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1 States

A Lorentz transformation Λ is implemented by a unitary operator U(Λ) which replaces the
state |p, σ〉 of a massive particle of momentum p and spin σ along the z-axis by the state

U(Λ)|p, σ〉 =

√
(Λp)0

p0

∑
s′

D
(j)
s′σ(W (Λ, p)) |Λp, s′〉 (1)

where W (Λ, p) is a Wigner rotation

W (Λ, p) = L−1(Λp)ΛL(p) (2)

and L(p) is a standard Lorentz transformation that takes (m,~0) to p.

2 Creation operators

The vacuum is invariant under Lorentz transformations and translations

U(Λ, a)|0〉 = |0〉. (3)

A creation operator a†(p, σ) makes the state |p, σ〉 from the vacuum state |0〉

|pσ〉 = a†(p, σ)|0〉. (4)

The creation and annihilation operators obey either the commutation relation

[a(p, s), a†(p′, s′)]− = a(p, s) a†(p′, s′)− a†(p′, s′) a(p, s) = δss′ δ
(3)(p− p′) (5)

or the anticommutation relation

[a(p, s), a†(p′, s′)]+ = a(p, s) a†(p′, s′) + a†(p′, s′) a(p, s) = δss′ δ
(3)(p− p′). (6)
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The two kinds of relations are written together as

[a(p, s), a†(p′, s′)]∓ = a(p, s) a†(p′, s′)∓ a†(p′, s′) a(p, s) = δss′ δ
(3)(p− p′). (7)

A bracket [A,B] with no signed subscript is interpreted as a commutator.
Equations (1 & 4) give

U(Λ)a†(p, σ)|0〉 =

√
(Λp)0

p0

∑
s′

D
(j)
s′σ(W (Λ, p)) a†(Λp, s′)|0〉. (8)

And (3) gives

U(Λ)a†(p, σ)U−1(Λ)|0〉 =

√
(Λp)0

p0

∑
s′

D
(j)
s′σ(W (Λ, p)) a†(Λp, s′)|0〉. (9)

SW in chapter 4 concludes that

U(Λ)a†(p, σ)U−1(Λ) =

√
(Λp)0

p0

∑
s′

D
(j)
s′σ(W (Λ, p)) a†(Λp, s′). (10)

If U(Λ, b) follows Λ by a translation by b, then

U(Λ, b)a†(p, σ)U−1(Λ, b) = e−i(Λp)·a

√
(Λp)0

p0

∑
s′

D
(j)
s′σ(W (Λ, p)) a†(Λp, s′)

= e−i(Λp)·a

√
(Λp)0

p0

∑
s′

D
†(j)
s′σ (W−1(Λ, p)) a†(Λp, s′)

= e−i(Λp)·a

√
(Λp)0

p0

∑
s′

D
∗(j)
σs′ (W−1(Λ, p)) a†(Λp, s′)

(11)

The adjoint of this equation is

U(Λ, b)a(p, σ)U−1(Λ, b) = ei(Λp)·a

√
(Λp)0

p0

∑
s′

D
∗(j)
s′σ (W (Λ, p)) a(Λp, s′)

= ei(Λp)·a

√
(Λp)0

p0

∑
s′

D
†(j)
σs′ (W (Λ, p)) a(Λp, s′)

= ei(Λp)·a

√
(Λp)0

p0

∑
s′

D
(j)
σs′(W

−1(Λ, p)) a(Λp, s′).

(12)

These equations (11 & 12) are (5.1.11 & 5.1.12) of SW.
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3 How fields transform

The “positive frequency” part of a field is a linear combination of annihilation operators

ψ+
` (x) =

∑
σ

∫
d3p u`(x; p, σ) a(p, σ). (13)

The “negative frequency” part of a field is a linear combination of creation operators of
the antiparticles

ψ−` (x) =
∑
σ

∫
d3p v`(x; p, σ) b†(p, σ). (14)

To have the fields (13 & 14) transform properly under Poincaré transformations

U(Λ, a)ψ+
` (x)U−1(Λ, a) =

∑
¯̀

D`¯̀(Λ
−1)ψ+

¯̀ (Λx+ a)

=
∑

¯̀

D`¯̀(Λ
−1)

∑
σ

∫
d3p u¯̀(Λx+ a; p, σ) a(p, σ)

U(Λ, a)ψ−` (x)U−1(Λ, a) =
∑

¯̀

D`¯̀(Λ
−1)ψ−¯̀ (Λx+ a)

=
∑

¯̀

D`¯̀(Λ
−1
∑
σ

∫
d3p v¯̀(Λx+ a; p, σ) b†(p, σ)

(15)

the spinors u`(x; p, σ) and v`(x; p, σ) must obey certain rules which we’ll now determine.
First (12 & 13) give

U(Λ, a)ψ+
` (x)U−1(Λ, a) = U(Λ, a)

∑
σ

∫
d3p u`(x; p, σ) a(p, σ)U−1(Λ, a)

=
∑
σ

∫
d3p u`(x; p, σ)U(Λ, a)a(p, σ)U−1(Λ, a) (16)

=
∑
σ

∫
d3p u`(x; p, σ) ei(Λp)·a

√
(Λp)0

p0

∑
s′

D
(j)
σs′(W

−1(Λ, p)) a(Λp, s′).

Now we use the identity
d3p

p0
=
d3(Λp)

(Λp)0
(17)

to turn (16) into

U(Λ, a)ψ+
` (x)U−1(Λ, a) =

∑
σ

∫
d3(Λp) u`(x; p, σ) ei(Λp)·a

×

√
p0

(Λp)0

∑
s′

D
(j)
σs′(W

−1(Λ, p)) a(Λp, s′). (18)
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Similarly (11, 14, & 17) give

U(Λ, a)ψ−` (x)U−1(Λ, a) = U(Λ, a)
∑
σ

∫
d3p v`(x; p, σ) b†(p, σ)U−1(Λ, a)

=
∑
σ

∫
d3p v`(x; p, σ)U(Λ, a)b†(p, σ)U−1(Λ, a) (19)

=
∑
σ

∫
d3p v`(x; p, σ) e−i(Λp)·a

√
(Λp)0

p0

∑
s′

D
∗(j)
σs′ (W−1(Λ, p)) b†(Λp, s′)

=
∑
σ

∫
d3(Λp) v`(x; p, σ) e−i(Λp)·a

√
p0

(Λp)0

∑
s′

D
∗(j)
σs′ (W−1(Λ, p)) b†(Λp, s′).

So to get the fields to transform as in (15), equations (18 & 19) say that we need∑
¯̀

D`¯̀(Λ
−1)ψ+

¯̀ (Λx+ a) =
∑

¯̀

D`¯̀(Λ
−1)

∑
σ

∫
d3p u¯̀(Λx+ a; p, σ) a(p, σ)

=
∑

¯̀

D`¯̀(Λ
−1)

∑
σ

∫
d3(Λp) u¯̀(Λx+ a; Λp, σ) a(Λp, σ)

=
∑
σ

∫
d3(Λp) u`(x; p, σ) ei(Λp)·a (20)

×

√
p0

(Λp)0

∑
s′

D
(j)
σs′(W

−1(Λ, p)) a(Λp, s′)

=
∑
s′

∫
d3(Λp) u`(x; p, s′) ei(Λp)·a

×

√
p0

(Λp)0

∑
σ

D
(j)
s′σ(W−1(Λ, p)) a(Λp, σ)
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and ∑
¯̀

D`¯̀(Λ
−1)ψ−¯̀ (Λx+ a) =

∑
¯̀

D`¯̀(Λ
−1)

∑
σ

∫
d3p v¯̀(Λx+ a; p, σ) b†(p, σ)

=
∑

¯̀

D`¯̀(Λ
−1)

∑
σ

∫
d3(Λp) v¯̀(Λx+ a; Λp, σ) b†(Λp, σ)

=
∑
σ

∫
d3(Λp) v`(x; p, σ) e−i(Λp)·a (21)

×

√
p0

(Λp)0

∑
s′

D
∗(j)
σs′ (W−1(Λ, p)) b†(Λp, s′)

=
∑
s′

∫
d3(Λp) v`(x; p, s′) e−i(Λp)·a

×

√
p0

(Λp)0

∑
σ

D
∗(j)
s′σ (W−1(Λ, p)) b†(Λp, σ).

