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That is, we can always define the scale of the gauge fields (now dropping
the tildes) so that g, in Eq. (15.2.5) is unity:

gap = Oup , (15.2.9)

but then the transformation matrices z, and the structure constants C,g,
contain an unknown multiplicative factor g, for each simple or U(l1)
subalgebra. These factors are the coupling constants of the gauge theory.
Alternatively, it is sometimes more convenient to adopt some fixed though
arbitrary normalization for the t, and structure constants within each
simple or U(1) subalgebra, in which case the coupling constants appear
in the gauge-field Lagrangian (15.2.3) as the factors g,,* in Eq. (15.2.5).

15.3 Field Equations and Conservation Laws

Using Eq. (15.2.9) for the matrix gyg in Eq. (15.2.3), the full Lagrangian
density 1s

L == Py )" + Ly, Dyy) (15.3.1)

where in the absence of gauge fields £ p(y,2,p) would be the ‘matter’
Lagrangian density. We could, in principle, include a dependence of %y,
on Fy,, as well as higher covariant derivatives D, Dy, D; F,,, etc, but
we exclude these non-renormalizable terms here for the same reason as in
electrodynamics: as discussed in Section 12.3, such terms would be highly
suppressed at ordinary energies by negative powers of some very large
mass. For this reason the standard model of the weak, electromagnetic
and strong interactions has a Lagrangian of the general form (15.3.1).
The equations of motion of the gauge field are here

1’4
Sy~ =
= —F,""CyupAp, — i g;’_;:: tay
and so
0 F " = =44, (15.3.2)
where #," is the current:
0L m

Iy =—F,"MCyopAg, —i (153.3)

“_‘_%ta .
oD,y v

The current _#," 1s conserved in the ordinary sense

hFs =0, (15.3.4)
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as can be seen either from the Euler-Lagrange equations for y and
the invariance equivalent (15.2.2) or, more easily, directly from the field
equations (15.3.2).

The derivatives in Egs. (15.3.2) and (15.3.4) are ordinary derivatives,
not the gauge-covariant derivatives D,, so the gauge Invariance of these
equations 1s somewhat obscure. It can be made manifest by rewriting
Eq. (15.3.2) in terms of the gauge-covariant derivative of the field strength

DiF* = 0;F"™ — i(tg)uyAgaFy"

= 0 F," — Ca},ﬁAWFy#v . (15.3.5)
Then Eq. (15.3.2) reads
D”FIZ_LW = _Jav . (15.3.6)
where J,' is the current of the matter fields alone
v 0LMm
A laDvw Ly . (15.3.7)

This is gauge-covariant, if ¥ is gauge-invariant. Also, by operating on
Eq. (15.3.6) with D,, using the commutation relation

[Dv’Du]Fém = —i(tA*/)aﬂFvquﬁpg = _CvaﬁFvquﬂm ’
we see that J,” satisfies a gauge-covariant conservation law
D,J,S =0, (15.3.8)

rather than the ordinary conservation law (15.3.4) obeyed by the full
current _#,". Also, it is straightforward (using Eq. (15.1.5)) to derive the
identities:

D#Fm,l-i-Dv Foiv —l—D,{Fa#v =0, (15.3.9)

which hold whether or not the gauge fields satisfy the field equations.

These results serve to underscore the profound analogy mentioned in
Section 15.1 between non-Abelian gauge theories and general relativity.
In general relativity there is a matter energy-momentum tensor TV,
analogous to J#, which satisfies a generally covariant conservation law
T,y =0, and stands on the right-hand side of the Einstein field equations
in their generally covariant form, R, — %5" «R = —8nGT",. However,
T, is not conserved in the ordinary sense: 0, T", does not vanish. On
the other hand, moving the non-linear terms on the left-hand side of the
Einstein equation to the right-hand side gives a field equation®

(vat 1 SV#R) = —8nG1'y,
2 LINEAR
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where 7', is the non-tensor

o 1.
=Tyt o= (Rv#—_av.uR) ’
NONLINEAR

8nG 2
analogous to #,". Like #,”, t’, Is conserved in the ordinary sense
0,7 =0

and may be regarded as the current of energy and momentum:

P, = froud3x )

It contains a purely gravitational term, because gravitational fields carry
energy and momentum; without this term, 1, could not be conserved.
Similarly, ¢} contains a gauge-field term (the first term on the right
in Eq. (15.3.3)) because for non-Abelian groups (those with Cip # 0) the
gauge fields carry the quantum numbers with which they interact. Because
#,” is conserved in the ordinary sense, it can be regarded as the current
of these quantum numbers, with the symmetry generators given by the
time-independent quantities

T, = [ FPx . (153.10)

(Also, the homogeneous equations (15.3.9) involve covariant derivatives,
just as do the Bianchi identities of general relativity.) In contrast, none of
these complications arises in quantum electrodynamics, because photons
do not carry the quantum number, electric charge, with which they
Interact.

154 Quantization
We now proceed to quantize the gauge theories described in the previous
two sections. The Lagrangian density is taken in the form (15.3.1):
L =— 31 Focquoc#v'f'zM(tp:Duw)s (1541)
with
Fouy = a,uAav — Oy Agy + CozﬂyAﬁ,uAyv )
D,y = 0,9 —itaAdyuyp .

We cannot immediately quantize this theory by setting commutators equal
to i times the corresponding Poisson brackets. The problem is one of
constraints. In the terminology of Dirac, described in Section 7.6, there is
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a primary constraint that
0¥
= —— = 15.4.2
and a secondary constraint provided by the field equation for A?:

0¥ 0¥

O oA T oAm

= 0,F," 4+ F,°C,upAp, + J.°

= WIL* +TL¥Crapdpe + 1.2 =0,  (15.43)

where TIK = 0.9/0(00Awx) = FX0 is the ‘momentum’ conjugate to Ay,
with k running over the values 1,2,3. The Poisson brackets of I,y and
Ok TL*+T1,%C g A gk +J,° vanish (because the latter quantity is independent
of A,°), so these are first class constraints, which cannot be dealt with by
replacing Poisson brackets with Dirac brackets.

