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Electrodynamics

The original approach to quantum electrodynamics was to take for granted
Maxwell’s classical theory of electromagnetism, and quantize it. It will
probably not surprise the reader that this book will follow a different path.
We shall first infer the need for a principle of gauge invariance from the
peculiar difficulties that arise in formulating a quantum theory of massless
particles with spin, and then deduce the main features of electrodynamics
from the gauge invariance principle. After that we shall follow a more
conventional modern approach, in which one takes gauge invariance as
the starting point and uses it to deduce the existence of a vector potential
describing massless particles of unit spin.

It is too soon to tell which of these two alternatives corresponds to
the logical order of nature. Most theorists have tended to take gauge
invariance as a starting point, but in modern string theories’ the argument
runs the other way; one first notices a state of mass zero and unit spin
among the normal modes of a string, and then from that deduces the
gauge invariance of the effective field theory that describes such particles.
At any rate, as we shall see, using either approach one is led to the
quantized version of Maxwell’s theory, still the paradigmatic example of
a successful quantum field theory.

8.1 Gauge Invariance

Let’s start by recalling the problems encountered in constructing covariant
free fields for a massless particle of helicity +1. We saw in Section 5.9
that there is no difficulty in constructing an antisymmetric tensor free
field f,.(x)} for such particles. This field can be expressed in terms of the
four-potential a,(x), given by Eq. (5.9.23), through the familiar relation

F(x} = 8y ay(x) — dvaplx) . (8.1.1)

However, Eq. (5.9.23) shows that the a,(x) transforms as a four-vector
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340 8 Electrodynamics

only up to a gauge transformation
Uo(A)au(x) U (A) = A an(Ax) 4 3,0(x, A) . (8.1.2)

There is, in fact, no way to construct a true four-vector as a linear
combination of the creation and annihilation operators for helicity +1.
This is one way of understanding the presence of singularities at m = 0 in
the propagator of a massive vector field

oy Mty m?
BunGey) = ) [ty oot T R OB IE
which prevent us from dealing with massless particles of helicity +1 by
simply passing to the limit m — O of the theory of a massive particle of
spin one.

We could avoid these problems by demanding that all interactions
involve only™ Fj,(x) = 0,4,(x) — 8,A,(x) and its derivatives, not A,(x),
but this is not the most general possibility, and not the one realized
in nature. Instead of banishing 4,(x} from the action, we shall require
instead that the part of the action Iy for matter and its interaction with
radiation be invariant under the general gauge transformation

Ap(x) — Au(x) + dpe(x) (8.1.3)

(at least when the matter fields satisfy the field equations) so that the extra
term in Eq. (8.1.2) should have no effect. The change in the matter action
under the transformations (8.1.3) may be written

18y,
oy = é . 8.14
= [t et 8.14)
Hence the Lorentz invariance of Iy requires that
Ol pg
—— = 8.1.
M8 Ax) (8:.1.9)

This is trivially true if Ips involves only Fj,(x) and its derivatives, along
with matter fields. In this case

Ofm . Olnp

SAx) T SF,(x)°
But if Iy involves A,(x) itself then Eq. (8.1.5} is a non-trivial constraint
on the theory.
Now, what sort of theory will provide conserved currents to which we
can couple the field 4#(x)? We saw in Section 7.3 that infinitesimal internal

* We now use Ay and ¥y, for the electromagnelic potential vector and the field strength tensor
because these are interacting fields.
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symmetries of the action imply the existence of conserved currents. In
particular, if the transformation®”

SW (x) = ie(x) g, ¥ (x) (8.1.6)

leaves the matter action invariant for a constant e, then for general
infinitesimal functions €(x) the change in the matter action must take the
form

SIhy = — / dx JH(x)o e(x) . 8.1.7)

When the matter fields satisfy their field equations, the matter action is
stationary with respect to any variation of the ¥y, so in this case (8.1.7)
must vanish, and hence

0,0 =0 (8.1.8)

In particular, we saw in Section 7.3 that if I is the integral of a function
L of W and 8,¥, then the conserved current is given byt

