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Masses

1.1 Masses

Masses occur in the action density as the coefficients of terms quadratic in

the fields. Thus the action density of a neutral, spin-zero field φ is

L = −1
2∂aφ∂

aφ− 1
2µ

2φ2, (1.1)

and the mass is µ. The equation of motion is(
∂a∂

a − µ2
)
φ(x) = 0. (1.2)

The field obeying this equation is

φ(x) =

∫ [
a(k)eikx + a†(k)e−ikx

] d3k√
(2π)32k0

. (1.3)

The charged spin-zero field is a complex linear combination of two equal-

mass real fields

φ =
1√
2

(
φ(1) + iφ(2)

)
. (1.4)

Its action density is

L = −∂aφ∗∂aφ− µ2|φ|2, (1.5)

and its equation of motion is(
∂a∂

a − µ2
)
φ(x) = 0. (1.6)

The charged field is

φ(x) =

∫ [
a(k)eikx + b†(k)e−ikx

] d3k√
(2π)32k0

. (1.7)
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Example 1.1 (Two spinless fields) The action density

L = −1
2∂aφ1∂

aφ1 − 1
2∂aφ2∂

aφ2 − 1
2m

2
1φ

2
1 − 1

2m
2
2φ

2
2 −m2φ1φ2 (1.8)

implies the equations of motion

∂a∂
aφ1 = m2

1φ1 +m2φ2

∂a∂
aφ2 = m2φ1 +m2

2φ2,
(1.9)

and is really a theory of two spinless bosons φ+ and φ−. The eigenvalues of

the matrix

M2 =

(
m2

1 m2

m2 m2
2

)
≡
(
a b

b c

)
(1.10)

are

m2
± =

1

2

(
m2

1 +m2
2 ±

√
(m2

1 −m2
2)

2 + 4m4

)
. (1.11)

Its eigenvectors are

1√
b2 + (λ± − a)2

(
b

λ± − a

)
=

1√
b2 + (λ± − c)2

(
λ± − c
b

)
(1.12)

in which λ± = m2
±.

The physical fields are the normal modes of the theory. In terms of the

vector

φ =

(
φ1
φ2

)
, (1.13)

the equations of motion (1.22) are

∂a∂
a φ = M2 φ. (1.14)

An orthogonal matrix O diagonalizes the real, symmetric matrix M2

M2 = OT

(
m2

+ 0

0 m2
−

)
O and M2OT = OT

(
m2

+ 0

0 m2
−

)
. (1.15)

So the columns of OT are the eigenvectors (1.12) of M2(
OT

11

OT
21

)
=

1√
b2 + (λ+ − a)2

(
b

λ+ − a

)
=

1√
b2 + (λ+ − c)2

(
λ+ − c
b

)
(1.16)

and(
OT

12

OT
22

)
=

1√
b2 + (λ− − a)2

(
b

λ− − a

)
=

1√
b2 + (λ− − c)2

(
λ− − c
b

)
.

(1.17)
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The eigenfields are(
φ+
φ−

)
= Oφ =

(
O11φ1 +O12φ2
O21φ1 +O22φ2

)
=

(
OT

11φ1 +OT
21φ2

OT
12φ1 +OT

22φ2

)
(1.18)

or more explicitly

φ± =
1√

b2 + (λ± − a)2
[bφ1 + (λ± − a)φ2]

=
1√

b2 + (λ± − c)2
[(λ± − c)φ1 + bφ2] .

(1.19)

In terms of the masses, these fields are

φ± =
1√

m4 + (m2
± −m2

1)
2

[
m2φ1 + (m2

± −m2
1)φ2

]
=

1√
m4 + (m2

± −m2
2)

2

[
(m2
± −m2

2)φ1 +m2φ2
]
.

(1.20)

They obey the wave equations

∂a∂
aOφ = OOT

(
m2

+ 0

0 m2
−

)
Oφ =

(
m2

+ 0

0 m2
−

)
Oφ (1.21)

or

∂a∂
aφ+ = m2

+φ+ and ∂a∂
aφ− = m2

−φ−. (1.22)

When m = 0, the physical fields are φ1 and φ2 with masses m1 and m2.