As in the case of electrodynamics, we deal with these constraints by
choosing a gauge. The Coulomb gauge adopted for electrodynamics would
lead to painful complications here,” so instead we will work in what is
known as axial gauge, based on the condition

Ay =0. (15.4.4)

The canonical variables of the gauge field are then A,;, with i now running
over the values 1 and 2, together with their canonical conjugates
My= 0% — CF% — gody — A + CupyAgoAyi (15.4.5)
oi = a(aOAai) o 0/Lai i1x0 afy/A50yi - Bt
The field A,9 1s not an independent canonical variable, but rather is
defined in terms of the other variables by the constraint (15.4.3). To see
this, note that the ‘electric’ field strengths F,"0 are

Faio = Hui» FO!3O = 63Aa0 ’ (1546)
so the constraint (15.4.3) reads
—(03)*A2 = 1Ly + T0,iCyupApi + J,° (154.7)

which can easily be solved (with reasonable boundary conditions) to give
A,0 as a functional of IL,; , Agi, and J,0 (We are using a summation

*In addition to purely algebraic complications, Coulomb gauge (like many other
gauges) has a problem known as the Gribov ambiguity:® even with the condition
that A, vanishes at spatial infinity, for cach solution of the Coulomb gauge condition
V- A, = 0 therc are other solutions that differ by finite gauge transformations. The
Gribov ambiguity will not bother us here, because we quantize in axial gauge where
it is absent, and we shall use other gauges like Lorentz gauge only to generate a
perturbation series.
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convention, with indices i, j, etc. summed over the values 1 and 2.) It

should be noted that the canonical conjugate to the matter field v, is
0¥ 0 m

¢ = = ]

d(oye)  0(Doyy)

so the time component of the matter current can be expressed in terms of

the canonical variables of the matter fields alone

0%m

0Dy,

T (15.4.8)

Jao = _i

(ta)em¥om = —i nelta)tmPm - (15.4.9)

Hence Eq. (15.4.7) defines 4,° at a given time as a functional of the
canonical variables IL,;, Ag;, 7, and yy, at the same time.

Now that we have identified the canonical variables in this gauge, we
can proceed to the construction of a Hamiltonian. The Hamiltonian
density is

H = 0o Ayi + me oy — &
= i (Faoi + 0idao — CapyApoAyi) + 0oy,
— 3 FouoiF0i + 3 FoijFaij + § FanFu
— L Fa3Fuo3 — L. (15.4.10)
Using Eqgs. (15.4.4) and (15.4.6), this is

H = H p + i 0i Ao — CotﬂyAﬂOAyi) + % I
+ % FaijFaij + 15 03A5i03A 4 — %63140(063140(0 > (15.4.11)

where ) is the matter Hamiltonian density:
Hp =100y — LM (15.4.12)

Following the general rules derived in Section 9.2, we can now use this
Hamiltonian density to calculate matrix elements as path integrals over
Ay, Iy, wy, and 7wy, with weighting factor exp(il ), where

[ = f &*x|TgfoAss + mr00p; — # + € terms] , (15.4.13)

in which the ‘e terms’ serve only to supply the correct imaginary infinites-
imal terms in propagator denominators. (See Section 9.2.) We note that
Egs. (15.4.7) and (15.4.9) give A9 as a functional of the canonical variables,
linear in I1,; and ny. Inspection of Eq. (15.4.11) shows then (assuming
¥y to be no more than quadratic in D,yp) that the integrand of the
complete action (15.4.13) is no more than quadratic in I1,; and 7,. We
could therefore carry out the path integral over these canonical ‘momenta’
by the usual rules of Gaussian integration. The trouble with this proce-
dure is that the coefficients of the terms in Eq. (15.4.13) of second order
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in II,; are functions of the A,;, so the Gaussian integral would yield an
awkward field-dependent determinant factor. Also, the whole formalism
at this point looks hopelessly non-Lorentz-invariant.

Instead of proceeding in this way, we will apply a trick like that used
in the path integral formulation of electrodynamics in Section 9.6. Note
that if for a moment we think of A,y as an independent variable, then
the action (15.4.13) is evidently quadratic in Ay, with the coefficient of
the second-order term A,o(x)Ago(y) equal to the field-independent kernel
(02)*6%x — y). As we saw in the appendix to Chapter 9, the integral
of such a Gaussian over A,o(x) is, up to a constant factor, equal to the
value of the integrand at the stationary ‘point’ of the argument of the
exponential. But the variational derivative of the action here is

ol oK
A A Jo® + 8Tl + Cpoy piAyi — 03 A4a0
so the stationary ‘point’ of the action is the solution of the constraint equa-

tion (15.4.7). Hence, instead of using for A,9 the solution of Eq. (15.4.7),
" we can just as well treat it as an independent variable of integration.

With A,, now regarded as an independent variable, the Hamiltonian
[ d*x# is evidently quadratic in I1,;, with the coefficient of the second-
order term Il;(x)IIg;(y) given by the field-independent kernel 15%(x —
y)d;;. Assuming that the same is true for the matter variable m;, we can
evaluate path integrals over 7y and Il,; up to a constant factor by simply
setting n, and Il at the stationary ‘points’ of the action corresponding
to Eq. (15.4.1):

ol 0 M
0= —=9¢ -
on, oype on, >
ol
0 = aOAzxi - Hai - aiAotO + Cab’yAﬁOAw‘ = Faoi — Iy .

R
Inserting these back into Eq. (15.4.13) gives
I = /d4x {YM‘*‘ ! Faoi Faoi
— 1 FujFuj— 103440345 + 1(03400)°
— f dx @ (15.4.14)
where % is the Lagrangian (15.3.1) with which we started! In other words,
we are to do path integrals over y,(x) and all four components of Ay(x),

with a manifestly covariant weighting factor exp(il ) given by Egs. (15.4.14)
and (15.3.1), but with the axial-gauge condition enforced by inserting a
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factor

I1 5(Aa3(x)) . (15.4.15)

As long as ¢4, 0p - -+ are gauge-invariant, we have

(T{0408 - }yacuum =« /{Hdw(x)] [H dAom(X)}
X

01X

X 040p - exp{il + € terms} [ ] 6 (4a(x)) , (15.4.16)
X,

with Lorentz- and gauge-invariant action I given by Eq. (15.4.14).