. 8L v y
J L E :
J t B &, Y?) ¥

and this generates the transformations (8.1.6} in the sense that
[0, ¥/ (x)] = —a, ¥/ (x), (8.1.9)

where Q is the time-independent charge operator

0= / dxJo. (8.1.10)

We can therefore construct a Lorentz-invariant theory by coupling the
vector field 4, to the conserved current J#, in the sense that 01u /04 ,(x)
is taken to be proportional to J¥(x). Any constant of proportionality may
be absorbed into the definition of the overall scale of the charges g,, so
we may simply set these quantities equal:

3 pm
dA,(x)

The conservation of electric charge only allows us to fix the values of all
charges in terms of the value of any one of them, conventionally taken to

= J*(x}. (8.1.11)

** Because the field transformation malrix is taken now to be diagenal it is not convenient here to
.use the summation convention for sums over field indices, so there is no sum over £ in Eq. (8.1.6).

 Here ¥¢ is understoed to run over all independent fields other than A#*. We use a capital psi o
indicate that these are Heisenberg-picture fields, whose time-dependence includes the effects of
interactions. Of course, this ¥ is not to be confused with a state-vector or wave function.
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be the electron charge, denoted —e. It is Eq. (8.1.11) that gives a definite
meaningi to the value of e,

The requirement (8.1.11) may be restated as a principle of invariance:1¢
the matter action is invariant under the joint transformations

O Au(x) = Cue(x) (8.1.12)
& W, (x) = ie(x)g, ¥r(x) . (8.1.13)

A symmetry of this type with an arbitrary function e(x) is called a local
symmetry, or a gauge invariance of the second kind. A symmetry under
a transformation with e constant is called a global symmetry, or a gauge
invariance of the first kind. Several exact local symmetries are now known,
but the only purely global symmetries appear to be accidents enforced by
other principles. (See Section 12.5.)

We have not yet said anything about the action for photons themselves.
As a guess, we can take this to be the same as for massive vector fields,
but with m = 0:

i

I=—} / d*x Fiu P (8.1.14)

This is the same as the action used in classical electrodynamics, but its
real justification is that it is (up to a constant) the unique gauge-invariant
functional that is quadratic in F,,, without higher derivatives. Also, as
we will see in the next section, it leads to a consistent quantum theory.
If there are any terms in the action of with higher derivatives and/or
of higher order in F,, they can be lumped into what we have called
the matter action. Using Egs. (8.1.11) and (8.1.14), the field equation for
electromagnetism now reads

9
(SAV

We recognize these as the usual inhomogeneous Maxwell equations, with

current J*. There are also other, homogeneous, Maxwell equations

0= 0,Fye + 8cFp + 8 Fep (8.1.16)

0 [Ly + Ip) = 8, F™ + J° . (8.1.15)

which follow directly from the definition F w = Opdy — 0y A,

In the above discussion, we have started with the existence of massless
spin one particles, and have been led to infer the invariance of the matter
actton under a local gauge transformation (8.1.12), (8.1.13). As usually
presented, the derivation runs in the opposite direction. That is, one starts

+ of course, Eq. (8.1.11) fixes the definition of ¢ only after we have defined how we are normalizing
Ay(x). The question of electromagnetic field normalization is taken up in Section 10.4.
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with a global internal symmetry

OV (x) =ieq" ¥ (x) (8.1.17)
and asks what must be done to promote this to a local symmetry
W/ (x) = ie(x)q ¥ (x). (8.1.18)

If the Lagrange density . depended only on fields ¥/(x) and not on
their derivatives then it would make no difference whether e is constant
or not; invariance with ¢ constant would imply mvariance with ¢ a
function of spacetime position. But all realistic Lagrangians do involve
field derivatives, and here we have the problem that derivatives of fields
transform differently from fields themselves:

8 8, ¥ (x) = i €(x)qr@, P/ (x) + i gV (x)3ue(x) . (8.1.19)

In order to cancel the second term here, we ‘invent” a vector field A,(x)
with transformation rule

SAL(x) = 8,e(x) (8.1.20)

and require that the Lagrangian density depend on &,/ and A, only in
the combination