In the opposite extreme case of m1 = m2 = 0, the normal-mode fields are

φ+ =
1√
2

(φ1 + φ2) and φ− =
1√
2

(φ1 − φ2) (1.23)

in terms of which φ1 and φ2 are

φ1 =
1√
2

(φ+ + φ−) and φ2 =
1√
2

(φ+ − φ−). (1.24)

The fields φ+ and φ− obey the equations of motion

∂a∂
aφ+ = m2φ+ and ∂a∂

aφ− = −m2φ−. (1.25)

The particles of the field φ− are tachyons. More generally, the particles of

the field φ− are tachyons whenever m2 > m1m2.

For a Dirac spin-one-half field, the action density is

L = − ψ (γa∂a +m)ψ ≡ − ψ ( 6∂ +m)ψ (1.26)
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in which ψ = iψ†γ0 = ψ†β. Weinberg’s choice of gamma matrices is

γ0 = − i
(

0 1

1 0

)
, ~γ = − i

(
0 ~σ

− ~σ 0

)
, γ5 = γ5 =

(
1 0

0 − 1

)
. (1.27)

He also uses β = iγ0 and ψ = ψ†β = iψ†γ0. The Dirac equation of motion

is

(γa∂a +m)ψ = (6∂ +m)ψ = 0. (1.28)

The field is

ψj(x) =
1√
2

(
ψ
(1)
j (x) + iψ

(2)
j (x)

)
=

+∑
s=−

∫ [
uj(~p, s)b(p, s)e

ipx + vj(~p, s)c
†(p, s)e−ipx

] d3p

(2π)3/2

(1.29)

in which the fields ψ1 and ψ2 are the Majorana fields that make the Dirac

field, and the Dirac index j runs from 1 to 4, px = ~p·~x−p0t, p0 =
√
~p2 +m2,

b(p, s) =
1√
2

(a(p, s, 1) + ia(p, s, 2)) (1.30)

c†(p, s) =
1√
2

(
a†(p, s, 1) + ia†(p, s, 2)

)
, (1.31)

and the annihilation ai and creation a†j operators satisfy the anticommuta-

tion relations

{a(p, s, i), a(p′, s′, j)} ≡ a(p, s, i) a(p′, s′, j) + a(p′, s′, j) a(p, s, i) = 0

{a(p, s, i), a†(p′, s′, j)} = δi,j δs,s′ δ
(3)(~p− ~p′).

(1.32)

The physical mass of the fermion is the square root of m2 and so is inde-

pendent of the sign of m.

For a massive vector field, the action density is

L = − 1

4
FabF

ab − 1

2
m2AaA

a (1.33)

in which Fab = ∂aAb − ∂bAa. The equation of motion is

∂aF
ab(x) = m2Ab(x). (1.34)

This field contains a part that is spin zero. The spin-zero part is the diver-

gence ∂bA
b, and the spin-one part has zero divergence

∂bA
b = 0. (1.35)
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So the equation of motion of the spin-one part is

(2−m2)Ab(x) = (4− ∂2t −m2)Ab(x) = 0. (1.36)

The spin-one field is

Ab(x) =

1∑
s=−1

∫ [
eb(p, s)a(p, s)eipx + e∗b(p, s)a

†(p, s)e−ipx
] d3p√

(2π)32p0

(1.37)

in which the sum is over s = −1, 0, 1,

paea(p, s) = 0, (1.38)

and the spin sum is

1∑
s=−1

ea(p, s)e
∗
b(p, s) = ηab +

papb
m2

. (1.39)

Homework problem 1 of set 2: Use Lagrange’s equations to derive the

equation of motion (1.34) from the action density (1.33).

Homework problem 2 of set 2: Use the condition ∂bA
b = 0 to convert the

equation of motion (1.34) to its spin-one form (1.36).