Equating coefficients of the red annihilation and blue creation operators, we find that the
fields will transform properly if the spinors u and v satisfy the rules

∑
¯̀

D`¯̀(Λ
−1) u¯̀(Λx+ a; Λp, σ) =

√
p0

(Λp)0

∑
s′

D
(j)
s′σ(W−1(Λ, p))u`(x; p, s′) ei(Λp)·a (22)

∑
¯̀

D`¯̀(Λ
−1)v¯̀(Λx+ a; Λp, σ) =

√
p0

(Λp)0

∑
s′

D
∗(j)
s′σ (W−1(Λ, p))v`(x; p, s′)e−i(Λp)·a (23)

which differ from SW’s by an interchange of the subscripts σ, s′ on the rotation matrices
D(j). (I think SW has a typo there.) If we multiply both sides of these equations (22 &
23) by the two kinds of D matrices, then we get first∑

¯̀,`

D`′`(Λ)D`¯̀(Λ
−1) u¯̀(Λx+ a; Λp, σ) = u`′(Λx+ a; Λp, σ)

=

√
p0

(Λp)0

∑
s′,`

D
(j)
s′σ(W−1(Λ, p))D`′`(Λ)u`(x; p, s′) ei(Λp)·a (24)

∑
¯̀,`

D`′`(Λ)D`¯̀(Λ
−1)v¯̀(Λx+ a; Λp, σ) = v`′(Λx+ a; Λp, σ)

=

√
p0

(Λp)0

∑
s′,`

D
∗(j)
s′σ (W−1(Λ, p))D`′`(Λ)v`(x; p, s′)e−i(Λp)·a (25)
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and then with W ≡W (Λ, p)∑
σ

D
(j)
σs̄ (W )u`′(Λx+ a; Λp, σ)

=

√
p0

(Λp)0

∑
s′,σ,`

D
(j)
s′σ(W−1)D

(j)
σs̄ (W )D`′`(Λ)u`(x; p, s′) ei(Λp)·a

=

√
p0

(Λp)0

∑
`

D`′`(Λ)u`(x; p, s̄) ei(Λp)·a (26)∑
σ

D
∗(j)
σs̄ (W )v`′(Λx+ a; Λp, σ)

=

√
p0

(Λp)0

∑
σ,s′,`

D
∗(j)
s′σ (W−1)D

∗(j)
σs̄ (W )D`′`(Λ)v`(x; p, s′)e−i(Λp)·a

=

√
p0

(Λp)0

∑
`

D`′`(Λ)v`(x; p, s̄)e−i(Λp)·a (27)

which are equations (5.1.13 & 5.1.14) of SW:

∑
s̄

u¯̀(Λx+ a; Λp, s̄)D
(j)
s̄σ (W (Λ, p)) =

√
p0

(Λp)0

∑
`

D ¯̀̀ (Λ)u`(x; p, σ) ei(Λp)·a

∑
s̄

v¯̀(Λx+ a; Λp, s̄)D
∗(j)
s̄σ (W (Λ, p)) =

√
p0

(Λp)0

∑
`

D ¯̀̀ (Λ)v`(x; p, σ)e−i(Λp)·a.

(28)

These are the equations that determine the spinors u and v up to a few arbitrary phases.

4 Translations

When Λ = I, the D matrices are equal to unity, and these last equations (28) say that for
x = 0

u`(a; p, σ) = u`(0; p, σ) eip·a

v`(a; p, σ) = v`(0; p, σ)e−ip·a.
(29)

Thus the spinors u and v depend upon spacetime by the usual phase e±ip·x

u`(x; p, σ) = (2π)−3/2u`(p, σ) eip·x

v`(x; p, σ) = (2π)−3/2v`(p, σ)e−ip·x
(30)
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in which the 2π’s are conventional. The fields therefore are Fourier transforms:

ψ+
` (x) = (2π)−3/2

∑
σ

∫
d3p eip·xu`(p, σ) a(p, σ)

ψ−` (x) = (2π)−3/2
∑
σ

∫
d3p e−ip·xv`(p, σ) b†(p, σ)

(31)

and every field of mass m obeys the Klein-Gordon equation

(∇2 − ∂2
0 −m2)ψ`(x) = (2−m2)ψ`(x) = 0. (32)

Since exp[i(Λp · (Λx+ a))] = exp(ip · x+ iΛp · a), the conditions (28) simplify to

∑
s̄

u¯̀(Λp, s̄)D
(j)
s̄σ (W (Λ, p)) =

√
p0

(Λp)0

∑
`

D ¯̀̀ (Λ)u`(p, σ)

∑
s̄

v¯̀(Λp, s̄)D
∗(j)
s̄σ (W (Λ, p)) =

√
p0

(Λp)0

∑
`

D ¯̀̀ (Λ)v`(p, σ)

(33)

for all Lorentz transformations Λ.

5 Boosts

Set p = k = (m,~0) and Λ = L(q) where L(q)k = q. So L(p) = 1 and

W (Λ, p) ≡ L−1(Λp)ΛL(p) = L−1(q)L(q) = 1. (34)

Then the equations (33) are

u¯̀(q, σ) =

√
m

q0

∑
`

D ¯̀̀ (L(q))u`(~0, σ)

v¯̀(q, σ) =

√
m

q0

∑
`

D ¯̀̀ (L(q))v`(~0, σ).

(35)

Thus a spinor at finite momentum is given by a representation D(Λ) of the Lorentz group
(see the online notes of chapter 10 of my book for its finite-dimensional nonunitary rep-
resentations) acting on the spinor at zero 3-momentum p = k = (m,~0). We need to find
what these spinors are.
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6 Rotations

Now set p = k = (m,~0) and Λ = R a rotation so that W = R. For rotations, the spinor
conditions (33) are ∑

s̄

u¯̀(~0, s̄)D
(j)
s̄σ (R) =

∑
`

D ¯̀̀ (R)u`(~0, σ)∑
s̄

v¯̀(~0, s̄)D
∗(j)
s̄σ (R) =

∑
`

D ¯̀̀ (R)v`(~0, σ).
(36)

The representations D
(j)
s̄σ (R) of the rotation group are (2j + 1) × (2j + 1)-dimensional

unitary matrices. For a rotation of angle θ about the ~θ = θ axis, they are the ones taught
in courses on quantum mechanics (and discussed in the notes of chapter 10)

D
(j)
s̄σ (θ) =

[
e−iθ·J

(j)
]
s̄σ

(37)

where [Ja, Jb] = iεabcJc. The representations D ¯̀̀ (R) of the rotation group are finite-

dimensional unitary matrices. For a rotation of angle θ about the ~θ = θ axis, they are

D ¯̀̀ (θ) =
[
e−iθ·J

]
¯̀̀

(38)

in which [Ja,Jb] = iεabcJ . For tiny rotations, the conditions (36) require (because of the
complex conjugation of the antiparticle condition) that the spinors obey the rules∑

s̄

u¯̀(~0, s̄)(J (j)
a )s̄σ =

∑
`

(Ja) ¯̀̀ u`(~0, σ)∑
s̄

v¯̀(~0, s̄)(−Ja)∗(j)s̄σ ) =
∑
`

(Ja) ¯̀̀ v`(~0, σ)
(39)

for a = 1, 2, 3.

7 Spin-zero fields

Spin-zero fields have no spin or Lorentz indexes. So the boost conditions (207) merely
require that u(q) =

√
m/q0u(0) and v(q) =

√
m/q0v(0). The conventional normalization

is u(0) = 1/
√

2m and v(0) = 1/
√

2m. The spin-zero spinors then are

u(p) = (2p0)−1/2 and v(p) = (2p0)−1/2. (40)

For simpicity, let’s first consider a neutral scalar field so that b(p, s) = a(p, s). The
definitions (13) and (14) of the positive-frequency and negative-frequency fields and their
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behavior (30) under translations then give us

φ+(x) =

∫
d3p√

(2π)32p0
a(p) eip·x

φ−(x) =

∫
d3p√

(2π)32p0
a†(p) e−ip·x.

(41)

Note that [
φ±(x)

]†
= φ∓(x). (42)

Since [a(p), a(p′)]± = 0, it follows that

[φ+(x), φ+(y)]∓ = 0 and [φ−(x), φ−(y)]∓ = 0 (43)

whatever the values of x and y as long as we use commutators for bosons and anticommu-
tators for fermions.

But the commutation relation

[a(p, s), a†(q, t)]∓ = δst δ
(3)(p− q) (44)

makes the commutator

[φ+(x), φ−(y)]∓ =

∫
d3pd3p′

(2π)3
√

2p02p′0
eip·xe−ip

′·y δ3(p− p′)

=

∫
d3p

(2π)32p0
eip·(x−y) = ∆+(x− y)

(45)

nonzero even for (x− y)2 > 0 as we’ll now verify.
For space-like x, the Lorentz-invariant function ∆+(x) can only depend upon x2 > 0

since the time x0 and its sign are not Lorentz invariant. So we choose a Lorentz frame
with x0 = 0 and |x| =

√
x2. In this frame,

∆+(x) =

∫
d3p

(2π)32
√
p2 +m2

eip·x

=

∫
p2dp d cos θ

(2π)22
√
p2 +m2

eipx cos θ

(46)

where p = |p| and x = |x|. Now∫
d cos θ eipx cos θ =

(
eipx − e−ipx

)
/(ipx) = 2 sin(px)/(px), (47)

so the integral (46) is

∆+(x) =
1

4π2x

∫ ∞
0

sin(px) pdp√
p2 +m2

(48)
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with u ≡ p/m

∆+(x) =
m

4π2x

∫ ∞
0

sin(mxu)udu√
u2 + 1

=
m

4π2x
K1(mx2) (49)

a Hankel function.
To get a Lorentz-invariant, causal theory, we use the arbitrary parameters κ and λ

setting
φ(x) = κφ+(x) + λφ−(x) (50)

Now the adjoint rule (42) and the commutation relations (45 and 45) give

[φ(x), φ†(y)]∓ = [κφ+(x) + λφ−(x), κ∗φ−(y) + λφ+(y)]∓

= |κ|2[φ+(x), φ−(y)]∓ + |λ|2[φ−(x), φ+(y)]∓

= |κ|2 ∆+(x− y)∓ |λ|2 ∆+(y − x)

[φ(x), φ(y)]∓ = [κφ+(x) + λφ−(x), κφ+(y) + λφ−(y)]∓
= κλ

(
[φ+(x), φ−(y)]∓ + [φ−(x), φ+(y)]∓

)
= κλ (∆+(x− y)∓∆+(y − x)) .