DY = 0,9 —igeA, ¥, (8.1.21)
which transforms just like ¥/
8 D (x) = ie(x)geD, ¥ (x) . (8.1.22)

A matter Lagrangian density ¥ (¥, D¥) that is formed only out of ¥/
and D,,‘P‘ will be invariant under the transformations (8.1.18), (8.1.20),
with e(x) an arbitrary function, if it is invariant with € a constant. With
the Lagrangian of this form, we have

o p 6,?,9,\4 £ qu ¢

= = W)=~ "

3A, ; oD, w7 4 ‘Z FER 2

which 1s the same as Eq. (8.1.11). (We could also include Fj, and its
derivatives in %) From this point of view, the masslessness of the
particles described by A, is a consequence of gauge invariance rather
than an assumption: a term —%mZA#Alu in the Lagrangian density would
violate gauge invariance.

8.2 Constraints and Gauge Conditions

There are aspects of electrodynamics that stand in the way of quantizing
the theory as we did for various theories of massive particles in the
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previous chapter, As usual, we may define the canonical conjugates to the
electromagnetic vector potential by
0L
HNBoAu)
Quantization by the usual rules would give
[Au(x, ), TU(y,1)] = i8,8°(x —y) .

But this is not possible here, because 4, and II" are subject to several
constraints.

The first constraint arises from the fact that the Lagrangian density is
independent® of the time-derivative of Ap, and therefore

1%x) =0. (8.2.2)

This is called a primary constraint, because it follows directly from the
structure of the Lagrangian. There is also a secondary constraint here,
which follows from the field equation for the quantity fixed by the primary
constraint:**

16 (8.2.1)

P o 0¥

W= =0 ope = ody

the time-derivative term dropping out because Fpo = 0. Even though
the matter Lagrangian may generally depend on A®, the charge density
depends only on the canonical matter fieldsT Q" and their canonical

conjugates P,:

~J°, (8.2.3)

: 0% :
JO = —;; Wq,\w’ = --1; P.g.Q" . (8.2.4)
Hence Eq. (8.2.3) is a functional relation among canonical variables.
Both Eq. (8.2.2) and Eq. (8.2.3) are inconsistent with the usual as-
sumptions that [A,(x,1),IT°(y,t)] = i6}3°(x —y) and [Q"(x,t),[T"(y,t)] =
[Pulx, 1), [T*(y, )] = 0.

We encountered a similar problem in the theory of the massive vector
field. In that case we found two equivalent ways of dealing with it:
either by the method of Dirac brackets or, more directly, by treating only

* For %y = —Fu, F#* /4, we have 6.2, /{8y d,) = —F% which vanishes for yt = 0 because F** is
antisymmetric. For malter Lagrangians % that involve only W and D,“l“, the prescription
(8.1.21} tells us that ¥y does not depend on any derivatives of any 4. Even if the matter
Lagrangian depends also on Fpy, 8.%3/8(d.4,) will be again antisymmetric in g and v, and
therefore will vanish for y=v =0.

** As usual, i, §, etc. ran over the values 1,2,3.

T Due to exhaustion of alphabetic resources, I have had to adopt a notation here that is different
from that of the previous chapter. The symbols Q" and P, are now reserved for the canonical
matter fields and their canonical conjugales, respectively, while the canonical eleciromagnetic
fields and canonical conjugates are 4; and IT;.
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A; and TI' as canonical variables, solving the analog of Eq. (8.2.3) to
calculate 4° in terms of these variables. It is clear that here we cannot
use Dirac brackets: the constraint functions z here are 1° and &IT; — J°
(as compared with 3,JT; — m*A° — J°) and these obviously have vanishing
Poisson brackets. In Dirac’s terminology, the constraints (8.2.2) and (8.2.3)
are first class. Nor can we eliminate A® as a dynamical variable by solving
for it in terms of the other variables. Instead of giving A° for all time,
Eq. (8.2.3) is a mere initial condition; if Eq. (8.2.3) is satisfied at one time,
then it is satisfied for all times, because (using the field equations for the
other fields AY), we have