* % %

For future reference, we note that the volume element [], , . d4q,(x)
for the integration over gauge fields in (15.4.16) is gauge-invariant, in the
sense that

T 444 autx) = J] dAuuix), (15.4.17)

a,ﬂ,x a’#’x

where A «u(x) is the result of acting on A,,(x) with a gauge transformation
having transformation parameters Ay(x). It will be enough to show that
this is true for transformations near the identity, say with infinitesimal
transformation parameters A,(x). In this case,

so the volume elements are related by

[T 44; wu(x) = Det(4) T] dAuulx)

o, 0,x X
where A4 is the ‘matrix’:

0Apqu(X) <4 v (s
o/Vm,uwc,ﬁvy = H{i’iﬁ = 0 (X - ,V) 5;1 [Oaﬁ + Caﬂy'ly{x)] :

The determinant of 4" is unity to first order in 4, because the trace Cpy,
vanishes.

In this chapter we shall assume that the volume element [], , dyn(x)
for the integration over matter fields is also gauge-invariant. There are
important subtleties here, to which we shall return in Chapter 22, but
as shown there this assumption turns out to be valid in our present
non-Abelian gauge theories of strong and electroweak interactions.
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15.5 The De Witt—Faddeev—Popov Method

Our formula (15.4.16) for the path integral was derived in a gauge that is
convenient for canonical quantization, but the Feynman rules that would
be derived from this formula would hide the underlying rotational and
Lorentz invariance of the theory. In order to derive manifestly Lorentz-
invariant Feynman rules, we need to change the gauge.

We first note that Eq. (15.4.16) is (up to an unimportant constant factor)
a special case of a general class of functional integrals, of the form:

5= [H_ dcbn(X)] P B[f[9)] DetFg],  (1551)

where ¢,(x) are a set of gauge and matter fields; [], , d¢pn(x) is a volume
element; and ¥[¢] is a functional of the ¢,(x), satisfying the gauge-
invariance condition:

G1¢al [T depom(x) = 4[] [ [ dopn() , (15.5.2)
nx nx

where ¢1.(x) 1s the result of operating on ¢ with a gauge transformation
having parameters 4,(x). (Usually when this is satisfied both the functional
% and the volume element are separately invariant, but Eq. (15.5.2) is
all we need here.) Also, f,[¢;x] is a non-gauge-invariant ‘gauge-fixing
functional’ of these fields that also depends on x and «; B[f] is some
numerical functional defined for general functions f,(x) of x and «; and
Z 1s the ‘matrix’:
0falgpa;xI

64p(y) li=o
(In accordance with our usual notation for functionals of functions or
of functionals, B[f [d)” is understood to depend on the values taken by
fxlp;x] for all values of the undisplayed variables « and x, with the
displayed variable, the function ¢,(x), held fixed.) Eq. (15.5.1) does not
represent the widest possible generalization of Eq. (15.4.16); we will see
m Section 15.7 that there is a further generalization that is needed for
some purposes. We start here with Eq. (15.5.1) because it will help to
motivate the formalism of Section 15.7, and it is adequate for dealing with
non-Abelian gauge theories in the most convenient gauges.

We now must check that the path integral (15.4.16) is in fact a special
case of Eq. (15.5.1). In Eq. (15.4.16) the fields ¢,(x) consist of both 4,,(x)
and matter fields y/(x), and

faldw;x] = Aunlx), (15.5.4)
Bl = TI6(f0) (15.5.5)
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G[A,yp] = exp{il +eterms} O 05" , (15.5.6)
[T donx) = {Hdw(X)} {H dAéf(X)} : (15.5.7)
nx £x X 0.X

(We are now dropping the distinction between upper and lower indices
o B, -~} Comparison of Eq. (15.4.16) with Egs. (15.5.1)}15.5.3) shows
that these path integrals are indeed the same, aside from the factor
Det #[¢]. For the particular gauge-fixing functional (15.5.4), this factor
is field-independent: if A3(x) = 0, then the change in A3(x) under a gauge
transformation with parameters 1,(x) is

AL = 33 2(0) = [ &y 1al) 2394~ ).
so that here Eq. (15.5.3) is the field-independent ‘matrix’

F axpyld] = 04 036%(x — y) .

The determinant in Eq. (15.5.1) is therefore also field-independent in
this gauge. As discussed in Chapter 9, field-independent factors in the
functional integral affect only the vacuum-fluctuation part of expectation
values and S-matrix elements, and so are irrelevant to the calculation of
the connected parts of the S-matrix.

The point of recognizing the functional integral (15.4.16) for non-
Abelian gauge theories as a special case of the general path integral (15.5.1)
is that in this form we may freely change the gauge. Specifically, we have
a theorem, that the integral (15.5.1) is actually independent (within broad
limits) of the gauge-fixing functional f,[¢;x], and depends on the choice of
the functional B[f] only through an irrelevant constant factor.

Proof: Replace the integration variable ¢ everywhere in Eq. (15.5.1) with
a new integration variable ¢,, with A%*(x) any arbitrary (but fixed) set of
gauge transformation parameters:

s=] [H d¢,\n<x>] SloalB[flgal]Det Flgpal.  (1558)

(This step is a mathematical triviality, like changing an integral 2 f(x)dx
to read [*) f(y)dy, and does not yet make use of our assumptions regard-
ing gauge invariance.) Now use the assumed gauge invariance (15.5.2) of
the measure I1d¢ times the functional ¥[¢] to rewrite this as

5= [Hdcpn(x)] S191B[f[9a)] Det F[pa]. (15.59)

Since A%(x) was arbitrary, the left-hand side here cannot depend on it.
Integrating over A%*(x) with some suitable weight-functional p[A] (to be
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chosen below) thus gives

1 [H dA“(x)] plA1= [ {H dqsn(x)] GI4ICIH].  (15510)

where
cil= [ [H d/\“(x)] pIAIB[flgal [Det FIgal . (15.5.11)
Now, Eq. (15.5.3) gives

8fal(dpa)a;x]
gmx,ﬁy [¢A] = W 2=0 '

We are assuming that these transformations form a group; that is, we may
write the result of performing the gauge transformation with parameters
A%*(x) followed by the gauge transformation with parameters A%(x) as
the action of a single ‘product’ gauge transformation with parameters
A%(x; A, 2),

(15.5.12)

