 1/2 = and u(0,m = —1)= 1/2 =7,
Om=2)= a2 |~ | ( 2= L, -12) | T | o
0 (1/2)] L0 uyp(-1/2)) Lo
1/2(1/2) 07 U1/2( 1/2) d4
~ (1/2) d ~ (=1/2) 0
v(0,m=3)= 1/2 =7 and v(0,m=—31)= 1/2 - _
( 2) 1/2(1/2) 0 ( ) 1/2( 1/2) d_
o 0(1/2)] L] 07, 5(-1/2) 0
(201)
To put more constraints on c4+ and d4, we recall that under parity
Pa(p,5)P~" = a(—p,s) and PO (p,s)P~" =ny B(~p)s) (202)
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and so
Puj (@P ™ = (2) Y2 Y [ % uilpis) € na(-.s)
= @Y [ @ i) P ol
Py (2)P! = (2m) %7 / d*p ve(p.s) e 7" my bl (=7 s)
= m) Y [ @ wlpis) TP )
We recall the relations ((174)
Bytp=—5" BIE=7" and BD(L)'S=DL)"
and in particular, since J% = — 7%, the rule
IBJO’LIB _ jOZT — —jOi.
We also have the pseudounitarity relation

B DY L) B =D (L)

In general spinors at finite momentum are related to those at zero momentum by

ug = \/>Z Dy,(L(q))ue(0, )
$)=1/—5 > Du(L(a))ve(0, 5)
\/quz: 2\\q))ve

which for Dirac spinors is

So now by using the boost rule (205]) we have

s) = v/m/p°"D(L(~ = /m/p"D(L u(0, s)
= /m/p° ﬁD BU(US)
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and

= /m/p"D(L(~F))v(0, 5) = /m/p"D(L(F)) (0, ) (211)
= WBD m /3v(0 s). (212)

So under parity

Ut P = (2m) Y [ ] 8 DLE) 5u(0.5) 7P a7

A (213)
Pu(@P~ = (2m) %2 3 [ /m] B DILE) G0(0.5) P bl (7).
So to have P%i(x)P_l x wj[(:x), we need
Bu(0,s) =byu(0,s) and Lv(0,s) = b,u(0,s). (214)

We then get

Py (6, Z)P~ = b, Bt (t,—) and Py, (t,7)P~! = b, Bty (t, —7). (215)

Here since P? = 1, these factors are just signs, b2 = b2 = 1. The eigenvalue equations (214))
tell us that c— = b, ¢4 and that d_ = b, d1. So rescaling the fields we get

1 0
o 1 10 - 1 1
1y 1 1y b
u(0,m = 3) 7 |ba and u(0,m 5) lol
LY. Lo (216)
(0] 1
I 1 |1 = 110
—1ly_ - —_L_ _-
v(0,m = 3) 7 o and wv(0,m 5) 7 b,
| by | | 0
If the annihilation and creation operators a(p, s) and af(p, s) obey the rule
[a(pa 5)7QT(p/’SI)]:F = 585’53(ﬁ_ﬁ) (217)
and if the field is the sum of the positive- and negative-frequency parts ((176))
v @) = a2 Y [ @ ) e as
® (218)

v (@)= @0 Y [y use b5
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with arbitrary coefficients x and A

Ye(x) = Kkl (2) + My () (219)
then
[We(@), ) (v)]5 = [k (2) + Mg (2), 570y T (y) + AT ()]

d3 = * (= ip-(r— = * (= —ip-(x—
= /(2753 Z “/ﬂQW(p, s) up (P, s)ep( v) ¢ N2 ve(, 8) vjy (7, 8)e Pe( y)}

d3 ip-(T— —ip-(x—
— [ s 3 [l Now ) ) 5 AP N ) 7

(2m)?
(220)
where
New(p) = Y we(, ) win (7, )
° (221)
Moy (p) = ZW(Z% s) vp (D, ).
When p'= 0, these matrices are
NM’(O) = ZUZ(G’ S) uz’(67 S)
(1 0
1 1
N(0) =3 bo [1 0 bu 0] +3 é 0 1 0 b, |
_6‘ b (222)
1 0 b, 0 00 0 0
_10000+10 1 0 b,| 1+b,p
S 210b, 01 0 210 O 0 O 2
(0 0 0 0 0 b, 0 1
and
MM’(O) = Zvﬁ(ﬁv S) ,UZ(’(OvS)
[0 1
1 1
M(0) = 5 (1) 0 1 0 bv]+§ bo 10 b, 0 |
b, 0 (223)
0 0 0 0 1 0 b, O
_ 101 0 b, 110 0 0 0 1+0b,5
210 0 0 0 216, 0 1 0 2
0 b, 0 1 0 0 0




So then using the boost relations (208) we find

N(P) = 3 uels) wir(fs) = 5 D(LP)) 3 uel05) wir (0. ) D' (L(p))
= 2”;0 D(L(p)) (1 +bu ) DY (L(p)) 8

M) = 3l s) i 715) = D) > vu(@.) (@) D' (L(p)
= 5,5 D(LW)) (1+ by 5) DL (p)).