o 0 Y .
O O = _ppn - 6
% [a‘ dFio ’ ] i 0Fq; o0J
0
= + 8,63 FF; - ai.]f - 60‘;0
and the current conservation condition then gives
0¥
—— —J° =0. 25
% [6, dFio ] 0 (8.25)

it should not be surprising that we still have four components of A#
with only three field equations, because this theory has a local gauge
symmetry that makes it, in principle, impossible to infer the values of the
fields at arbitrary times from their values and rates of change at any one
time. Given any solution A,(x,t) of the field equations, we can always
find another solution A,(x,t) + &,€(X, t) with the same value and time-
derivative at t = 0 (by choosing € so that its first and second derivatives
vanish there) but which differs from A4,(x,t) at later times.

Because of this partial arbitrariness of 4,(x,1), it is not possible to apply
the canonical quantization procedure directly to A4 (or, as for finite mass,
to A). Of the various approaches to this difficulty, two are particularly
useful. One is the modern method of gauge-invariant quantization, to
be discussed in Volume II. The other, which will be followed here, is to
exploit the gauge invariance of the theory, to ‘choose a gauge’. That is,
we make a finite gauge transformation

Ap(x) = Ap(x) + 8,2%) 5 ¥,(x}) — exp (iqg).(x)) W (x)

to impose a condition on Au(x) that will allow us to apply the methods
of canonical quantization. There are various gauges that have been found
useful in various applications:

¥ Here ® is any complex scalar ficld with g # 0; this gauge condition is used when the gauge
symmetry is spontaneously broken by a non-vanishing vacoum expectation value of @.



346 8 Electrodynamics

Lorentz {or Landau) gauge: 4§,4* =0
Coulomb gauge: V-A=0
Temporal gauge: A =90
Axial gauge: A3=0
Unitarity gauge: O real

The canonical quantization procedure works most easily in the axial or
Coulomb gauge, but of course Coulomb gauge keeps manifest rotation
invariance in a way that axial gauge does not, so we will adopt Coulomb
gauge here.”

To check that this is possible, note that if 4% does not satisfy the
Coulomb gauge condition, then the gauge-transformed field A* 4 ¢#4 will,

provided we choose 4 so that V24 = —V - A. From now on, we assume
that this transformation has been made, so that
V-A=0. (8.2.6)

It will be convenient henceforth to limit ourselves to theories in which
the matter Lagrangian %5 may depend on matter fields and their time-
derivatives and also on A* but not on derivatives of A*. (The standard
theories of the electrodynamics of scalar and Dirac fields have Lagrangians
of this type.) Then the only term in the Lagrangian that depends on F,
is the kinematic term —-Fw F**, and the constraint equation (8.2.3) reads

— {FO =Jv, (8.2.7)
Together with the Coulomb gauge condition (8.2.6), this yields
—V2A' =7, (8.2.8)
which can be solved to give
0 i Sy
t) d'y 8.2.
A1) / 4n|x -yl (8:29)

The remaining degrees of freedom are A, with i = 1,2,3, subject to the
gauge condition V- A = 0.

As mentioned earlier, the charge density depends only on the canonical
matter fields 0” and their canonical conjugates Py, so Eq. (8.2.9) represents
an explicit solution for the auxiliary field 4°.

8.3 Quantization in Coulomb Gauge
There is still an impediment to the canonical quantization of electrody-

namics in the Coulomb gauge. Even after we use Eq. (8.2.9) to eliminate
A° (and ITy) from the list of canonical variables, we cannot apply the usual
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canonical commutation relations to A’ and IT;, because there are two re-
maining -constraints on these variables." One of them is the Coulomb
gauge condition

yix = 6 A(x) =0. (8.3.1)
The other is the secondary constraint Eq. (8.2.3), which requires that
rax = GIT(x) + J2(x) = 0. (8.3.2)

Neither constraint is consistent with the usual commutation relations
[4i(x),TL;(y)] = i;;6°(x — y), because operating on the right-hand side
with either ¢/éx' or ¢/8y/ does not give zero.