Homework problem 3 of set 2: Show that the zero-divergence condition

(1.35) implies the spin condition (1.38).
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Spontaneous symmetry breaking

2.1 Linear sigma model

The usual φ4 theory has action density

L = − 1

2
∂aφ∂

aφ− 1

2
m2φ2 − 1

4
λφ4. (2.1)

In the limit λ → 0, this theory is that of Section 1.1. If we flip the sign of

the mass term in (2.1), then we have

L = − 1

2
∂aφ∂

aφ+
1

2
m2φ2 − 1

4
λφ4. (2.2)

Both action densities are symmetric under the reflection φ(x) → − φ(x),

which is a discrete symmetry.

To the extent that we understand such theories, the vacuum of the first

theory has 〈0|φ|0〉 = 0. This vacuum is invariant under the reflection φ(x)→
− φ(x). There are two classical vacua in the second theory. Its potential

energy

V = −1

2
m2φ2 +

1

4
λφ4 (2.3)

has two minima

φ± = ± m√
λ
≡ ±v. (2.4)

The vacua φ± are not invariant under the reflection φ(x) → − φ(x); they

transform into each other φ± → φ∓. So if the states of a universe are clus-

tered about φ+, then in that universe, the mean value of the field φ is

〈0+|φ|0+〉 = φ+. (2.5)

The vacuum spontaneously breaks the reflection symmetry.
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If

φ(x) = v + σ(x), (2.6)

then the action density of the theory near φ+ is

L = − 1

2
∂aσ ∂

aσ +
1

2
m2 (v + σ)2 − 1

4
λ(v + σ)4

= − 1

2
∂aσ ∂

aσ +
1

2
m2 (v2 + 2vσ + σ2)

− 1

4
λ(v4 + 4v3σ + 6v2σ2 + 4vσ3 + σ4)

= − 1

2
∂aσ ∂

aσ +
1

2
m2

[(
m√
λ

)2

+ 2
m√
λ
σ + σ2

]

− 1

4
λ

[(
m√
λ

)4

+ 4

(
m√
λ

)3

σ + 6

(
m√
λ

)2

σ2 + 4
m√
λ
σ3 + σ4

]

= − 1

2
∂aσ ∂

aσ −m2σ2 −
√
λmσ3 − 1

4
λσ4 +

1

4

m4

λ
(2.7)

in which the last term is a constant (and so is relevant only in gravitational

theories where it might represent dark energy). In the limit λ → 0, this

theory is that of a particle of mass
√

2m.

If we generalize the single field φ to an n-vector of fields φi, then we get

the linear sigma model with action density

L = − 1

2

n∑
i=1

∂aφi ∂
aφi +

1

2
m2

n∑
i=1

φ2i −
1

4
λ

(
n∑
i=1

φ2i

)2

. (2.8)

With φ2 ≡ φ21 + · · ·+ φ2n, this action density is

L = − 1

2

n∑
i=1

∂aφi ∂
aφi +

1

2
m2φ2 − 1

4
λ
(
φ2
)2
. (2.9)

Again the mass term has the wrong sign. In what follows, we will not bother

to indicate sums over a repeated index i from 1 to n.

This L is invariant when the fields change by

φ′i = Oikφk (2.10)

in which O is an n× n orthogonal matrix. That is, the squared length

φ′2i = (Oikφk)
2 = φ2k (2.11)

of φ′ is the same as that of φ. The action density is invariant under the

nonabelian Lie group O(n). This is a continuous symmetry.
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The minima of the potential energy

V = −1

2
m2φ2 +

1

4
λφ4 (2.12)

are the points of the sphere

φ2 = φ · φ =
m2

λ
of radius |φ| = v =

m√
λ
. (2.13)

Whereas in the discrete case there were two degenerate vacua, here there

are infinitely many.