(51)

But when (x− y)2 > 0, ∆+(x− y) = ∆+(y − x). Thus these conditions are

[φ(x), φ†(y)]∓ =
(
|κ|2 ∓ |λ|2

)
∆+(x− y)

[φ(x), φ(y)]∓ = κλ∆+(x− y)(1∓ 1).
(52)

The first of these equations implies that we choose the minus sign and so that we use
commutation relations and not anticommutation relations for spin-zero fields. This is the
spin-statistics theorem for spin-zero fields. SW proves the theorem for arbitrary massive
fields in section 5.7.

We also must set
|κ| = |λ|. (53)

The second equation then is automatically satisfied. The common magnitude and the
phases of κ and λ are arbitrary, so we choose κ = λ = 1. We then have

φ(x) = φ+(x) + φ−(x) = φ+(x) + φ+†(x) = φ†(x). (54)

Now the interaction density H(x) will commute with H(y) for (x − y)2 > 0, and we have
a chance of having a Lorentz-invariant, causal theory.

8 Conserved charges

If the field φ adds and deletes charged particles, an interaction H(x) that is a polynomial
in φ will not commute with the charge operator Q because φ+ will lower the charge and
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φ− will raise it. The standard way to solve this problem is to start with two hermitian
fields φ1 and φ2 of the same mass. One defines a complex scalar field as a complex linear
combination of the two fields

φ(x) =
1√
2

(φ1(x) + iφ2(x))

=

∫
d3p√

(2π)32p0

[
1√
2

(a1(p) + ia2(p)) eip·x +
1√
2

(
a†1(p) + ia†2(p)

)
e−ip·x

]
.

(55)

Setting

a(p) =
1√
2

(a1(p) + ia2(p)) and b†(p) =
1√
2

(
a†1(p) + ia†2(p)

)
(56)

so that

b(p) =
1√
2

(a1(p)− ia2(p)) and a†(p) =
1√
2

(
a†1(p)− ia†2(p)

)
(57)

we have

φ(x) =

∫
d3p√

(2π)32p0

[
a(p) eip·x + b†(p) e−ip·x

]
(58)

and

φ†(x) =

∫
d3p√

(2π)32p0

[
b(p) eip·x + a†(p) e−ip·x

]
. (59)

Since the commutation relations of the real creation and annihilation operators are for
i, j = 1, 2

[ai(p), a
†
j(p
′)] = δij δ

3(p− p′) and [ai(p), aj(p
′)] = 0 = [a†i (p), a

†
j(p
′)] (60)

the commutation relations of the complex creation and annihilation operators are

[a(p), a†(p′)] = δ3(p− p′) and [b(p), b†(p′)] = δ3(p− p′) (61)

with all other commutators vanishing.
Now φ(x) lowers the charge of a state by q if a† adds a particle of charge q and if b†

adds a particle of charge −q. Similarly, φ†(x) raises the charge of a state by q

[Q,φ(x)] = − qφ(x) and [Q,φ†(x)] = qφ†(x). (62)

So an interaction with as many φ(x)’s as φ†(x)’s conserves charge.
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9 Parity, charge conjugation, and time reversal

If the unitary operator P represents parity on the creation operators

Pa†1(p)P−1 = η a†1(−p) and Pa†2(p)P−1 = η a†2(−p) (63)

with the same phase η. Then

Pa1(p)P−1 = η∗a1(−p) and Pa2(p)P−1 = η∗a2(−p) (64)

and so both
Pa†(p)P−1 = ηa†(−p) and Pa(p)P−1 = η∗a(−p) (65)

and
Pb†(p)P−1 = ηb†(−p) and Pb(p)P−1 = η∗b(−p). (66)

Thus if the field

φ1(x) =

∫
d3p√

(2π)32p0

[
a1(p) eip·x + a†1(p) e−ip·x

]
(67)

or φ2(x), or the complex field (58) is to go into a multiple of itself under parity, then we
need η = η∗ so that η is real. Then the fields transform under parity as

Pφ1(x)P−1 = η∗φ1(x0,−x) = ηφ1(x0,−x)

Pφ2(x)P−1 = η∗φ(x0,−x) = ηφ2(x0,−x)

Pφ(x)P−1 = η∗φ(x0,−x) = ηφ(x0,−x).

(68)

Since P2 = I, we must have η = ±1. SW allows for a more general phase by having parity
act with the same phase on a and b†. Both schemes imply that the parity of a hermitian
field is ±1 and that the state

|ab〉 =

∫
d3p f(p2) a†(p) b†(−p) |0〉 (69)

has even or positive parity, P|ab〉 = |ab〉.
Charge conjugation works similarly. If the unitary operator C represents charge conju-

gation on the creation operators

Ca†1(p)C−1 = ξa†1(p) and Ca†2(p)C−1 = − ξa†2(p) (70)

with the same phase ξ. Then

Ca1(p)C−1 = ξ∗a1(p) and Ca2(p)C−1 = − ξ∗a2(p) (71)
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and so since a = (a1 + ia2)/
√

2 and b = (a1 − ia2)/
√

2

Ca(p)C−1 = ξ∗ b(p) and Cb(p)C−1 = ξ∗a(p) (72)

and since a† = (a†1 − ia
†
2)/
√

2 and b† = (a†1 + ia†2)/
√

2

Ca†(p)C−1 = ξ b†(p) and Cb†(p)C−1 = ξa†(p). (73)

Thus under charge conjugation, the field (58) becomes

Cφ(x)C−1 =

∫
d3p√

(2π)32p0

[
ξ∗ b(p) eip·x + ξ a†(p) e−ip·x

]
(74)

and so if it is to go into a multiple of itself or of its adjoint under charge conjugation then
we need ξ = ξ∗ so that ξ is real. We then get

Cφ(x)C−1 = ξ∗ φ†(x) = ξ φ†(x). (75)

Since C2 = I, we must have ξ = ±1. SW allows for a more general phase by having
charge conjugation act with the same phase on a and b†. Both schemes imply that the
charge-conjugation parity of a hermitian field is ±1 and that the state

|ab〉 =

∫
d3p f(p2) a†(p) b†(p) |0〉 (76)

has even or positive charge-conjugation parity, C|ab〉 = |ab〉.
The time-reversal operator T is antilinear and antiunitary. So if

Ta1(p)T−1 = ζ∗a1(−p) and Ta2(p)T−1 = − ζ∗a2(−p)

Ta†1(p)T−1 = ζa†1(−p) and Ta†2(p)T−1 = − ζa†2(−p)
(77)

then

Ta(p)T−1 = T
1√
2

(
a1(p) + ia2(p)

)
T−1 =

1√
2

(
Ta1(p)T−1 − iTa2(p)T−1

)
= ζ∗

1√
2

(
a1(−p) + ia2(−p)

)
= ζ∗ a(−p)

(78)

and

Tb†(p)T−1 = T
1√
2

(
a†1(p) + ia†2(p)

)
T−1 =

1√
2

(
Ta†1(p)T−1 − iTa†2(p)T−1

)
= ζ

1√
2

(
a†1(−p) + ia†2(−p)

)
= ζ b†(−p)

(79)
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then one has

Tφ(x)T−1 = T

∫
d3p√

(2π)32p0

[
a(p) eip·x + b†(p) e−ip·x

]
T−1

=

∫
d3p√

(2π)32p0

[
Ta(p)T−1 e−ip·x + Tb†(p)T−1 eip·x

]
=

∫
d3p√

(2π)32p0

[
ζ∗ a(−p) e−ip·x + ζ b†(−p) eip·x

]
.

(80)

So if ζ is real, then after replacing −p by p, we get

Tφ(x)T−1 = ζ∗
∫

d3p√
(2π)32p0

[
a(p) eip

0x0+ip·x + b†(p) e−ip
0x0+ip·x

]
= ζ∗φ(−x0,x) = ζφ(−x0,x).

(81)

Since T2 = I, the phase ζ = ±1. SW lets ζ be complex but defined only for complex scalar
fields and not for their real and imaginary parts.

10 Vector fields

Vector fields transform like the 4-vector xi of spacetime. So

D ¯̀̀ (Λ) = Λ
¯̀

` (82)

for ¯̀, ` = 0, 1, 2, 3. Again we start with a hermitian field labelled by i = 0, 1, 2, 3

φ+i(x) = (2π)−3/2
∑
s

∫
d3p eip·xui(p, s) a(p, s)

φ−i(x) = (2π)−3/2
∑
s

∫
d3p e−ip·xvi(p, s) a†(p, s).

(83)

The boost conditions (207) say that

ui(p, s) =

√
m

p0

∑
k

L(p)iku
k(~0, s)

vi(p, s) =

√
m

p0

∑
k

L(p)ikv
k(~0, s).