(PA)s = (}5/\(/\,,1) . (15.5.13)
Using the chain rule of partial (functional) differentiation, we have then
F a0 = [ Funoal 8 A5, [Nz (15.5.14)
where
Ofuldz:x] Ofalpa; x]
ozl Al = ——2 =t 15.5.15
Fouxyz (@, Al SANZ) A SAT(2) ( )
and
SAY(z;A, )
R [A] = ——7—— . 15.5.16
It follows that
Det #[pa] = Det #[¢.A] Det Z[A] . (15.5.17)

We note that Det #[¢, A] is nothing but the Jacobian of the transforma-
tion of integration variables from the A*(x) to (for a fixed ¢) the f,[da;x].
Hence, if we choose the weight-function p(A) as

p(A) =1 / Det #[A] (15.5.18)
then

Clgl = [ [H dA“(x)] Det #(¢,Al B|f[¢a]]

:/ ldea(x)] Blfl=cC, (15.5.19)
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which is clearly independent of ¢. (Eq. (15.5.18) may be recognized by
the reader as giving the invariant (Haar) measure on the space of group
parameters.) We have then at last

,_ CI{Tcddu(9)| %181
S| T dA*(x) | pIA]

This is clearly independent of our choice of f,[¢;x], which has been
reduced to a mere variable of integration, and it depends on B[f] only
through the constant C, as was to be proved.

Before proceeding with the applications of this theorem, we should
pause to not¢ a tricky point in the derivation. The integrals in the
numerator and denominator of Eq. (15.5.20) are both ill-defined for the
same reason. Since %[¢] is assumed to be gauge-invariant, its integral over
¢ cannot possibly converge; the integrand is constant along all ‘orbits,’
obtained by sending ¢ into ¢; with all possible A%(x). Likewise, the
integrand in the denominator is divergent, because p(A)I1dA is nothing
but the usual invariant volume element for integrating over the group,
and this is also constant along ‘orbits’ A — A(A, A). This divergence can
be eliminated in both the numerator and denominator of Eq. (15.5.20)
by formulating the theory on a finite spacetime lattice, in which case the
volume of the gauge group is just the volume of the global Lie group itself
times the number of lattice sites. Because the gauge-fixing factor B[f]
eliminates this divergence in the original definition (15.5.1) of the left-hand
side of Eq. (15.5.20), we may presume that, as the number of lattice sites
goes to infinity, it cancels between the numerator and denominator of the
right-hand side of Eq. (15.5.20).

Now to the point. We have seen that the vacuum expectation value
(15.4.16) in axial gauge is given by a functional integral of the general
form (15.5.1). Armed with the above theorem, we conclude then that

(T{@A@B .. })V oc / |:H dtp/(x)] ]:H dA*,(x)
£'\x

o1 X

(15.5.20)

X 04Cp ---exp{il + € terms} B[f[A,w]] Det #[A,y] (15.5.21)

for (almost) any choice of f4[A,y;x] and B[f]. We are now therefore free
to use Eq. (15.5.21) to derive the Feynman rules in a more convenient
gauge.

The path integrals that we understand how to calculate arc of Gaussians
times polynomials, so we will generally take

BIf] = exp (—i [ atx fa(X)fa(X)) (155.22)
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with arbitrary real parameter ¢, With this choice, the effect of the factor
B in Eq. (15.5.21) is just to add a term to the effective Lagrangian

1
Lerg = £ =5 Lol (15.5.23)

The simplest Lorentz-invariant choice of the gauge-fixing function f, is
the same as in electrodynamics:
fu=0,A4" (15.5.24)

The bare gauge-field propagator can then be calculated just as in quantum
electrodynamics. The free-vector-boson part of the effective action can be
written

I()A = —/d4x [i(ﬁﬂAm — &.Aw)(a“AmV - 6”Aa”)

1
2%

1 )
= f BX Do oy A () A5 (V)

+ 5(0,A42")(0,4,") + € terms

where
02

4 —
(7x’15y;‘ 0 (x y)

Dy fry = Ny

—(l 1) & 3% x—y) + eterms
Z) axdy (x—y € te

= Cn* [ ' 1at? =)= (1= 3 ) pup] 70,

Taking the reciprocal of the matrix in square brackets, we find the prop-
agator:

Aoc;t,ﬁv (x,y) = (-@41)1;4)61* vy
1 efr(x—y)
f’ﬂ‘p‘] . (15525)
€

— (2;;)‘4/ d*p [ﬂyv +(—1) 02 | o

This is a generalization of both Landau and Feynman gauges, which
are recovered by taking £ = 0 and ¢ = 1, respectively. For ¢ — 0, the
functional (15.5.22) oscillates very rapidly except near f, = 0, so this
functional acts like a delta-function imposing the Landau gauge condition
opA* = 0, leading naturally to a propagator satisfying the corresponding
condition 6*A,, g, = 0. For non-zero values of ¢ the functional B[f] does
not pick out gauge fields satisfying any specific gauge condition on the
field Ay, but it is common to refer to the propagator (15.5.25) as being in
a ‘generalized Feynman gauge’ or ‘generalized ¢-gauge’. It is often a good
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strategy to calculate physical amplitudes with & left arbitrary, and then at
the end of the calculation check that the results are {-independent.

With one qualification, the Feynman rules are now obvious: the contri-
butions of vertices are to be read off from the interaction terms in the orig-
inal Lagrangian %, with gauge-field propagators given by Eq. (15.5.25),
and matter-field propagators calculated as before. To be specific, the
trilinear interaction term in %

— 1 Capy(BpAay — Oy A ) Ag A,

corresponds to a vertex to which are attached three vector boson lines. If
these lines carry (incoming) momenta p,q,k and Lorentz and gauge-field
indices ux, v, py, then according to the momentum-space Feynman rules,
the contribution of such a vertex to the integrand is

i(27r)454(p—|—q +k)[—i Caﬁv] [pv"lu/l —Pafuy T Doty — Gutiva +ku’?iv “kv'fip] .
(15.5.26)
Also, the A% interaction term in %,

— L CeupCeps AnyApy AFAsY

corresponds to a vertex to which are attached four vector boson lines.
If these lines carry (incoming) momenta p,q,k,Z, and Lorentz and gauge
indices ux, vf, py, and ¢4, then the contribution of such a vertex to the
integrand is

i(2“)454(P +q+k+/¢) x [“” Ceaﬁ Ceyé(’?gpnva' - 'hm—"lvp)

_Ceocy Ceéﬁ(’?ua’?pv - ﬂuv’?ap) — Ceus Ceﬁy(’?,uv’?pa - ﬂpp’?dv)] .
(15.5.27)

(Recall that the structure constants Cyg, contain coupling constant factors,
so the factors (15.5.26) and (15.5.27) are respectively of first and second
order in coupling constants.)