As in the discrete case, we pick one vacuum. We imagine that in the

physical vacuum |0〉 the mean values of the n fields φi are

〈0|φi|0〉 =
m√
λ
δin = v δin. (2.14)

Now we write the components of the field as

φi = (π1, π2, . . . , πn−1, v + σ). (2.15)

So now

φ2 = φ21 . . . φ
2
n = π21 + · · ·+ π2n−1 + (v + σ)2 ≡ π2 + (v + σ)2, (2.16)

and the action density (2.9) is

L = − 1

2
∂aφi ∂

aφi +
1

2
m2φ2 − 1

4
λ
(
φ2
)2

= − 1

2
∂aπi ∂

aπi −
1

2
∂aσ ∂

aσ +
1

2
m2
[
π2 + (v + σ)2

]
− 1

4
λ
[
π2 + (v + σ)2

]2
= − 1

2
∂aπi ∂

aπi −
1

2
∂aσ ∂

aσ +
1

2
m2
[
π2 + v2 + 2vσ + σ2

]
− 1

4
λ
[
π2 + v2 + 2vσ + σ2

]2
.

(2.17)

In this expression, m2 = λ v2, and so the coefficient of π2 vanishes while

that of σ2 is −m2

L = − 1

2
∂aπi ∂

aπi −
1

2
∂aσ ∂

aσ −m2 σ2 −m
√
λσπ2 −m

√
λσ3

− 1

4
λσ4 − 1

2
λπ2σ2 +

1

4
λπ4 − 1

4

m4

λ
.

(2.18)

So the theory describes one field σ of mass
√

2m and n − 1 massless fields

πk. These massless fields are called Goldstone bosons.
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2.2 Goldstone’s Theorem

Let V (φ) be a potential that is bounded below and that depends upon n

fields φj . Assume that the action density

L = − 1

2
∂aφj∂

aφj − V (φ) (2.19)

is invariant under the global linear transformation

φ′j = Ojkφk (2.20)

in which the n × n orthogonal matrix O is a member of a representation

of a continuous Lie group such as O(n). Since V (φ) is bounded below and

invariant under the symmetry (2.20), it has several minima φ0. At these

minima, the first-order partial derivatives must vanish

∂V (φ)

∂φk

∣∣∣∣
φ=φ0

= 0 (2.21)

and the mixed second-order partial derivatives must be nonnegative

∂2V (φ)

∂φk∂φ`

∣∣∣∣
φ=φ0

≡ mk` ≥ 0. (2.22)

Near each minimum, the potential is

V (φ) = V (φ0) +
1

2
(φk − φk0)(φ` − φ`0)m2

k` (2.23)

apart from higher-order terms which we will ignore. The matrix m2
k` is real

and symmetric. So it can be diagonalized by an orthogonal transformation.

Its eigenvalues are the squares of the masses of the scalar bosons of the

theory.

Near the identity, the orthogonal matrix O is

O = I + iθrt
r (2.24)

in which the generators tr are hermitian, tr† = tr. An orthogonal matrix

is real, so the antihermitian matrices itr are real and antisymmetric. Since

V (Oφ) = V (φ), the derivatives with respect to θr vanish

∂V (φ)

∂θr
=
∂V (φ)

∂φj

∂φj
∂θr

= 0 (2.25)

whether or not the field φ is at a minimum of V . Now

φj(θ) = φj(0) + iθr t
r
jk φk(0) (2.26)
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so the derivative (2.25) vanishes

∂V (φ)

∂φj

∂φj
∂θr

=
∂V (φ)

∂φj
itrjkφk = 0 (2.27)

because of the symmetry whether or not the field φ is at a minimum of V .

The derivative of this vanishing quantity with respect to φ` also must be

zero

∂2V (φ)

∂φj∂φ`
itrjkφk +

∂V (φ)

∂φj
itrj` = 0. (2.28)

So at one of the minima of V where the first derivatives vanish (2.21), this

second derivative is

∂2V (φ0)

∂φj∂φ`
itrjkφk0 +

∂V (φ0)

∂φj
itrj` =

∂2V (φ0)

∂φj∂φ`
itrjkφk0 = 0. (2.29)

But these second derivatives are the elements m`j of the mass matrix (2.22).

So we have for each generator tr an eigenvector trjkφ0k of the n × n mass-

squared matrix with eigenvalue zero

m2
`j t

r
jkφ0k = 0 (2.30)

unless trjkφ0k itself vanishes, in which case it can’t be an eigenvector at all.