(84)

The rotation conditions (39) give∑
s̄

ui(~0, s̄)(J (j)
a )s̄s =

∑
k

(Ja)ikuk(~0, s)

−
∑
s̄

vi(~0, s̄)(J∗(j)a )s̄s =
∑
k

(Ja)ikvk(~0, s).
(85)
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The (2j + 1) × (2j + 1) matrices (J
(j)
a )s̄s are the generators of the (2j + 1) × (2j + 1)

representation of the rotation group. (See my online notes on group theory.) You learned
that

3∑
a=1

[
(J (j)
a )2

]
s̄s′

=

3∑
a=1

j∑
s=−j

(J (j)
a )s̄s (J (j)

a )ss′ = j(j + 1)δs̄s′ (86)

and that

J1 =
1√
2

0 1 0
1 0 1
0 1 0

 , J2 =
1√
2

0 −i 0
i 0 −i
0 i 0

 , J3 =

1 0 0
0 0 0
0 0 −1

 (87)

in courses on quantum mechanics.
For k = 1, 2, 3, the three 4 × 4 matrices (Jk)ij are the generators of rotations in the

vector representation of the Lorentz group. Their nonzero components are

(Jk)ij = − iεijk (88)

for i, j, k = 1, 2, 3, while (Jk)0
0 = 0, (Jk)0

j = 0, and (Jk)i0 = 0 for i, j, k = 1, 2, 3. So

(J 2)ij = 2δij (89)

with (J 2)0
0 = 0, (J 2)0

j = 0, and (J 2)i0 = 0 for i, j = 1, 2, 3. Apart from a factor of i, the
Jk’s are the 4× 4 matrices Ja = iRa of my online notes on the Lorentz group

J1 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 J2 =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 J3 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 . (90)

Since (Ja)0
k = 0 for a, k = 1, 2, 3, the spin conditions (85) give for i = 0∑

s̄

u0(~0, s̄)(J (j)
a )s̄s = 0 and −

∑
s̄

v0(~0, s̄)(J∗(j)a )s̄s = 0. (91)

Multiplying these equations from the right by (J
(j)
a )ss′ while summing over a = 1, 2, 3 and

using the formula (86) [(J (j))2]ss′ = j(j + 1) δss′ , we find

j(j + 1)u0(~0, s) = 0 and j(j + 1) v0(~0, s) = 0. (92)

Thus u0(~0, σ) and v0(~0, σ) can be anything if the field represents particles of spin j = 0,
but u0(~0, σ) and v0(~0, σ) must both vanish if the field represents particles of spin j > 0.
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Now we set i = 1, 2, 3 in the spin conditions (85) and again multiply from the right by

(J
(j)
a )ss′ while summing over a = 1, 2, 3 and using the formula (86) (J (j))2 = j(j+ 1). The

Lorentz rotation matrices generate a j = 1 representation of the group of rotations.

3∑
ka=1

(Ja)ik (Ja)k` = j(j + 1) δi` = 2δi`. (93)

So the remaining conditions on the fields are

j(j + 1)ui(~0, s′) =
∑
s̄sa

ui(~0, s̄)(J (j)
a )s̄s (J (j)

a )ss′ =
∑
ksa

(Ja)ikuk(~0, s) (J (j)
a )ss′

=
∑
k`a

(Ja)ik (Ja)k` u`(~0, s′) =
∑
k

2 δi` u
`(~0, s′) = 2ui(~0, s′)

j(j + 1) vi(~0, s′) =
∑
s̄sa

vi(~0, s̄)(J∗(j)a )s̄s (J∗(j)a )ss′ =
∑
ksa

(Ja)ikvk(~0, s) (J (j)
a )ss′

=
∑
k`a

(Ja)ik (Ja)k` v`(~0, s′) =
∑
k

2 δi` v
`(~0, s′) = 2 vi(~0, s′).

(94)

Thus if j = 0, then for i = 1, 2, 3 both ui(~0, s) and vi(~0, s) must vanish, while if j > 0, then
since j(j + 1) = 2, the spin j must be unity, j = 1.

11 Vector field for spin-zero particles

The only nonvanishing components are constants taken conventionally as

u0(~0) = i
√
m/2 and v0(~0) = − i

√
m/2. (95)

At finite momentum the boost conditions (207) give them as

uµ(~p) = ipµ/
√

2p0 and vµ(~p) = − ipµ/
√

2p0. (96)

The vector field φµ(x) of a spin-zero particle is then the derivative of a scalar field φ(x)

φµ(x) = ∂µφ(x) =

∫
d3p√

(2π)32p0

[
ipµ a(p) eip·x − ipµ b†(p) e−ip·x

]
(97)

12 Vector field for spin-one particles

We start with the s = 0 spinors ui(~0, 0) and vi(~0, 0) and note that since (J
(j)
3 )s̄0 = 0, the

a = 3 rotation conditions (85) imply that

(J3)ik u
k(~0, 0) = iR3 u

i(~0, 0) = 0 and (J3)ik v
k(~0, 0) = iR3 v

i(~0, 0) = 0. (98)
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Referring back to the explicit formulas for the generators of rotations and setting u, v =
(0, x, y, z) we see that

J3 u =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0




0
x
y
z

 =


0
−iy
x
0

 =


0
0
0
0

 (99)

and

J3 v =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0




0
x
y
z

 =


0
−iy
x
0

 =


0
0
0
0

 . (100)

Thus only the 3-component z can be nonzero. The conventional choice is

uµ(~0, 0) = vµ(~0, 0) =
1√
2m


0
0
0
1

 . (101)

We now form the linear combinations of the rotation conditions (85) that correspond

to the raising and lowering matrices J
(1)
± = J

(1)
1 ± iJ (1)

2

J
(1)
+ =

√
2

0 1 0
0 0 1
0 0 0

 and J
(1)
− =

√
2

0 0 0
1 0 0
0 1 0

 . (102)

Their Lorentz counterparts are

J (1)
± = J (1)

1 ± iJ (1)
2 =


0 0 0 0
0 0 0 ∓1
0 0 0 −i
0 ±1 i 0

 . (103)

In these terms, the rotation conditions (85) for the j = 1 spinors ui(~0, s) are∑
s̄

ui(~0, s̄)(J
(1)
± )s̄s =

∑
k

(J±)iku
k(~0, s). (104)

But
J
∗(1)
1 ± iJ∗(1)

2 = J
(1)
1 ∓ iJ (1)

2 = J∓. (105)

So the rotation conditions (85) for the j = 1 spinors vi(~0, s) are

−
∑
s̄

vi(~0, s̄)(J
(1)
∓ )s̄s =

∑
k

(J±)ikv
k(~0, s). (106)
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So for the plus sign and the choice s = 0, the condition (104) gives ui(~0, 1) as

∑
s̄

ui(~0, s̄) J
(1)
+s̄0 =

√
2ui(~0, 1) = (J+)iku

k(~0, 0) =


0 0 0 0
0 0 0 −1
0 0 0 −i
0 1 i 0

 1√
2m


0
0
0
1

 (107)

or

ui(~0, 1) =
1

2
√
m


0
−1
−i
0

 . (108)

Similarly, the minus sign and the choice s = 0 give for ui(~0,−1)

∑
s̄

ui(~0, s̄) J
(1)
−s̄0 =

√
2ui(~0,−1) = (J−)iku

k(~0, 0) =


0 0 0 0
0 0 0 1
0 0 0 −i
0 −1 i 0

 1√
2m


0
0
0
1

 (109)

or

ui(~0,−1) =
1

2
√
m


0
1
−i
0

 . (110)

The rotation condition (106) for the j = 1 spinors vi(~0, s) with the minus sign and the
choice s = 0 gives

−
∑
s̄

vi(~0, s̄)J
(1)
−s̄0 = −

√
2 vi(~0,−1) = (J+)ikv

k(~0, 0) =


0 0 0 0
0 0 0 −1
0 0 0 −i
0 1 i 0

 1√
2m


0
0
0
1


(111)

or

vi(~0,−1) =
1

2
√
m


0
1
i
0

 . (112)

Similarly, the plus sign and the choice s = 0 give

−
∑
s̄

vi(~0, s̄)J
(1)
+s̄0 = −

√
2 vi(~0, 1) = (J−)ikv

k(~0, 0) =


0 0 0 0
0 0 0 1
0 0 0 −i
0 −1 i 0

 1√
2m


0
0
0
1

 (113)
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or

vi(~0, 1) =
1

2
√
m


0
−1
i
0

 . (114)

The boost conditions (207) now give for i, k = 0, 1, 2, 3

ui(~p, s) = v∗i(~p, s) =
√
m/p0 Lik(~p)u

k(~0, s) = ei(~p, s)/
√

2p0 (115)

where
ei(~p, s) = Lik(~p) e

k(~0, s) (116)

and

e(~0, 0) =


0
0
0
1

 , e(~0, 1) = − 1√
2


0
1
i
0

 , and e(~0,−1) =
1√
2


0
1
−i
0

 . (117)

A single massive vector field is then

φi(x) = φ+i(x) + φ−i(x) =
1∑

s=−1

∫
d3p√

(2π)32p0
ei(~p, s) a(~p, s)eip·x + e∗i(~p, s) a†(~p, s)e−ip·x.