The one complication in the Feynman rules with which we have not
yet dealt is the presence in Eq. (15.5.21) of the factor Det #, which for
general gauges is not a constant. We now turn to a consideration of this
factor.

15.6 Ghosts

We now consider the effect of the factor Det & in Eq. (15.5.22) on the
Feynman rules for a non-Abelian gauge theory. In order to be able to treat
this effect as a modification of the Feynman rules, recall that as shown in
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Section 9.5, the determinant of any matrix &,y g, may be expressed as a
path integral

Det # o f [Hdm;(x)] [H dwa(x)} exp(ilgy) , (15.6.1)
where
Ion = / dxd'y 03(x) 05(y) F gy - (156.2)

Here w} and o, are a set of independent anticommuting classical variables,
and the constant of proportionality is field-independent. (We have to
choose the w, and w, field variables to be fermionic in order to reproduce
the factor Det #; had we chosen these field variables to be bosonic,
the path integral (15.6.1) would have been proportional to (Det %)L
The fields w, and w, are not necessarily related by complex conjugation;
indeed, in Section 15.7 we shall see that for some purposes we need to
assume that w, and w, are independent real variables. The whole effect
of the factor Det & is the same as that of including Igy(w,®”) in the
full effective action, and integrating over ‘fields’ w and w”. That is, for
arbitrary gauge-fixing functionals f,(x),

(T{O4})y o /[HdU’n(x):| lH dAoc,u(x)]

o640, X
X lH dwa(x)dw;(x)] exp (iIMOD[tp,A,aJ,w']) Oq--, (156.3)
X
where Iyjop is a modified action
Iwop = [ | £ = fufl| +Ten (1564

The fields @, and w, are Lorentz scalars (at least in covariant gauges)
but satisfy Fermi statistics. The connection between spin and statistics is
not really violated here, because there are no particles described by these
fields that can appear in initial or final states. For that reason, w, and
w, are called the fields of ‘ghost’ and ‘antighost’ particles. Inspection of
Eq. (15.6.2) shows that the action respects the conservation of a quantity
known as ‘ghost number,” equal to +1 for w,, —1 for w,, and zero for all
other fields.

The Feynman rules for the ghosts are simplest in the case in which the
‘matrix’ # may be expressed as

F=Fg+F,, (15.6.5)

where & is field-independent and of zeroth order in coupling constants,
while & is field-dependent and proportional to one or more coupling
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constant factors. In this case, the ghost propagator is just
Aup(%,3) = (F 5 Vaxpy (15.6.6)
and the ghost vertices are to be read off from the interaction term
Igy = / d*xd'y wy(x) 0g(YNF 1axpy - (15.6.7)

For instance, in the generalized £-gauge discussed in the previous sec-
tion, we have

fo =0, A (15.6.8)
and for infinitesimal gauge parameters A,, Eq. (15.1.9) gives:

so that
80,A4%,(x)
7 = HTad
by dAg(¥) li=o
— D64 — )+ Cpp |4%(x) 3% (x — ) (15.6.9)
whaen 177 V)| - -0
This is of the form (15.6.5), with
(F0)axpy = 06H(x — ) dug (15.6.10)
3
(F Dy = =Capr 5, | A4)5*x = )] - (15.6.11)

From Eqs. (15.6.6) and (15.6.10), we see that the ghost propagator is
Bup(x,9) = g2 [ d'p (07 —ie) ™ 7O, (156.12)

so in this gauge the ghosts behave like spinless fermions of zero mass,
transforming according to the adjoint representation of the gauge group.
Using Egs. (15.6.7) and (15.6.11) and integrating by parts, we find that the
ghost interaction term in the action is now

a *
Iy = /d4x Cupy % AL g . (15.6.13)

This interaction corresponds to vertices to which are attached one outgoing
ghost line, one incoming ghost line, and one vector boson line. If these
lines carry (incoming) momenta p. ¢,k respectively and gauge group indices
a, B,y respectively, and the gauge field carries a vector index y, then the
contribution of such a vertex to the integrand is given by the momentum-
space Feynman rules as

i2n)**(p +q + k) x ip,Cup, . (15.6.14)
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The ghosts propagate around loops, with single vector boson lines attached
at each vertex along the loops, and with an extra minus sign supplied for
each loop as is usual for fermionic field variables.

The extra minus sign for ghost loops suggests that each ghost field
@, together with the associated antighost field w] represents something
like a negative degree of freedom. These negative degrees of freedom
are necessary because in using covariant gauge field propagators we are
really over-counting; the physical degrees of freedom are the compo-
nents of A%(x), less the parameters A,(x) needed to describe a gauge
transformation.

In summary, the modified action (15.6.4) may be written in generalized
£-gauge as

Imop = f d*x #mop (15.6.15)
with a modified Lagrangian densit.y:
Lwop = L= FE P = 57 (A A
—0uy 0* @y + Copy(Out0y) AX g . (15.6.16)

It is important that this Lagrangian is renormalizable (if the matter La-
grangian .#v is), in the elementary sense that its terms involve products
of fields and their derivatives of total dimensionality (in powers of mass)
four or less. (The kinematic term —d,w; 3w, in Eq. (15.6.16) fixes the
dimensionality of the fields @ and ®" to be mass to the power unity,
just like ordinary scalar and gauge fields.) However, there is more to
renormalizability than power counting; it is necessary also that there be
a counterterm to absorb every divergence. In the next section we shall
consider a remarkable symmetry that will be used in Section 17.2 to show
that non-Abelian gauge theories are indeed renormalizable in this sense,
and that can even take the place of the Faddeev—Popov-De Witt approach
that we have been following.

15.7 BRST Symmetry

Although the Faddeev—Popov-De Witt method described in the previous
two sections makes the Lorentz invariance of the theory manifest, it still
rests on a choice of gauge, and hence naturally it hides the underlying
gauge invariance of the theory. This is a serious problem in trying to
prove the renormalizability of the theory — gauge invariance restricts the
form of the terms in the Lagrangian that are available as counterterms to
absorb ultraviolet divergences, but once we choose a gauge, how do we
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know that gauge invariance still restricts the ways that the infinities can
appear?