The pseudounitarity relation (206))

pDY(L)B=D7(L).

gives

BDN(L) =D7(L)B
which implies that

D(L) 3 DY(L) = B.
The pseudounitarity relation also says that

D'(L)=BDNL)B

so that

D(L) D'(L) = D(L) DY (L) 6.

Also since the gammas form a 4-vector ((159))

D(L)~*D™HL) = L~

and since = i7?, we have

D(L(p)) 8D~ (L(p)) = D(L(p)) i’ D~} (L(p)) = iL.’

Now

Pt = Lab(p)kb = L%(p)m

SO

D(L(p)) 8D~ (L(p)) = —ip“ye/m

which implies that

D(L)DY(L) = — i (p°ye/m) B-
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(226)

(227)

(228)

(229)

(230)

(231)

(232)

(233)

(234)



Thus

N(p) = % D(L(p)) (14 by B) DT(L(p)) = % [(=ip™ye/m) B+ bu B]

1, .
- 27170 [_Zp 70"’ bu m] ﬁ (235)

and

M(p) = Qﬂpo D(L(p)) (1 + b, B) D' (L(p)) = 2%) [(=ip®ye/m) B + by ]

1
= — [—ipye + bym] B. 2
2p0[ ip“Ye +bym] B (236)

We now put the spin sums (235) and (236)) in the (anti)commutator (220]) and get
d3p 2 P C ip-(z—y)
[0e@): Wz = [ iz AP 1= 807 + bum)Blee e

27)32p0
FIAP[( = ip™ve + by m)Bler e—m(w—y)}
d®p .
21— A A D ey
K% [( = 0en® + bum) Blee /(2w)32p06 o5
P ipay)
F AP ( = 09" + by m)Blew /(27r)32p°

= |KI* [( = 87 + bum)Bler Ay (z —y)
F M= 0" + bym)Blew Ar(y — ).

Recall that for (z — y)~0, i.e. spacelike, A (x —y) = A4 (y — ). So its first derivatives
are odd. So for x — y spacelike

[Wel@), ¥l )]z = 6% (= 0 + bum)Blee As(x — y)

F M [0 + bom)Ble Ay (= y)

= (Isl> £ AP [( = 84 Blee As (z — y)

+ (161200 F AP bu)m Bewr Ay (x = y).

To get the first term to vanish, we need to choose the lower sign (that is, use anticommu-

tators) and set |k| = |A|. To get the second term to be zero, we must set b, = —b,. We
may adjust x and and b,, so that

(238)

k=X and b,= —b, =1 (239)
In particular, a spin-one-half field must obey anticommutation relations

[e(x), ¥ (y)] . = {e(@), ¥} (x)} =0 for (z—y)? > 0. (240)
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Finally then, the Dirac field is

)= [ om

The zero-momentum spinors are

7,8) €77 a(F, 5) + ve(, 5) €T bI(F, 5|

o o
= 1 10 - 1 |1
U(O,m:%):ﬁ 1 and U(O,’/’I’l:—%)zi2 0 ,
0 1
- 0 L
U(O,m:%):ﬁ 0 and U(O,m:—%):—Q 1
-1 0
The spin sums are
1

IN@)] = D el s (5s) = [

The Dirac anticommutator is

[e(), ¥ ()] = {wel@), 0} ()} = [(

Two standard abbreviations are

=0+ m)Blewr Ay (x —y).

B

A Majorana fermion is represented by a field like

3
x) = Z/ (2C7Zr)];/2 (w7, 5) €77 () + v s) e al (7 5)|.