(118)
The commutator/anticommutator of the positive and negative frequency parts of the field
is

[φ+i(x), φ−k(y)]∓ =

∫
d3p√

(2π)32p0
eip·(x−y) Πik(~p) (119)

where Π is a sum of outer products of 4-vectors

Πik(~p) =
1∑

s=−1

ei(~p, s)e∗k (~p, s). (120)

At ~p = 0, the matrix Π is the unit matrix on the spatial coordinates

Π(~0) =
1∑

s=−1

ei(~0, s)e∗k (~0, s) =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (121)

So Π(~p) is

Π(~p) = LΠ(0)LT = LηLT + L


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

LT (122)
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or
Π(~p)ik = ηik + pipk/m2. (123)

This equation lets us write the commutator (124) in terms of the Lorentz-invariant function
∆+(x− y) (45) as

[φ+i(x), φ−k(y)]∓ = (ηik − ∂i∂k/m2)

∫
d3p√

(2π)32p0
eip·(x−y)

= (ηik − ∂i∂k/m2) ∆+(x− y).

(124)

As for a scalar field, we set

vi(x) = κφ+i(x) + λφ−i(x) (125)

and find for (x− y)2 > 0 since ∆+(x− y) = ∆+(y − x) for x, y spacelike

[v(x), v†(y)]∓ =
(
|κ|2 ∓ |λ|2

)
(ηik − ∂i∂k/m2) ∆+(x− y)

[v(x), v(y)]∓ = (1∓ 1)κλ(ηik − ∂i∂k/m2) ∆+(x− y).
(126)

So we must choose the minus sign and set |κ| = |λ|. So then

vi(x) = v+i(x) + v−i(x) = v+i(x) + v+i†(x) (127)

is real. This is a second example of the spin-statistics theorem.
If two such fields have the same mass, then we can combine them as we combined scalar

fields
vi(x) = v+i

1 (x) + iv−i2 (x). (128)

These fields obey the Klein-Gordon equation

(2−m2)vi(x) = 0. (129)

And since both
pi = Lijk

j and ek(~p) = Lk`e
`(0) (130)

it follows that
p · e(~p) = k · e(0) = 0. (131)

So the field vi also obeys the rule
∂i v

i(x) = 0. (132)

These equations (131) and 132 are like those of the electromagnetic field in Lorentz
gauge. But one can’t get quantum electrodynamics as the m → 0 limit of just any such
theory. For the interaction H = Ji v

i would lead to a rate for v-boson production like

JiJkΠ
ik(~p) (133)
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which diverges as m → 0 because of the pipk/m2 term in Πik(~p). One can avoid this
divergence by requiring that ∂iJ

i = 0 which is current conservation.
Under parity, charge conjugation, and time reversal, a vector field transforms as

Pva(x)P−1 = − η∗Pabvb(Px)

Cva(x)C−1 = ξ∗va†(x)

Tva(x)T−1 = ζ∗Pabvb(−Px).

(134)

13 Lorentz group

The Lorentz group O(3, 1) is the set of all linear transformations L that leave invariant the
Minkowski inner product

xy ≡ x · y − x0y0 = xTηy (135)

in which η is the diagonal matrix

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (136)

So L is in O(3, 1) if for all 4-vectors x and y

(Lx) T ηL y = xTLT η Ly = xTη y. (137)

Since x and y are arbitrary, this condition amounts to

LTη L = η. (138)

Taking the determinant of both sides and recalling that detAT = detA and that det(AB) =
detAdetB, we have

(detL)2 = 1. (139)

So detL = ±1, and every Lorentz transformation L has an inverse. Multiplying (138) by
η, we get

ηLTηL = η2 = I (140)

which identifies L−1 as
L−1 = ηLTη. (141)

The subgroup of O(3, 1) with detL = 1 is the proper Lorentz group SO(3, 1). The subgroup
of SO(3, 1) that leaves invariant the sign of the time component of timelike vectors is the
proper orthochronous Lorentz group SO+(3, 1).
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To find the Lie algebra of SO+(3, 1), we take a Lorentz matrix L = I + ω that differs
from the identity matrix I by a tiny matrix ω and require L to obey the condition (138)
for membership in the Lorentz group(

I + ωT
)
η (I + ω) = η + ωTη + η ω + ωTω = η. (142)

Neglecting ωTω, we have ωTη = −η ω or since η2 = I

ωT = − η ω η. (143)

This equation says that under transposition the time-time and space-space elements of ω
change sign, while the time-space and spacetime elements do not. That is, the tiny matrix
ω is for infinitesimal θ and λ a linear combination

ω = θ ·R+ λ ·B (144)

of three antisymmetric space-space matrices

R1 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 R2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 R3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 (145)

and of three symmetric time-space matrices

B1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 B2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 B3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 (146)

all of which satisfy condition (143). The three R` are 4×4 versions of the familiar rotation
generators; the three B` generate Lorentz boosts.

If we write L = I + ω as

L = I − iθ` iR` − iλ` iB` ≡ I − iθ`J` − iλ`K` (147)

then the three matrices J` = iR` are imaginary and antisymmetric, and therefore hermitian.
But the three matrices K` = iB` are imaginary and symmetric, and so are antihermitian.
The 4× 4 matrix L = exp(iθ`J`− iλ`K`) is not unitary because the Lorentz group is not
compact.

22



14 Gamma matrices and Clifford algebras

In component notation, L = I + ω is

Lab = δab + ωab, (148)

the matrix η is ηcd = ηcd, and ωT = − η ω η is

ωab = (ωT) a
b = − (ηωη) a

b = − ηbc ωcd ηda = − ωbd ηda = − ω a
b . (149)

Lowering index a we get

ωeb = ηea ω
a
b = −ωbd ηda ηea = −ωbd δde = − ωbe (150)

That is, ωab is antisymmetric
ωab = − ωba. (151)

A representation of the Lorentz group is generated by matrices D(L) that represent
matrices L close to the identity matrix by sums over a, b = 0, 1, 2, 3

D(L) = 1 +
i

2
ωab J ab. (152)

The generators J ab must obey the commutation relations

i[J ab,J cd] = ηbc J ad − ηac J bd − ηda J cb + ηdb J ca. (153)

A remarkable representation of these commutation relations is provided by matrices γa

that obey the anticommutation relations

{γa, γb} = 2 ηab. (154)

One sets

J ab = − i

4
[γa, γb] (155)

where η is the usual flat-space metric (136). Any four 4 × 4 matrices that satisfy these
anticommutation relations form a set of Dirac gamma matrices. They are not unique. Is
S is any nonsingular 4× 4 matrix, then the matrices

γ′a = S γa S−1 (156)

also are a set of Dirac’s gamma matrices.
Any set of matrices obeying the anticommutation relations (154) for any n×n diagonal

matrix η with entries that are ±1 is called a Clifford algebra.
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As a homework problem, show that

[J ab, γc] = − i γa ηbc + i γb ηac. (157)

One can use these commutation relations to derive the commutation relations (153) of the
Lorentz group.

The gamma matrices are a vectors in the sense that for L near the identity

D(L) γcD−1(L) ≈ (I +
i

2
ωab J ab) γc (I − i

2
ωab J ab)

= γc +
i

2
ωab [J ab, γc]

= γc +
i

2
ωab (−i γa ηbc + i γb ηac)

= γc +
1

2
ωab γ

a ηbc − 1

2
ωab γ

b ηac

= γc − 1

2
ηcb ωba γ

a − 1

2
ηca ωab γ

b

= γc − 1

2
ωca γ

a − 1

2
ωcb γ

b

= γc − ωca γa

= γc + ω c
a γa

= (δ c
a + ω c

a ) γa

= L c
a γa

(158)

in which we used (149) to write − ωca = ω c
a . The finite ω form is

D(L) γaD−1(L) = L a
c γc. (159)

The unit matrix is a scalar
D(L) I D−1(L) = I. (160)

The generators of the Lorenz group form an antisymmetric tensor

D(L)J abD−1(L) = L a
c L b

d J cd. (161)

Out of four gamma matrices, one can also make totally antisymmetric tensors of rank-3
and rank-4

Aabc ≡ γ[a γb γc] and Babcd ≡ γ[a γb γc γd] (162)

where the brackets mean that one inserts appropriate minus signs so as to achieve total
antisymmetry. Since there are only four γ matrices in four spacetime dimensions, any
rank-5 totally antisymmetric tensor made from them must vanish, Cabcde = 0.
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Notation: The parity transformation is

β = iγ0. (163)

It flips the spatial gamma matrices but not the temporal one

β γi β−1 = − γi and β γ0 β−1 = γ0. (164)

It flips the generators of boosts but not those of rotations

β J i0 β−1 = − J i0 and β J ik β−1 = J ik. (165)

15 Dirac’s gamma matrices

Weinberg’s chosen set of Dirac matrices is

γ0 = − i
(

0 1
1 0

)
= −γ0† and γi = −i

(
0 σi

− σi 0

)
= γi† (166)

in which the σ’s are Pauli’s 2× 2 hermitian matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
, (167)

which are the gamma matrices of 3-dimensional spacetime. With this choice of γ’s, the
matrix β is

β = i γ0 =

(
0 1
1 0

)
= β†. (168)

In spacetimes of five dimensions, the fifth gamma matrix γ4 which traditionally is called
γ5 = γ5 is

γ5 = γ5 = −iγ0γ1γ2γ3 =

(
1 0
0 −1

)
. (169)

It anticommutes with all four Dirac gammas and its square is unity, as it must if it is to
be the fifth gamma in 5-space:

{γa, γb} = 2ηab (170)

for a, b = 0, 1, 2, 3, 4 with η44 = 1 and η40 = η04 = 0.
With Weinberg’s choice of γ’s, the Lorentz boosts are

J i0 = − i

4
[γi, γ0] = − i

4

[
−i
(

0 σi

− σi 0

)
,−i

(
0 1
1 0

)]
=
i

4

[(
σi 0
0 −σi

)
−
(
−σi 0

0 σi

)]
=
i

2

(
σi 0
0 −σi

)
.