Remarkably, however, even after we choose a gauge, the path integral
still does have a symmetry related to gauge invariance. This symmetry
was discovered by Becchi, Rouet, and Stora,'’ (and independently by
Tyutin,!!) in 1975, several years after the work of Faddeev and Popov and
De Witt, and is known in honor of its discoverers as BRST symmetry. This
symmetry will be presented more-or-less as it was originally discovered,
as a by-product of the method of Faddeev, Popov, and De Witt, but as
we shall see it can also be regarded as a replacement for the Faddeev—
Popov—De Witt approach.

We have seen in Eqs. (15.6.3) and (15.6.4) that the Feynman rules for
a non-Abelian gauge theory may be obtained from a path integral over
matter, gauge, and ghost fields, with a modified action, which we may
write

Imop = Igrr + lon = f‘r‘ngOD : (15.7.1)
Lrion = £ = 3 fufs + 0As, (1572
where we have now introduced the quantity
89 = [ &y Fag 4wl p(y) (157.3)
This is for the choice
B[f] o« exp (—é f d*x fafu) (15.7.4)

of the gauge-fixing functional in Eq. (15.5.21). For our present purposes,
it will be helpful to rewrite B[f] as a Fourier integral:

B[f] = f lHdha(x)] exp [% / haha] exp [i f d“xfaha] . (15.7.5)

We must now do our path integrals over the field h, (often known as
a ‘Nakanishi-Lautrup’ field''%) as well as over matter, gauge, ghost and
antighost fields, with a new modified action

INEW = / d*x (ff + wyAg + hofy + %éhahu) . (15.7.6)

This modified action is not gauge-invariant — indeed, it had better
not be, if we are to be able to use it in path integrals. However, it is
invariant under a ‘BRST’ symmetry transformation, parameterized by an
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infinitesimal constant 0 that anticommutes with w,, w,, and all fermionic
matter fields. For a given 8, the BRST transformation is

Sgyp = ityBwyp , (15.7.7)
OgAgy = 0Dy = 0[0,05 + CopyApuy] (15.7.8)
S, = —0hy , (15.7.9)
dpw, = — 10 Cypypay , (15.7.10)
Sohy =0 (15.7.11)

(Recall that in fermionic path integrals, there is no connection between w,
and wy, so that Eq. (15.7.9) does not need to be the adjoint of Eq. (15.7.10).)
Because h, is BRST-invariant, we could if we like replace the Gaussian
factor exp( %i& [ hyhy) in Eq. (15.7.5) with an arbitrary smooth functional
of hy, yielding an arbitrary functional B[f], without affecting the BRST
invariance of the action. However, for the purposes of diagrammatic
calculation and renormalization it will help to leave B[f] as a Gaussian.

In checking the invariance of the action (15.7.1), it will be very useful
first to note that the transformation (15.7.7)-(15.7.11) is nilpotent; that is,
if F is any functional of y, 4, w,®", and h, and we define sF by

opF = OsF (15.7.12)
then”

Sp(sF)=0 (15.7.13)
or equivalently

s(sF)=10. (15.7.14)

It is straightforward to verify this nilpotence when Jg acts on a single
field. First, acting on a matter field,
Ogsy = ity Og(wap) = — 1i CopytaOwpmyyp — tytgweOwpy
= — ;i Cypyta gy + tot glwywpy .
The product w,wy in the second term on the right is antisymmetric in o

and f, so we can replace ¢, in this term with %[ta,tﬁ], and this term thus
cancels the first term:

ssp =0. (15.7.15)

* In the original work on BRST symmetry the functional B[f] was left in the form
(15.74), so that h, was replaced in Eq. (15.7.9) with —f,/¢, and the BRST transfor-
mation was only nilpotent when acting on functions of , and the gauge and matter
fields, but not of w;.
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Next, acting on a gauge field, we have

59SA(1‘“ - 59Dﬂwa
= 6H59wa + Caﬂy(sgAﬁ”(Uy + Cmﬁ},AI}#(SQ(U},

= 0( = 1CupyOu(@pw,) + CopyBpp)e,
+CapyCpseAsuwewy — %Caﬂvc‘/é‘Aﬁu%%)

= 0( 1Capy (0,08), + 1Copy(Bu2;)0p
—CopyCroeAspetdp — %Caﬂ"/créefflﬁumwe) :

The first two terms of the final expression cancel because C,g, is antisym-
metric in § and 7y, and the third and fourth terms cancel because of the
Jacobi identity (15.1.5), so

5844 = 0. (15.7.16)
Egs. (15.7.9) and (15.7.11) show immediately that
ssw) =0 (15.7.17)
and
sshy =10. (15.7.18)
Finally,
0gswy = — 1Cyp, dp(pw,)

= 10 (ngyCﬁge 0500y + CypyCrse coga)a(x)f)
= 10 Cyp,Cyse [ ~ WsWeg + wﬁwawe] .
But wp commutes with w;sw,, so this too vanishes
58wy =0 . (15.7.19)

Now consider a product of two fields ¢; and ¢, either or both of which
may be 1, 4, w, w", or h, not necessarily at the same point in spacetime.
Then

So(¢162) = O(s$1)b2 + d18(s2) = 0| (sb1)b2 £ Busa) ,
where the sign + is plus if ¢ is bosonic, minus if ¢ is fermionic. That is,

s(p1¢2) = (sp1)p2 = P15¢7 .

Since as we have seen Jg(s¢p1) = dg(s¢p2) = 0, the effect of a BRST
transformation on (¢ ¢2) 1s

dp5(d1¢h2) = (s¢1)0(s¢2) T O(s¢1)(s$2) .
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But s¢ always has statistics opposite to ¢, so moving 8 to the left in the
first term on the right-hand side introduces a sign factor F:

Sos(d162) = 0| F (sd1)(s¢2) £ (sp1)(sp2)] = 0.

Continuing in this way, we see that BRST transformations are nilpotent
acting on any product of fields at arbitrary spacetime points:

0pS(P1d2¢p3---)=0.

Any functional F[¢] can be written as a sum of multiple integrals of such
products with c-number coefficients, so likewise

89 sF[¢p] = BssF[¢] = 0. (15.7.20)

This completes the proof of the nilpotency of the BRST transformation.