These constraints are of a type known as second class, for which there
is a universal prescription for the commutation relations, discussed in
Section 7.6. Note that the constraint functions have the Poisson brackets

Cixay = —Coy1x = [11x 129lp = —V264(x —y),
Clx,ly = [le:X]y]P =0, (8.3.3)
CZx.zy = [12x, XZ)‘]P =0,
where here, for any functionals U and V,
UV oV U
U Vip= | d [ . S .
[U. V]e / x SAH(x) 8T1i(x)  SAH(X) ST «(x)

The ‘matrix’ Cyys is non-singular, which identifies these as second class
constraints. Also, the field variables A’ may be expressed in terms of
independent canonical variables, which may, for instance, be taken as
Oix = AYX), Qs = A%(x), with 4° given by the solution of Eq. (8.3.1):

X"
Adx)=— / ds[&1 A (x", X2, 5) + &24°%(x!, X, )]

Using Eq. (8.3.2), the canonical conjugates I1; to A' may likewise be
expressed in terms of the canonical conjugates Py; and Py to Q1x and
Q2x. In such cases, Part B of the Appendix to the previous chapter
tells us that if the independent variables @y, Q. Pix, and Py satisfy
the usual canonical commutation relations, then the commutators of the
constrained variables and their canonical conjugates are given (aside from
a factor i) by the corresponding Dirac brackets (7.6.20). This prescription
has the great advantage that we do not have to do use explicit expressions
for the dependent variables in terms of the independent ones.

* In this section i, j, etc. run over the values 1,2.3. We continue the practice of taking all operators
at the same time, and omitting the time argument.
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To calculate the Dirac brackets, we note that the matrix C has the
inverse
d*k ek 1
2r} k¥ dnjx—y|’
(8.3.4)

(C“])IX,Zy = "‘(C_l)Zy,lx = -

(C_l)lx,ly = (C_l)Qx,zy =0.

Also, the non-vanishing Poisson brackets of the 4’ and II; with the
constraint functions are

. c .
[4'(x), xiylp = —'g;o}(x -y)
and
¢ 3
[TLi(x), x2y]p = +@5 (x—y).

Hence according to Eqs. (7.6.19) and (7.6.20), the equal-time commutators
are

(AT = 50%x = ) + i ( 1 ).

Ox/oxt \4r|x —y|
4y, 47(y)] = [Ix), ()] = 0.

Note that these are consistent with the Coulomb gauge conditions (8.3.1)
and (8.3.2), as is guaranteed by the general properties of the Dirac bracket.

Now, what is IT in electrodynamics? For the class of theories discussed
in the previous section where only the kinematic term —~% I dBxF w FE N
the Lagrangian depends on A, varying the Lagrangian with respect to A
without worrying about the constraint V- A = 0 gives

L
CSANx)
But with A constrained by the condition V- A = 0, variational derivatives
with respect to A are not really well defined. If the variation of L under a
change 0A in A is L = [ d®x # - A, then since V- A = 0, we also have
SL = [d®x [# + V.#] A for any scalar function #(x). Thus all we can
conclude from inspection of the Lagrangian is that IT equals A(x)+VA%(x)
plus the gradient of some scalar. This ambiguity is removed by condition
(8.3.2), which requires that V- IT = —J° = V2 4% Because V- A = 0, we
conclude that Eq. (8.3.6) does indeed give the correct formula for TT'.

Although the commutation relations (8.3.5) are reasonably simple, we
must face the complication that IT does not commute with matter fields
and their canonical conjugates. If F is any functional of these matter
degrees of freedom, then its Dirac bracket with A vanishes, but its Dirac

(8.3.5)

i

A(x) + %Ao(x) . (8.3.6)
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bracket with I is

[F.TIz)]p = / Px &y [F. nlp =y Tl

= —/d3xd3y [F,J”(x)]p Vo y —z)

1
47|x — y|
= [ &y F A8 -2
= [F,vA°@)p = [F,VA°@)p .