(171)
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The Lorentz rotation matrices are

J ik = − i

4
[γi, γk] = − i

4

[
−i
(

0 σi

− σi 0

)
,−i

(
0 σk

−σk 0

)]
=
i

4

[(
−σiσk 0

0 −σiσk
)
−
(
−σkσi 0

0 −σkσi
)]

=
−i
4

(
[σi, σk] 0

0 [σi, σk]

)
=
−i
4

(
2iεikjσ

j 0
0 2iεikjσ

j

)
=

1

2
εikj

(
σj 0
0 σj

)
.

(172)

The Dirac representation of the Lorentz group is reducible, as SW’s choice of gamma
matrices makes apparent. The Dirac rotation matrices are

Ji =
1

2

(
σi 0
0 σi

)
. (173)

Some useful relations are

β γa† β = − γa, β J ab† β = J ab and β D(L)† β = D(L)−1 (174)

as well as
β γ†5 β = − γ5 and β(γ5γ

a)† β = − γ5γ
a. (175)

16 Dirac fields

The positive- and negative-frequency parts of a Dirac field are

ψ+
` (x) = (2π)−3/2

∑
s

∫
d3p u`(~p, s) e

ip·x a(~p, s)

ψ−` (x) = (2π)−3/2
∑
s

∫
d3p v`(~p, s) e

−ip·x b†(~p, s).

(176)

The rotation conditions (39) are∑
s̄

u¯̀(~0, s̄)(J
(j)
i )s̄s =

∑
`

(Ji) ¯̀̀ u`(~0, s)∑
s̄

v¯̀(~0, s̄)(−J (j)
i )∗s̄s) =

∑
`

(Ji) ¯̀̀ v`(~0, s).
(177)

The Dirac rotation matrices (173) are

Ji =
1

2

(
σi 0
0 σi

)
(178)
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so we set the four values `, ¯̀= 1, 2, 3, 4 to ` = (m,±) with m = ±1
2 . And we consider u`(s)

to be u+
m(s) stacked upon u−m(s) and similarly take v`(s) to be v+

m±(s) above v−m±(s) where
u±m(s) and v±m±(s) are, a priori, 2× (2j + 1)-dimensional matrices with indexes m = ±1/2
and s = −j, . . . , j. That is,

u1(s)
u2(s)
u3(s)
u4v

 =


u+

+1/2(s)

u+
−1/2(s)

u−+1/2(s)

u−−1/2(s)

 and


v1(s)
v2(s)
v3(s)
v4(s)

 =


v+

+1/2(s)

v+
−1/2(s)

v−+1/2(s)

v−−1/2(s)

 . (179)

We then have four equations∑
s̄

u+
m̄(~0, s̄)(J

(j)
i )s̄s =

∑
m

1
2 σ

i
m̄mu

+
m(~0, s)∑

s̄

u−m̄(~0, s̄)(J
(j)
i )s̄s =

∑
m

1
2 σ

i
m̄mu

−
m(~0, s)∑

s̄

v+
m̄(~0, s̄)(−Ji)∗(j)s̄s ) =

∑
m

1
2 σ

i
m̄mv

+
m(~0, s)∑

s̄

v−m̄(~0, s̄)(−Ji)∗(j)s̄s ) =
∑
m

1
2 σ

i
m̄mv

−
m(~0, s).

(180)

SW defines the four 2× (2j + 1) matrices

U+
ms = u+

m(~0, s) and U−ms = u−m(~0, s)

V +
ms = v+

m(~0, s) and V −ms = v−m(~0, s).
(181)

in terms of which the four Dirac rotation conditions (180) are

U+ J
(j)
i = 1

2 σi U
+ and U− J

(j)
i = 1

2 σi U
−

V + (−J∗(j)i ) = 1
2 σi V

+ and V − (−J∗(j)i ) = 1
2 σi V

−.
(182)

Taking the complex conjugate of the second of these equations, we get

−J (j)
i = V +∗−1(1

2σ
i∗)V +∗ = V +∗−1(−1

2σ2 σ
i σ2)V +∗

−J (j)
i = V −∗−1(1

2σ
i∗)V −∗ = V −∗−1(−1

2σ2 σ
i σ2)V −∗

(183)

or more simply

J
(j)
i = (σ2V

+∗)−1 1
2σ

i (σ2V
+∗)

J
(j)
i = (σ2V

−∗)−1 1
2σ

i (σ2V
−∗).

(184)
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The 2×2 Pauli matrices ~σ and the (2j+1)×(2j+1) matrices ~J (j) both generate irreducible
representations of the rotation group. So by writing

U+ J
(j)
i J

(j)
k = 1

2 σi U
+ J

(j)
k = = 1

2 σi
1
2 σk U

+ (185)

and similar equations for U−, V +, V −, we see that

U+D(j)(~θ) = U+ e−iθ·
~J(j)

= e−i
~θ·~σ U+ = D(1/2)(~θ)U+

U−D(j)(~θ) = U− e−iθ·
~J(j)

= e−i
~θ·~σ U− = D(1/2)(~θ)U−

(186)

and similar equations for V ±.

σ2V
+∗D(j)(~θ) = σ2V

+∗ e−iθ·
~J(j)

= e−i
~θ·~σ σ2V

+∗ = D(1/2)(~θ)σ2V
+∗

σ2V
−∗D(j)(~θ) = σ2V

−∗ e−iθ·
~J(j)

= e−i
~θ·~σ σ2V

−∗ = D(1/2)(~θ)σ2V
−∗.

(187)

Now recall Schur’s lemma (section 10.7 of PM):

Part 1: If D1 and D2 are inequivalent, irreducible representations of a group
G, and if D1(g)A = AD2(g) for some matrix A and for all g ∈ G, then the
matrix A must vanish, A = 0.

Part 2: If for a finite-dimensional, irreducible representation D(g) of a group
G, we have D(g)A = AD(g) for some matrix A and for all g ∈ G, then A = cI.
That is, any matrix that commutes with every element of a finite-dimensional,
irreducible representation must be a multiple of the identity matrix.

Part 1 tells us that D(j)(~θ) and D(1/2)(~θ) must be equivalent. So j = 1/2 and 2j + 1 = 2.
A Dirac field must represent particles of spin 1/2.

Part 2 then says that the matrices U± must be multiples of the 2× 2 identity matrix

U+ = c+ I and U− = c− I (188)

and that the matrices σ2V
±∗ must be multiples of the 2× 2 identity matrix

σ2V
+∗ = d′+ I and σ2V

−∗ = d′− I (189)

or more simply
V + = − id+ σ2 and V − = − id− σ2. (190)

That is,

v+
m(~0, s) = d+

(
0 −1
1 0

)
and v−m(~0, s) = d−

(
0 −1
1 0

)
. (191)
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Going back to ` = (m,±) by using the index code (179)
u1(s)
u2(s)
u3(s)
u4(s)

 =


u+

+1/2(s)

u+
−1/2(s)

u−+1/2(s)

u−−1/2(s)

 =


c+ δ1/2,s

c+ δ−1/2,s

c− δ1/2,s

c− δ−1/2,s

 and


v1(s)
v2(s)
v3(s)
v4(s)

 =


v+

+1/2(s)

v+
−1/2(s)

v−1/2(s)

v−−1/2(s)

 =


d+ δ−1/2,s

d+ δ1/2,s

d− δ−1/2,s

d− δ+1/2,s

 .
(192)

we have for the u’s

u+
1/2(1/2) = c+ and u+

−1/2(1/2) = 0 (193)

u−1/2(1/2) = c− and u−−1/2(1/2) = 0 (194)

u+
1/2(−1/2) = 0 and u+

−1/2(−1/2) = c+ (195)

u−1/2(−1/2) = 0 and u−−1/2(−1/2) = c− (196)

v+
1/2(1/2) = 0 and v+

−1/2(1/2) = d+ (197)

v−1/2(1/2) = 0 and v−−1/2(1/2) = d− (198)

v+
1/2(−1/2) = − d+ and v+

−1/2(−1/2) = 0 (199)

v−1/2(−1/2) = − d− and v−−1/2(−1/2) = 0 (200)

So

u(~0,m = 1
2) =


u+

1/2(1/2)

u+
−1/2(1/2)

u−1/2(1/2)

u−−1/2(1/2)

 =


c+

0
c−
0

 and u(~0,m = −1
2) =


u+

1/2(−1/2)

u+
−1/2(−1/2)

u−1/2(−1/2)

u−−1/2(−1/2)

 =


0
c+

0
c−

 ,

v(~0,m = 1
2) =


v+

1/2(1/2)

v+
−1/2(1/2)

v−1/2(1/2)

v−−1/2(1/2)

 =


0
d+

0
d−

 and v(~0,m = −1
2) =


v+

1/2(−1/2)

v+
−1/2(−1/2)

v−1/2(−1/2)

v−−1/2(−1/2)

 = −


d+

0
d−
0

 .
(201)

To put more constraints on c± and d±, we recall that under parity

Pa(~p, s)P−1 = η∗a a(−~p, s) and Pb†(~p, s)P−1 = ηb β
†(−~p, s) (202)
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and so

Pψ+
` (x)P−1 = (2π)−3/2

∑
s

∫
d3p u`(~p, s) e

ip·x η∗a a(−~p, s)

= (2π)−3/2
∑
s

∫
d3p u`(−~p, s) eip·Px η∗a a(~p, s)

Pψ−` (x)P−1 = (2π)−3/2
∑
s

∫
d3p v`(~p, s) e

−ip·x ηb b
†(−~p, s)

= (2π)−3/2
∑
s

∫
d3p v`(−~p, s) e−ip·Px ηb b†(~p, s).