Now let us return to the verification of the BRST invariance of the
action (15.7.6). First note that for any functional of matter and gauge
fields alone, the BRST transformation is just a gauge transformation with
infinitesimal gauge parameter

Ay(x) = By(x) . (15.7.21)
Therefore the first term in Eq. (15.7.6) is automatically BRST-invariant:

5 / Px¥=0. (15.7.22)

To calculate the effect of a BRST transformation on the rest of the action
(15.7.6), note that its effect on the gauge-fixing function is just the gauge
transformation (15.7.21), so

Ofalx: Azl

afaleidpl = [ 50
=0 [ Fuppldpl op(n)d'y
or in terms of the quantity (15.7.3)
Sofalx; A ] = 0Aq(x; A, 1, 02) (15.7.23)

(Note that # is a bosonic quantity, so there is no sign change in moving
# to the left here.) Also recall that dyw, = —0h, and dph, = 0. Therefore
the terms in the integrand of the ‘new’ action (15.7.6) other than % may
be written

OyAs + hafu+ 1hahy = s(0)fa+ YEwihy) (15.7.24)

or in other words

B wp(y)d*y
=0

Ingw = / dx £+ 5%, (15.7.25)
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where
v = / X (04fa+ 1ETh) . (15.7.26)

The nilpotence of the BRST transformation tells us immediately that the
term s as well as [ d*x % is BRST-invariant.

In a sense the converse of this result also applies: we shall see in Section
17.2 that a renormalizable Lagrangian that obeys BRST invariance and
the other symmetries of the Lagrangian (15.7.25) must take the form
of Eq. (15.7.25), aside from changes in the values of various constant
coefficients. But this is not enough to establish the renormalizability
of these theories. BRST symmetry transformations act non-linearly on
the fields, and in this case there is no simple connection between the
symmetries of the Lagrangian and the symmetries of matrix elements
and Greens functions. Using the external field methods developed in
the next chapter, it will be shown in Section 17.2 that the ultraviolet
divergent terms in Feynman amplitudes (though not the finite parts) do
obey a sort of renormalized BRST invariance, which allows the proof of
renormalizability to be completed.

Eq. (15.7.25) shows that the physical content of any gauge theory is
contained in the kernel of the BRST operator (that is, in a general BRST-
invariant term [ d*x % 4 s¥), modulo terms in the image of the BRST
transformation (that is, terms of the form s¥). The kernel modulo the
image of any nilpotent transformation is said to form the cohomology of
the transformation. There is another sense in which the physical content
of a gauge theory may be identified with the cohomology of the BRST
operator.'? It is a fundamental physical requirement that matrix elements
between physical states should be independent of our choice of the gauge-
fixing function f,, or in other words, of the functional ¥ in Eq. (15.7.25).
The change in any matrix element {|8) due to a change 3% in V¥ is

3(alB) = i(a)3Inew|B) = i(alsSP|B) . (15.7.27)

(We use a tilde here to distinguish this arbitrary change in the gauge-fixing
function from a BRST transformation or a gauge transformation.) We
can introduce a fermionic BRST ‘charge’ Q, defined so that for any field
operator @,

d9® =i[0Q, @] =i0 [Q, D],
or in other words,
[Q. Q] = is®@, (15.7.28)

the sign being — or + according as @ is bosonic or fermionic. The
nilpotence of the BRST transformation then gives

0 = —ss® = [Q,[Q, Pl5]+ = [Q°, D] .



15.7 BRST Symmetry 33

For this to be satisfied for all operators ®, it is necessary for Q2 either
to vanish or be proportional to the unit operator. But Q? cannot be
proportional to the unit operator, since it has a non-vanishing ghost
quantum number*®, so it must vanish:

0*=0. (15.7.29)
From Egs. (15.7.27) and (15.7.28), we have
3(alB) = (I[Q,3¥1IB) - (15.7.30)
In order for this to vanish for all changes ¥ in W, it is necessary that
(@@ =0QIp)=0. (15.7.31)

Thus physical states are in the kernel of the nilpotent operator Q. Two
physical states that differ only by a state vector in the image of ¢, that
is, of form Q|- --), evidently have the same matrix element with all other
physical states, and are therefore physically equivalent. Hence independent
physical states correspond to states in the kernel of Q, modulo the image
of Q — that is, they correspond to the cohomology of Q.

To see how this works in practice, let us consider the simple example of
pure electrodynamics.” Taking the gauge-fixing function as f = d,4% and
integrating over the auxiliary field h, the BRST transformation (15.7.8)—
(15.7.10) is here

SA, =00,  sw =0,AME, so=0. (15.7.32)
We expand the fields in normal modes'?
d3p
v/2p°
[ T
2p°
d3p

e

Aﬂ(_x} = (2ﬁ)—3/2 Pau(p) eip-x + a“'(p} e_,‘p.x] ,

w(x) = 2n) = c(p) ™ +c"(p) ], (15.733)

o' (x) = (2m)7" bip) " +b"(p) ] .

** Recall that the ghost quantum number is defined as +1 for w,, —1 for w;, and 0 for
all gauge and matter fields.

t Egs. (15.6.11) and (15.6.7) show that because thc structure constants vanish in electro-
dynamics, the ghosts here are not coupled to other fields. Nevertheless, electrodynamics
provides a good example of the usc of BRST symmetry in identifying physical statcs.
Indeed, in analyzing the physicality conditions on ‘in’ and ‘out’ states wc ignore inter-
actions, so for this purpose a non-Abelian gauge theory is treated like several copies
of quantum electrodynamics.

' Just as w*(x) is not to be thought of as the Hermitian adjoint of w(x), b" and ¢" are
not the adjoints of ¢ and b. But since 4#(x) is Hermitian, w(x) is Hermitian if Q is.



34 15 Non-Abelian Gauge Theories

Matching coefficients of e?* on both sides of Eq. (15.7.28) yields

[.a*(P]- = —p¥c(p),  [Q.a"(P)]- =p"(p),
[Q.b(p))+ = Prau(p)/E,  [Q.B7(P)]+ = pla,(p)/¢, (15.7.34)
[Q.c(p)l+ = [Q.¢"(p)]+ = 0.