= (79 and so that Jrab —
—75. So j*ab —

Since C = 7243 it follows that C~!
But 8728 = — B2 = —i*3re =

D*(L) = e~ ard ™

— 12T ®75. Thus
_ e—iwab(_’YQJab’Y2) _ ,72eiwabn7“b,},2 =~y D(L) 7,
Now with SW’s ~’s,

72 u(67 i%) = U(aa i%) and Y2 U(ﬁa i%) = ’LL(6, i%)
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=00 wa =etsmwir =t w0 = )

(241)

(242)

(243)

(244)

(245)

(246)

—BCT?CT B = —rBT 2P,

(247)

(248)



Thus the hermitian conjugate of a Majorana field is
B N O N
Z/ 27) 3/2 ¢ (D, ) e”"*al (P, s) + v (7, s) e a(p, )}
_ Ty [ sy = DT ip-T T
Z/ 27’1’3/2 _U (p78) s ( )+U( )e P (’ ):|

- Z/ W D*(L(p) v*(0, ) €7 a(f, 5) + D*(L(p)) u* (0, 5) e~ a' (5, )]

=73 [ W D(L(p))r2v(0.5) €77 a(f.5) + DL () y2u(0. ) e af (5.5

_”Z/ W D(L(p)u(0, ) e a(F, s) + D(L(p))o(0,5) e al (5, 5)|

3 -
=22 [ G (M a5 ()l 9] = o)

(249)
The parity rules (250 now are
PUf(t,@)P™ = By o) (t,—&) and Py, (t,DP~H = — By (¢, 7). (250)

So to have a Dirac field survive a parity transformation, we need the phase of the particle
to be minus the complex conjugate of the phase of the antiparticle

Ne= —mn, Or mnp= —1n. (251)
So the intrinsic parity of a particle-antiparticle state is odd. So negative-parity bospns
like 7°, po, J/10 can be interpreted as s-wave bound states of quark-antiquark pairs. Under
parity a Dirac field goes as

Py (t, Z)P~1 = n* Ba(t, ). (252)

If a Dirac particle is the same as its antiparticle, then its intrinsic parity must be odd
under complex conjugation, n = —n*. So the intrinsic parity of a Majorana fermion must
be imaginary

n= +i. (253)

But this means that if we express a Dirac field ¢ as a complex linear combination

Y =—(+ix2) (254)

&\H
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of two Majorana fields with intrinsic parities ] = +7 and 15 = +i, then under parity

= (1t Boa(t, ~7) + i3 B a(t, ) ) (255)

Py(t, Z)P~1 = 7%

so we need 7] = 75 to have

(i Bon(t. =)+ in Bonlt, =) = But—7). (250)

But in that case the Dirac field has intrinsic parity n = +i.
The equation (233 that shows how beta goes under D(L(p))

D(L(p)) 8D~ (L(p)) = —ipye/m (257)
tells us that the spinors (208))

u<p,s>=\/§D<L<p>>u<6,s> and o(p.s) = [ DEL@)o(l.s)  (258)

pO

Py(t, Z)P~1 =

are eigenstates of —i p®y./m with eigenvalues +1

(— ip*ye/m) ulp.s) = D(L(p)) # D~ (L(p)) \/pm D(L(p)) u(@,

= /3 D) 8 u(@) = |5 D) u(l.9) = uto.)
(= ip%7e/m) v(p, 5) = D(L(p)) 8 D~ (L(p)) \/pm D)) v(F,5)
= |7 D) B 0(0.9) = — 75 D(LE) o(0.5) = —vlp.)
(259)
So
(1 p“Ye + m)u(p,s) =0 and (—ip°ye.+m)v(p,s) =0 (260)

which implies that a Dirac field obeys Dirac’s equation

(7" 0+ m)(a) = (1" Do +m Z/ G (U577 alFs) +u(Fs) b (5s)|
= Z / e Y% Dy + m)u(p, s) €T a(P, s)
(9 B + M) (F, ) €7 b (5, 5)|
=3 [ ot [0t i) 7t

(=09 pa + m)u(F 5) €7 (5 5)| = 0.
(261)
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SW shows that under complex conjugation
u*(p, S) = - BCv(p, 8) and u*(pv S) = - BCu(p, 8)' (262)

So for a Dirac field to survive charge conjugation, the particle-antiparticle phases must be
related

& = &a- (263)
Then under charge conjugation a Dirac field goes as
Col@) CL = — € BCY*(a). (264)

If a Dirac particle is the same as its antiparticle, then £ must be real (and 7 imaginary),
¢ = +1, and must satisfy the reality condition

¥(z) = — BCY* (). (265)

Suppose a particle and its antiparticle form a bound state
) = 3 [ dpdixip.sirlss) al (5,515 ). (266)
Under charge conjugation
CI0) =66 Y [ dpd*x(p,si' )b (p.5) ' (5 0)

= §a€b§ / Ppdp'x(p,s;p',s')al(p's') bl (p, s) |0) 267

= —faébZ/d3Pd3p’x(p’7s’;p, s)al(p,s) b1 (p', ') |0)
= — &b |P) = €& D) = —[D).

The intrinsic charge-conjugation parity of a bound state of a particle and its antiparticle
is odd.
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