In order to facilitate the transition to the interaction picture, instead of
expressing the Hamiltonian in terms of A and I1, we shall write it in terms
of A and II |, where Il is the solenoidal part of II:

I, =N-v4°=A, (8.3.7)

for which [F,I1,(z)] vanishes. By using the facts that Il (x) commutes
with I1(y) — [T, (y) = VA%y) and that 5;4°(x) commutes with 3;4%(y), it
1s easy to see that Il (x) satisfies the same commutation relations (8.3.5)
as I(x), and also the simple constraint

V-, =0. (8.3.8)

Now we need to construct a Hamiltonian, According to the general
results of the Appendix to Chapter 7, we can apply the usual relation
between the Hamiltonian and Lagrangian using the constrained variables
A and I, without first having explicitly to write the Hamiltonian in
terms of the unconstrained Qs and Ps. In electrodynamics, this gives

H = / Px [ A + Pt~ 2] (8.3.9)

where, as mentioned earlier, 0" and P, are to be understood as the matter
canonical fields and their canonical conjugates. (We can use II in place
of IT in Eq. (8.3.9) because V- A =0.)

To be specific, consider a theory with a Lagrangian density of the form
¥ =- %F‘quw + J}A A* + Prater » (8.3.10)

where J, is a current that does not involve A*, and Puager is the La-
grangian for whatever other fields do appear in J¥, aside from their
electromagnetic interactions, which are given explicitly by the term J,A4*
in Bq. (8.3.10). (The electrodynamics of spin 3 I particles has a Lagrangian
of this form, but the electrodynamics of splnless particles is more compli-
cated.) Replacing A everywhere with II, this gives a Hamiltonian (8.3.9)
of the form

H=/d3x [H2¢+ HV x A)® - ;(HL+VA°)2—J-A+J°A°} + Hu,
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where Hy is the Hamiltonian for matter fields, excluding their electro-
magnetic interactions

HM = /d3x (PnQ" - f-([rnalter) .
Using the solution (8.2.9) for A%, this is
H=/}%[gﬁ+gwaf—wA+%ﬂAﬂ+HM. (8.3.11)

The term %JOAO may look peculiar, but this is nothing but the familiar
Coulomb energy

Veou = %/d3x JO 4°
JOx)J O(y)
1 3 X
Zfd /d oo (83.12)

The reader can verity, using the commutation relations (8.3.5), that the rate
of change of any operator function F of A and IT is given by iF = [F, H],
as it should be.

8.4 Electrodynamics in the Interaction Picture

We now break up the Hamiltonian (8.3.11) into a free-particle term Hy
and an interaction V

H=Hy + V, (8.4.1)
Hy = /d3x <+ %(V X A}2 + Hpatter0 » (8.4.2)
_ / Bx I A+ Vot + Vinater (8.43)

where Hmauer.0 and Vipauer are the free-particle and interaction terms
in Hpaper, and Vegy 18 the Coulomb interaction (8.3.12). The total
Hamiltonian (8.4.1) is time-independent, so Eqs. (8.4.2) and (8.4.3) can
be evaluated at any time we like (as long as both are evaluated at the
same time), in particular at ¢ = 0. As in Chapter 7, the transition to the
interaction picture is made by applying the similarity transformation

V(t) = exp(iHOt} V[A » nJ_ s Qa P]t=0 exp(_lHOt)
=V [a(t), n(2), (1), p(1)] , (8.4.4)

where P here denotes the canonical conjugates to the matter fields @, and
any operator o(X,t} in the interaction picture is related to its value O(x,0)
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in the Heisenberg picture at t = 0 by
o(x,t) = exp(iHot) O(x,0) exp(—iHyt), (8.4.5)
so that
i o(x,t) = [o(x,1), Hp] . (8.4.6)

(We are dropping the subscript L on #(x).} Since Eq. (8.4.5) is a similarity
transformation, the equal-time commutation relations are the same as s
the Heisenberg picture:

. . . ~2 1
[ar(x,:), 7'y, t)_ =i [51153()( —y)+ axox dnx —yl |’ (8.4.7)
[@x,0),al(y, 0] =0, (8.4.8)
[7i(x,0,2/(y,0)] =0, (8.4.9)

and likewise for the matter fields and their conjugates. For the same
reason, the constraints (8.2.6) and (8.3.8) still apply