Consider any state |y) satisfying the physicality condition (15.7.31):
Qly)=0. (15.7.35)

The states |e, ) = e a”(p)|y) with one additional photon then satisfy the
physicality condition Qle, y) = 0if e,p* = 0. Also, the state |p)’ = b*(p)|p)
satisfies

Qlw) = pra;(ply)/¢, (15.7.36)

so le +ap,p) = |e,yp) + aQy)’, and is therefore physically equivalent to
le,y). From this we conclude that e* is physically equivalent to e* 4 ap*,
which is the usual ‘gauge-invariance’ condition on photon polarization
vectors. On the other hand,

Qb*(p)lw) = p*a"(p)ly) #0,

so b*|y) does not satisfy the physicality condition (15.7.31) Also, for any
e, with e p # 0,

c(ply) = Qe a (p)y) /e p

so ¢'|yp) is BRST-exact, and hence equivalent to zero. Thus the physical
Hilbert space is free of ghosts and antighosts.

To maintain Lorentz invariance, we must interpret all four components
of a*(p) as annihilation operators, in the sense that

0 = a,(p)|0) . (15.7.37)

where |0) is the BRST-invariant vacuum state. But the canonical commu-
tation relations derived from the BRST-invariant action (say, with & = 1)
give

[a,(p), 4, (P)]— =1, 8*(p—P) (15.7.38)

corresponding to the propagator in Feynman gauge. This violates the
usual positivity rules of quantum mechanics, because Eqs. (15.7.37) and
(15.7.38) yield!?

{Olao(p) ag(p')I0) = —(0[0) . (15.7.39)

Nevertheless we can rest assured that all amplitudes among physical
states satisfy the usual positivity conditions, because these states satisfy
Eq. (15.7.31), and for such states the transition amplitudes are the same
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as they would be in a more physical gauge like Coulomb or axial gauge,
where there is no problem of positivity or unitarity.

The Faddeev-Popov-De Witt formalism described so far necessarily
yields an action that is bilinear in the ghost fields w) and w,. This is
adequate for renormalizable Yang-Mills theories with the gauge-fixing
function f, = 0,A4%, but not in more general cases. For instance, as
we shall see in Section 17.2, in other gauges renormalizable Yang-Mills
theories need w”w’ww terms in the action Lagrangian density to serve
as counterterms for the ultraviolet divergences in loop graphs with four
external ghost lines.

Fortunately the Faddeev—Popov-De Witt formalism represents only one
way of generating a class of equivalent Lagrangians that yield the same
unitary S-matrix. The BRST formalism provides a more general approach,
that dispenses altogether with the Faddeev-Popov-De Witt formalism. In
this approach, one takes the action to be the most general local functional
of matter, gauge, w?, @™ and k! fields with ghost number zero that is
invariant under the BRST transformation (15.7.7)(15.7.11) and under any
other global symmetries of the theory. (For renormalizable theories one
would also limit the Lagrangian density to operators of dimensionality
four or less, but this restriction plays no role in the following discussion.)
In the next section we shall prove, in a context more general than Yang—
Mills theories, that the most general action of this sort is the sum of
a functional of the matter and gauge fields (collectively called ¢) alone,
plus a term given by the action of the BRST operator s on an arbitrary
functional ¥ of ghost number —1:

Inewld, 0,0, k] = Ih[¢] + s P[¢, w,w", h] , (15.7.40)

as for instance in the Faddeev—Popov-De Witt action (15.7.25), but with
s'¥ now not necessarily bilinear in ghost and antighost fields.

By the same argument as before, the S-matrix elements for states that
are annihilated by the BRST generator Q are independent of the choice
of ¥ in Eq. (15.7.40), so if there is any choice of W for which the ghosts
decouple, then the ghosts decouple in general. In Yang-Mills theories,
such a ¥ is provided by quantization of the theory in axial gauge, so
in such theories ghosts decouple for arbitrary choices of the functional
Y[, w, ", h], not just those choices like (15.7.25) that are generated by
the Faddeev—Popov De Witt formalism.

We can go further, and free ourselves of all dependence on canonical
quantization in Lorentz-non-invariant gauges like axial gauge. Again, take
the action to be the most general functional of gauge, matter, w?, »*4
and h* fields with ghost number zero, that is invariant under the BRST
transformation (15.7.7)«(15.7.11) and under any other global symmetries
of the theory, including Lorentz invariance. From the BRST invariance
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of the action we can infer the existence of a conserved nilpotent BRST
generator 0. With the ghost and antighost fields treated as Hermitian,
Q is also Hermitian. The space of physical states is defined as above as
consisting of states annihilated by @, with two states treated as equivalent
if their difference is Q acting on another state. It has been shown that for
Yang-Mills theories this space is free of ghosts and antighosts and has a
positive-definite norm, and that the S-matrix in this space is unitary.134
This procedure is known as BRST quantization. It has been extended
to theories with other local symmetries, such as general relativity and
string theories. Unfortunately, it seems so far to be necessary to give
separate proofs in each case that the BRST-cohomology is ghost-free and
that the S-matrix acting in this space is unitary. The key point in these
proofs is that, for each negative-norm degree of freedom, such as the time
components of the gauge fields in Yang-Mills theories, there is one local
symmetry that allows this degree of freedom to be transformed away.

% X %

Although we shall not use it here, there is a beautiful geometric
interpretation'4 of the ghosts and the BRST symmetry that should be
mentioned. The gauge fields 4% may be written as one-forms 4, = Ay dxt,
where dx# are a set of anticommuting c-numbers. (See Section 5.8.) This
can be combined with the ghost to compose a one-form &7, = Ay + wy in
an extended space. Also, the ordinary exterior derivative d = dx* 0/0x"
may be combined with the BRST operator s to form an exterior derivative
% = d + 5 in this space, which is nilpotent because s* = d* = sd 4+ ds = 0.

The next chapter will introduce external field methods, which will be
used along with the BRST symmetry in Chapter 17 to complete the proof
of the renormalizability of non-Abelian gauge theories.

15.8 Generalizations of BRST Symmetry”

The BRST symmetry described in the previous section has a useful gener-
alization to the quantization of a wide class of theories, including general
relativity and string theories. In all these cases, we deal with an action I[¢]
and measure [d¢] = [, d¢" that are invariant under a set of infinitesimal
transformations

¢ — ¢ +eloq0. (15.8.1)

* This section hies somewhat out of the book’s main line of development, and may be
omitted in a first reading.