(203)

We recall the relations (174)

β γa† β = − γa, β J ab† β = J ab, and β D(L)† β = D(L)−1 (204)

and in particular, since J 0i† = − J 0i, the rule

βJ 0iβ = J 0i† = −J 0i. (205)

We also have the pseudounitarity relation

β D†(L)β = D−1(L). (206)

In general spinors at finite momentum are related to those at zero momentum by

u¯̀(q, s) =

√
m

q0

∑
`

D ¯̀̀ (L(q))u`(~0, s)

v¯̀(q, s) =

√
m

q0

∑
`

D ¯̀̀ (L(q))v`(~0, s)

(207)

which for Dirac spinors is

u(p, s) =

√
m

p0
D(L(p))u(~0, s)

v(p, s) =

√
m

p0
D(L(p)) v(~0, s).

(208)

So now by using the boost rule (205) we have

u`(−~p, s) =
√
m/p0D(L(−~p))u(0, s) =

√
m/p0D(L(~p))−1u(0, s) (209)

=
√
m/p0 β D(L(~p))β u(0, s) (210)
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and

v`(−~p, s) =
√
m/p0D(L(−~p))v(0, s) =

√
m/p0D(L(~p))−1v(0, s) (211)

=
√
m/p0 β D(L(~p))β v(0, s). (212)

So under parity

Pψ+(x)P−1 = (2π)−3/2
∑
s

∫
d3p

√
m/p0 β D(L(~p))β u(0, s) eip·Px η∗a a(~p, s)

Pψ−(x)P−1 = (2π)−3/2
∑
s

∫
d3p

√
m/p0 β D(L(~p))β v(0, s) e−ip·Px ηb b

†(~p, s).

(213)

So to have Pψ±` (x)P−1 ∝ ψ±` (x), we need

β u(0, s) = bu u(0, s) and β v(0, s) = bv u(0, s). (214)

We then get

Pψ+
` (t, ~x)P−1 = bu β η

∗
a ψ

+
` (t,−~x) and Pψ−` (t, ~x)P−1 = bv β ηb ψ

−
` (t,−~x). (215)

Here since P2 = 1, these factors are just signs, b2u = b2v = 1. The eigenvalue equations (214)
tell us that c− = bu c+ and that d− = bv d+. So rescaling the fields we get

u(~0,m = 1
2) =

1√
2


1
0
bu
0

 and u(~0,m = −1
2) =

1√
2


0
1
0
bu

 ,

v(~0,m = 1
2) =

1√
2


0
1
0
bv

 and v(~0,m = −1
2) =

−1√
2


1
0
bv
0

 .
(216)

If the annihilation and creation operators a(p, s) and a†(p, s) obey the rule

[a(p, s), a†(p′, s′)]∓ = δss′δ
3(~p− ~p′) (217)

and if the field is the sum of the positive- and negative-frequency parts (176)

ψ+
` (x) = (2π)−3/2

∑
s

∫
d3p u`(~p, s) e

ip·x a(~p, s)

ψ−` (x) = (2π)−3/2
∑
s

∫
d3p v`(~p, s) e

−ip·x b†(~p, s)

(218)
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with arbitrary coefficients κ and λ

ψ`(x) = κψ+
` (x) + λψ−` (x) (219)

then

[ψ`(x), ψ†`′(y)]∓ = [κψ+
` (x) + λψ−` (x), κ∗ψ+†

`′ (y) + λ∗ψ−†`′ (y)]

=

∫
d3p

(2π)3

∑
s

[
|κ|2 u`(~p, s)u∗`′(~p, s)eip·(x−y) ∓ |λ|2 v`(~p, s) v∗`′(~p, s)e−ip·(x−y)

]
=

∫
d3p

(2π)3

∑
s

[
|κ|2N``′(p) e

ip·(x−y) ∓ |λ|2N``′(p) e
−ip·(x−y)

]
(220)

where

N``′(p) =
∑
s

u`(~p, s)u
∗
`′(~p, s)

M``′(p) =
∑
s

v`(~p, s) v
∗
`′(~p, s).

(221)

When ~p = 0, these matrices are

N``′(0) =
∑
s

u`(~0, s)u
∗
`′(~0, s)

N(0) =
1

2


1
0
bu
0

 [1 0 bu 0
]

+
1

2


0
1
0
bu

 [0 1 0 bu
]

=
1

2


1 0 bu 0
0 0 0 0
bu 0 1 0
0 0 0 0

+
1

2


0 0 0 0
0 1 0 bu
0 0 0 0
0 bu 0 1

 =
1 + bu β

2

(222)

and

M``′(0) =
∑
s

v`(~0, s) v
∗
`′(~0, s)

M(0) =
1

2


0
1
0
bv

 [0 1 0 bv
]

+
1

2


1
0
bv
0

 [1 0 bv 0
]

=
1

2


0 0 0 0
0 1 0 bv
0 0 0 0
0 bv 0 1

+
1

2


1 0 bv 0
0 0 0 0
bv 0 1 0
0 0 0 0

 =
1 + bv β

2
.

(223)
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So then using the boost relations (208) we find

N(~p) =
∑
s

u`(~p, s)u
∗
`′(~p, s) =

m

p0
D(L(p))

∑
s

u`(~0, s)u
∗
`′(~0, s)D

†(L(p))

=
m

2p0
D(L(p)) (1 + bu β)D†(L(p))

M(~p) =
∑
s

v`(~p, s) v
∗
`′(~p, s) =

m

p0
D(L(p))

∑
s

v`(~0, s) v
∗
`′(~0, s)D

†(L(p))

=
m

2p0
D(L(p)) (1 + bv β)D†(L(p)).

(224)

The pseudounitarity relation (206)

β D†(L)β = D−1(L). (225)

gives
β D†(L) = D−1(L)β (226)

which implies that
D(L)β D†(L) = β. (227)

The pseudounitarity relation also says that

D†(L) = β D−1(L)β (228)

so that
D(L)D†(L) = D(L)β D−1(L)β. (229)

Also since the gammas form a 4-vector (159)

D(L) γaD−1(L) = L a
c γc (230)

and since β = iγ0, we have

D(L(p))β D−1(L(p)) = D(L(p)) iγ0D−1(L(p)) = iL 0
c (p) γc = −iLc0γc. (231)

Now
pa = Lab(p)k

b = La0(p)m (232)

so
D(L(p))β D−1(L(p)) = −i pcγc/m (233)

which implies that
D(L)D†(L) = − i (pcγc/m)β. (234)
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Thus

N(~p) =
m

2p0
D(L(p)) (1 + bu β)D†(L(p)) =

m

2p0
[(−i pcγc/m)β + bu β]

=
1

2p0
[−i pcγc + bum] β (235)

and

M(~p) =
m

2p0
D(L(p)) (1 + bv β)D†(L(p)) =

m

2p0
[(−i pcγc/m)β + bv β]

=
1

2p0
[−i pcγc + bvm] β. (236)

We now put the spin sums (235) and (236) in the (anti)commutator (220) and get

[ψ`(x), ψ†`′(y)]∓ =

∫
d3p

(2π)32p0

[
|κ|2 [(− i pcγc + bum)β]``′ e

ip·(x−y)

∓ |λ|2 [(− i pcγc + bvm)β]``′ e
−ip·(x−y)

]
= |κ|2 [(− ∂cγc + bum)β]``′

∫
d3p

(2π)32p0
eip·(x−y)

∓ |λ|2 [(− ∂cγc + bvm)β]``′

∫
d3p

(2π)32p0
e−ip·(x−y)

= |κ|2 [(− ∂cγc + bum)β]``′ ∆+(x− y)

∓ |λ|2 [(− ∂cγc + bvm)β]``′ ∆+(y − x).