So for every generator tr that does not annihilate trjkφ0k = 0 the vector

φ0, there is an eigenvector trjkφ0k of the mass matrix with eigenvalue zero.

These eigenvectors may or may not be linearly independent. So the number

of massless Goldstone bosons is at most the number of generators that do

not annihilate the vacuum vector φ0.

Goldstone’s theorem also holds for complex fields. Suppose the action

density

L = − ∂aψ∗j∂aψj − V (ψ∗jψj) = −∂aψ∗j∂aj ψ − V (ψ∗jψj) (2.31)

is invariant under the global linear transformation

ψ′j = Ujkψk and ψ′∗j = U∗jkψ
∗
k (2.32)

in which the n × n unitary matrix U is a member of a representation of a

continuous Lie group such as SU(n). Since V (ψ†ψ) = V (ψ∗jψj) is bounded

below and invariant under the symmetry (2.20), it has several minima ψ0.

At these minima, the first-order partial derivatives must vanish

∂V (ψ†ψ)

∂ψk

∣∣∣∣
ψ=ψ0

= 0 and
∂V (ψ†ψ)

∂ψ∗k

∣∣∣∣
ψ=ψ0

= 0 (2.33)
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and the mixed second-order partial derivatives must be nonnegative

∂2V (ψ†ψ)

∂ψ∗k∂ψ`

∣∣∣∣
ψ=ψ0

≡ mk` ≥ 0. (2.34)

Near each minimum, the potential looks like this:

V (ψ†ψ) = V (ψ†0ψ0) + (ψ∗k − ψ∗k0)(ψ` − ψ`0)m2
k` (2.35)

apart from terms of higher orders which we ignore. The matrix m2
k` is hermi-

tian. So it can be diagonalized by a unitary transformation. Its eigenvalues

are the squares of the masses of the scalar bosons of the theory.

Near the identity, the matrix U is

U = I + iθrt
r (2.36)

in which the generators tr are hermitian, t†r = tr. Since V ((Uψ)†Uψ) =

V (ψ†ψ), the derivatives with respect to the θr’s must vanish

∂V (ψ†ψ)

∂θr
=
∂V (ψ†ψ)

∂ψj

∂ψj
∂θr

+
∂V (ψ†ψ)

∂ψ∗k

∂ψ∗k
∂θr

= 0 (2.37)

whether or not the field ψ is at a minimum of V . Now

ψj(θ) = ψj(0) + iθr t
r
jm ψm(0) and ψ∗k(θ) = ψ∗k(0)− iθr tr∗k` ψ∗` (0) (2.38)

so the derivative (2.25) is

∂V (ψ†ψ)

∂θr
=
∂V (ψ†ψ)

∂ψj
itrjm ψm −

∂V (ψ†ψ)

∂ψ∗k
itr∗k` ψ

∗
` = 0 (2.39)

because of the symmetry. Since this quantity always vanishes due to the

symmetry (2.32), its derivatives also vanish:

∂2V (ψ†ψ)

∂θr∂ψ∗n
=
∂2V (ψ†ψ)

∂ψ∗n∂ψj
itrjm ψm −

∂2V (ψ†ψ)

∂ψ∗n∂ψ
∗
k

itr∗k` ψ
∗
` −

∂V (ψ†ψ)

∂ψ∗k
itr∗kn = 0

∂2V (ψ†ψ)

∂θr∂ψi
=
∂2V (ψ†ψ)

∂ψi∂ψj
itrjm ψm −

∂2V (ψ†ψ)

∂ψi∂ψ∗k
itr∗k` ψ

∗
` +

∂V (ψ†ψ)

∂ψj
itrji = 0.

Terms like ψ∗jψ
∗
k and ψjψk don’t occur in the potential (2.35) near any of its

minima. So when all the fields are equal to their values ψk0 at a minimum

of V , then the first derivatives vanish (2.33), and we have

∂2V (ψ†ψ)

∂ψ∗n∂ψj
trjm ψm = 0 and

∂2V (ψ†ψ)

∂ψi∂ψ∗k
tr∗k` ψ

∗
` = 0. (2.40)

But the second derivatives are just the elements m`j of the mass matrix
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(2.22). So the vector trjkψ0k, unless it vanishes, is an eigenvector of the mass

matrix with eigenvalue zero

m`j t
r
jkψ0k = 0. (2.41)

But these vectors may not be linearly independent. Thus the number of

massless bosons is at most the number of generators that do not annihilate

the vacuum vector ψ0.