V-a=0, (8.4.10)

Von=0. (8.4.11)

To establish the relation between n and a, we must use Eq. (8.4.6) to
evaluate a:

iai(x, t) = [ai(x, 1), Ho)

N2
= i/d3y [5;}53()(—}')4- 1

4
-

— v, t).
ox'ax) 4m|x —y| i)

We can replace 8/éx/ in the second term with —2/{y/, integrate by parts,
and use Eq. (8.4.11), yielding

A=n (8.4.12)

just as in the Heisenberg picture. The field equation is likewise determined
by

ifri(x, t) = [mi(x, t), Ho]
— —i/d3y [5;-;‘53(""3’) +
X (V x V xa(y,t}); »

which (using Eqgs. (8.4.10) and (8.4.12)) just yields the usual wave equation
Oa=0. (8.4.13)

i 1
xiax/ dn|x — i
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Since A% is not an independent Heisenberg-picture field variable, but rather
a functional (8.2.9) of the matter fields and their canonical conjugates
that vanishes in the limit of zero charges, we do not introduce any
corresponding operator a” in the interaction picture, but rather take

a=0. (8.4.14)

The most general real solution of Eqs. (8.4.10), (8.4.13), and (8.4.14)
may be written

ny 2 / 3 [ h.0) alp.o) +e P (p,0) a' )],
(8.4.15)
where p* = |p|; e#(p.o) are any two independent ‘polarization vectors’
satisfying
p- ep,o)=0, (8.4.16)
e(p,6) =0, (8.4.17)
and a(p, g} are a pair of operator coeflicients, with ¢ a two-valued index.

By adjusting the normalization of a(p, o), we can normalize the ¢*(p, o) so
that the completeness relation reads

Y ép.a)el(p.o)" = &; — pi pj/Ipl* . (8.4.18)
[+
For instance, we could take the e(p,#) to be the same polarization vectors
that we encountered in Section 5.9:
/42

St =RM) | T2 (8:4.19)
0

where R(p) is a standard rotation that carries the three-axis into the
direction of p. Using Eqgs. (8.4.18) and (8.4.12), we can easily see that the
commutation relations (8.4.7)-(8.4.9) are satisfied if (and in fact only if)
the operator coefficients in Eq. (8.4.15) satisfy

|a(p,0), a'(p',0")| =8B —p") S0, (8.4.20)
[a(p, o), a(p’,0')] =0. (8.4.21)

As remarked before for massive particles, this result should be regarded
not so much as an alternative derivation of Egs. (8.4.20) and (8.4.21), but
rather as a verification that Eq. (8.4.2) gives the correct Hamiltonian for
free massless particles of helicity +1. In the same spirit one can also
use Eqgs. (8.4.12) and (8.4.15) in Eq. (8.4.2) to calculate the free-photon
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Hamiltonian
Ho = ] &p) 3 [a(p,o), aT(p,JL
= [@p X0 (polano) + 1°0-P) (8422

which (aside from an inconsequential infinite c-number term) is just what
we should expect.

Finally, we record that the interaction (8.4.4) in the interaction picture
is

Vi) =— / B3 %) A%, + Veou() + Vaaarlt),  (8423)
where in terms of the current J in the Heisenberg picture
Julx,t) = exp(iHot) J,(x,0)exp(—iHot) , (8.4.24)
while Vioul(t) 1s the Coulomb term

Veou(t) = exp(iHot) Vieoul exp(—iHot)

0
[ Bx iy L i’;;)]_(ii) (8.4.25)

and Viparier(t) is the non-electromagnetic part of the matter field interaction
in the interaction picture:

Vmattcr{t) = CXP(fHOf) Vmatter GXP(—fHot) - (8426)

We have written j,a" instead of j-a in Eq. (8.4.23), but these are equal
because a* has been defined to have a° = 0.