(237)

Recall that for (x − y)>0, i.e. spacelike, ∆+(x − y) = ∆+(y − x). So its first derivatives
are odd. So for x− y spacelike

[ψ`(x), ψ†`′(y)]∓ = |κ|2 [(− ∂cγc + bum)β]``′ ∆+(x− y)

∓ |λ|2 [(∂cγ
c + bvm)β]``′ ∆+(x− y)

=
(
|κ|2 ± |λ|2

)
[(− ∂cγc)β]``′∆+(x− y)

+
(
|κ|2bu ∓ |λ|2 bv

)
mβ``′ ∆+(x− y).

(238)

To get the first term to vanish, we need to choose the lower sign (that is, use anticommu-
tators) and set |κ| = |λ|. To get the second term to be zero, we must set bu = − bv. We
may adjust κ and and bu so that

κ = λ and bu = − bv = 1. (239)

In particular, a spin-one-half field must obey anticommutation relations

[ψ`(x), ψ†`′(y)]+ ≡ {ψ`(x), ψ†`′(y)} = 0 for (x− y)2 > 0. (240)
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Finally then, the Dirac field is

ψ`(x) =
∑
s

∫
d3p

(2π)3/2

[
u`(~p, s) e

ip·x a(~p, s) + v`(~p, s) e
−ip·x b†(~p, s)

]
. (241)

The zero-momentum spinors are

u(~0,m = 1
2) =

1√
2


1
0
1
0

 and u(~0,m = −1
2) =

1√
2


0
1
0
1

 ,

v(~0,m = 1
2) =

1√
2


0
1
0
−1

 and v(~0,m = −1
2) =

1√
2


−1
0
1
0

 .
(242)

The spin sums are[
N(~p)

]
`m

=
∑
s

u`(~p, s)u
∗
m(~p, s) =

[ 1

2p0
(−i pcγc +m) β

]
`m[

M(~p)
]
`m

=
∑
s

v`(~p, s)v
∗
m(~p, s) =

[ 1

2p0
(−i pcγc −m) β

]
`m
.

(243)

The Dirac anticommutator is

[ψ`(x), ψ†`′(y)]+ ≡ {ψ`(x), ψ†`′(y)} = [(− ∂cγc + m)β]``′ ∆+(x− y). (244)

Two standard abbreviations are

β ≡ iγ0 =

[
0 1
1 0

]
and ψ ≡ ψ†β = iψ†γ0 =

[
ψ∗` ψ∗r

] [0 1
1 0

]
=
[
ψ∗r ψ∗`

]
. (245)

A Majorana fermion is represented by a field like

ψ`(x) =
∑
s

∫
d3p

(2π)3/2

[
u`(~p, s) e

ip·x a(~p, s) + v`(~p, s) e
−ip·x a†(~p, s)

]
. (246)

Since C = γ2β it follows that C−1 = βγ2 and so that J ∗ab = −βCJ abC−1β = −βγ2βJ abβγ2β.
But βγ2β = − ββγ2 = −i2γ2

0γ2 = −γ2. So J ∗ab = − γ2J abγ2. Thus

D∗(L) = e−iωabJ ∗ab = e−iωab(−γ2J abγ2) = γ2e
iωabJ ab

γ2 = γ2D(L) γ2. (247)

Now with SW’s γ’s,

γ2 u(~0,±1
2) = v(~0,±1

2) and γ2 v(~0,±1
2) = u(~0,±1

2). (248)
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Thus the hermitian conjugate of a Majorana field is

ψ∗(x) =
∑
s

∫
d3p

(2π)3/2

[
u∗(~p, s) e−ip·x a†(~p, s) + v∗(~p, s) eip·x a(~p, s)

]
=
∑
s

∫
d3p

(2π)3/2

[
v∗(~p, s) eip·x a(~p, s) + u∗(~p, s) e−ip·x a†(~p, s)

]
=
∑
s

∫
d3p

(2π)3/2

[
D∗(L(p)) v∗(~0, s) eip·x a(~p, s) +D∗(L(p))u∗(~0, s) e−ip·x a†(~p, s)

]
= γ2

∑
s

∫
d3p

(2π)3/2

[
D(L(p))γ2v(~0, s) eip·x a(~p, s) +D(L(p))γ2u(~0, s) e−ip·x a†(~p, s)

]
= γ2

∑
s

∫
d3p

(2π)3/2

[
D(L(p))u(~0, s) eip·x a(~p, s) +D(L(p))v(~0, s) e−ip·x a†(~p, s)

]
= γ2

∑
s

∫
d3p

(2π)3/2

[
u(~p, s) eip·x a(~p, s) + v(~p, s) e−ip·x a†(~p, s)

]
= γ2 ψ(x).

(249)

The parity rules (250) now are

Pψ+
` (t, ~x)P−1 = β η∗a ψ

+
` (t,−~x) and Pψ−` (t, ~x)P−1 = − β ηb ψ−` (t,−~x). (250)

So to have a Dirac field survive a parity transformation, we need the phase of the particle
to be minus the complex conjugate of the phase of the antiparticle

η∗a = − ηb or ηb = − η∗a. (251)

So the intrinsic parity of a particle-antiparticle state is odd. So negative-parity bospns
like π0, ρ0, J/ψ can be interpreted as s-wave bound states of quark-antiquark pairs. Under
parity a Dirac field goes as

Pψ(t, ~x)P−1 = η∗ β ψ(t,−~x). (252)

If a Dirac particle is the same as its antiparticle, then its intrinsic parity must be odd
under complex conjugation, η = −η∗. So the intrinsic parity of a Majorana fermion must
be imaginary

η = ± i. (253)

But this means that if we express a Dirac field ψ as a complex linear combination

ψ =
1√
2

(χ1 + iχ2) (254)
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of two Majorana fields with intrinsic parities η∗1 = ±i and η∗2 = ±i, then under parity

Pψ(t, ~x)P−1 =
1√
2

(
η∗1 β φ1(t,−~x) + iη∗2 β φ2(t,−~x)

)
(255)

so we need η∗1 = η∗2 to have

Pψ(t, ~x)P−1 =
1√
2

(
η∗1 β φ1(t,−~x) + iη∗2 β φ2(t,−~x)

)
= η∗ β ψ(t,−~x). (256)

But in that case the Dirac field has intrinsic parity η = ±i.
The equation (233) that shows how beta goes under D(L(p))

D(L(p))β D−1(L(p)) = − i pcγc/m (257)

tells us that the spinors (208)

u(p, s) =

√
m

p0
D(L(p))u(~0, s) and v(p, s) =

√
m

p0
D(L(p)) v(~0, s) (258)

are eigenstates of −i pcγc/m with eigenvalues ±1

(− i pcγc/m)u(p, s) = D(L(p))β D−1(L(p))

√
m

p0
D(L(p))u(~0, s)

=

√
m

p0
D(L(p))β u(~0, s) =

√
m

p0
D(L(p)) u(~0, s) = u(p, s)

(− i pcγc/m) v(p, s) = D(L(p))β D−1(L(p))

√
m

p0
D(L(p)) v(~0, s)

=

√
m

p0
D(L(p))β v(~0, s) = −

√
m

p0
D(L(p)) v(~0, s) = − v(p, s).

(259)

So
(i pcγc +m)u(p, s) = 0 and (−i pcγc +m)v(p, s) = 0 (260)

which implies that a Dirac field obeys Dirac’s equation

(γa ∂a +m)ψ(x) = (γa ∂a +m)
∑
s

∫
d3p

(2π)3/2

[
u(~p, s) eip·x a(~p, s) + v(~p, s) e−ip·x b†(~p, s)

]
=
∑
s

∫
d3p

(2π)3/2

[
(γa ∂a +m)u(~p, s) eip·x a(~p, s)

+ (γa ∂a +m)v(~p, s) e−ip·x b†(~p, s)
]

=
∑
s

∫
d3p

(2π)3/2

[
(iγa pa +m)u(~p, s) eip·x a(~p, s)

+ (−iγa pa +m)v(~p, s) e−ip·x b†(~p, s)
]

= 0.

(261)
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SW shows that under complex conjugation

u∗(p, s) = − βCv(p, s) and u∗(p, s) = − βCu(p, s). (262)

So for a Dirac field to survive charge conjugation, the particle-antiparticle phases must be
related

ξb = ξ∗a. (263)

Then under charge conjugation a Dirac field goes as

Cψ(x)C−1 = − ξ∗ βC ψ∗(x). (264)

If a Dirac particle is the same as its antiparticle, then ξ must be real (and η imaginary),
ξ = ±1, and must satisfy the reality condition

ψ(x) = − β C ψ∗(x). (265)

Suppose a particle and its antiparticle form a bound state

|Φ〉 =
∑
ss′

∫
d3p d3p′χ(p, s; p′, s′) a†(p, s) b†(p′s′) |0〉. (266)

Under charge conjugation

C |Φ〉 = ξaξb
∑
ss′

∫
d3p d3p′χ(p, s; p′, s′) b†(p, s) a†(p′s′) |0〉

= − ξaξb
∑
ss′

∫
d3p d3p′χ(p, s; p′, s′) a†(p′s′) b†(p, s) |0〉

= − ξaξb
∑
ss′

∫
d3p d3p′χ(p′, s′; p, s) a†(p, s) b†(p′, s′) |0〉

= − ξaξb |Φ〉 = −ξaξ∗a |Φ〉 = −|Φ〉.

(267)

The intrinsic charge-conjugation parity of a bound state of a particle and its antiparticle
is odd.
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