8.5 The Photon Propagator

The general Feynman rules described in Chapter 6 dictate that an in-
ternal photon line in a Feynman diagram contributes a factor to the
corresponding term in the S-matrix, given by the propagator:

— iAp(x — y) = (Byac, T {au(x), a,(y)} Bvac) , (8.5.1)
where T as usual denotes a time-ordered product. Inserting our formula
(8.4.15) for the electromagnetic potential then yields

& in(y
i =) = [ b P [P0 = y) 4+ P60y ]
(8.5.2)
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where
Pu(p) = Z eu(p, o) ev(p, o) (8.5.3)

o=+1
and p* in the exponentials is taken with p® = |pl. We recall from
Egs. (8.4.18) and (8.4.17) that
.
Pi;(p) = dij — %’5{ ,

Poi(p) = Pio(p) = Poo(p) =0.

As we saw in Chapter 6, the theta functions in Eq. (8.5.2) may be expressed
as integrals over an independent time-component ¢° of an off-shell four-
momentum ¢*, so that Eq. (8.5.2) may be rewritten

Apl(x —y) = (2m)™* f dq M @y} (8.5.5)

g —ie

(8.5.4)

Thus in using the Feynman rules in momentum space, the contribution
of an internal photon line carrying four-momentum g that runs between
vertices where the photon is created and destroyed by fields ¢* and a' is

—i P;u—'(q}
(2rY g2 —ie
It will be very useful (though apparently perverse) to rewrite Eq. (8.5.4)

(8.5.6)

as

N qune + °qun, — quqy + g nun,
lq)?

where n* = (0,0,0,1) is a fixed time-like vector, ¢° as usual is q* — (¢°)?,
but ¢° is here entirely arbitrary. We shall choose ¢° in Eq. (8.5.7) to be
given by four-momentum conservation: it is the difference of the matter
p°s flowing in and out of the vertex where the photon line is created.
The terms proportional to g, and/or g, then do not contribute to the
S-matrix, because the factors ¢, or g, act like derivatives 8, and d,,
and the photon fields a, and a, are coupled to currents j* and j* that
satisfy the conservation condition ¢, = 0. The term proportional to
nun, contains a factor ¢ that cancels the g° in the denominator of the
propagator, yielding a term that is the same as would be produced by a
term in the action:

_% | / #x / &y (=P [=i2 ()]

P,uv(q) = Ruy » (8.5.7)

~i [

e @

* This argument as given here is little hetler than hand-waving. The result has been justified
by a detailed analysis of Feynman diagrams,’ but the casicst way to treal this problem is by
path-integral methods, as discussed in Section 9.6.
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The integral over ¢ here yields a delta function in time, so this is
equivalent to a correction to the interaction Hamiltonian V{(t), of the

form
“*—/d3 / J (X t) {y.,t}
T 4mx—-y|
This is just right to cancel the Coulomb interaction (8.4.25). Our result

is that the photon propagator can be taken effectively as the covariant
quantity

Afg(x - }’) = (27{)_4 /ddq ﬁeiq.(x_‘v) (858)

with the Coulomb interaction dropped from now on. We see that the
apparent violation of Lorentz invariance in the instantaneous Coulomb
interaction is cancelled by another apparent violation of Lorentz invari-
ance, that as noted in Section 5.9 the fields ¢*(x) are not four-vectors,
and therefore have a non-covariant propagator. From a practical point of
view, the important point is that in the momentum space Feynman rules,
the contribution of an internal photon line is simply given by

=i M
_(27{}4 prp— (8.5.9}

and the Coulomb interaction is dropped.

8.6 Feynman Rules for Spinor Electrodynamics

We are now in a position to state the Feynman rules for calculating the
S-matrix in quantum electrodynamics. For definiteness, we will consider
the electrodynamics of a single species of spin % particles of charge g = —e¢
and mass m. We will call these fermions electrons, but the same formalism
applies to muons and other such particles. The simplest gauge- and
Lorentz-invariant Lagrangian for this theory is®

1, -
,9,":-—1 FuFB — @ ([0, +ied] +m) Y. (8.6.1)
The electric current four-vector is then simply
Jt = f"? = —iePy*Y . (8.6.2)
Ay

" In Chapter 12 we will discuss reasons why more complicated terms are excluded from the
Lagrangian densily.