Example 2.1 (SU(2)) Suppose the vector

φ0 =

(
1

0

)
(2.42)

is the mean value in the vacuum 〈0|φ|0〉 of a complex doublet φ that trans-

forms under the fundamental representation of the group SU(2). Then

σ1φ0 =

(
0 1

1 0

)(
1

0

)
=

(
0

1

)
,

σ2φ0 =

(
0

i

)
, and σ3φ0 = φ0.

(2.43)

None of the three generators annihilates the vector φ0. So for a potential

like V (φ) = λ(φ†φ − µ2/λ)2, three of the four real fields that make up the

complex doublet φ are massless Goldstone bosons, while the fourth field, the

one associated with the magnitude φ†φ of the doublet, is massive.

This model is easier to understand when written in terms of the four real

fields φi that make up the doublet ψ

ψ =

(
ψ1

ψ2

)
=

1√
2

(
φ1 + iφ2
φ3 + iφ4

)
. (2.44)

We need four 4× 4 real antisymmetric matrices Σi whose effect on the four

real fields φi is the same as that of the Pauli matrices σi so that if

iσi

(
φ1 + iφ2
φ3 + iφ4

)
=

(
δφ1 + iδφ2
δφ3 + iδφ4

)
(2.45)

then Σiαβφβ = δφα. The 4 × 4 real antisymmetric matrices that represent

the matrices i~σ are

Σ1 =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 , Σ2 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , Σ3 =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 .

(2.46)
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They generate an SO(3) subgroup of SO(4) which is the symmetry group

of the action. (What breaks SO(4) to SU(2)?) They map the vacuum

vector Φ0 = (1, 0, 0, 0) into Σ1Φ0 = (0, 0, 0, 1), Σ2Φ0 = (0, 0,−1, 0), and

Σ3Φ0 = (0, 1, 0, 0). These vectors are linearly independent. So there are

three massless Goldstone bosons. The subgroup H that leaves the vacuum

Φ0 invariant is generated by three 4× 4 real symmetric matrices generators

all of which annihilate the vector Φ0.

Example 2.2 (SU(3)) Suppose the vector

ψ0 =

1

0

0

 (2.47)

is the mean value in the vacuum 〈0|ψ|0〉 of a complex triplet ψ that trans-

forms under the fundamental representation of the group SU(3). The Gell-

Mann matrices λi = 2ti lack a factor of 1/2 and so are twice the usual

generators of SU(3):

λ1 =

0 1 0

1 0 0

0 0 0

 , λ2 =

0 −i 0

i 0 0

0 0 0

 , λ3 =

1 0 0

0 −1 0

0 0 0

 ,

λ4 =

0 0 1

0 0 0

1 0 0

 , λ5 =

0 0 −i
0 0 0

i 0 0

 , λ6 =

0 0 0

0 0 1

0 1 0

 ,

λ7 =

0 0 0

0 0 −i
0 i 0

 , and λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 . (2.48)

Of the eight generators tr = λ/2 only

t6 =
1

2

0 0 0

0 0 1

0 1 0

 and t7 =
1

2

0 0 0

0 0 −i
0 i 0

 (2.49)

annihilate the vector ψ0. So if the potential is like V (ψ†ψ) = λ(ψ†ψ−µ2/λ)2,

then six of the six real fields that make up the complex triplet ψ are massless

Goldstone bosons. But surely one of the six real fields becomes massive.

So the six vectors trψ0 for r = 1, . . . , 5 and r = 8 must not be linearly

independent. Suitably normalized, they are0

1

0

 ,

0

i

0

 ,

1

0

0

 ,

0

0

1

 ,

0

0

i

 , and

1

0

0

 . (2.50)
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If we allow only real coefficients, then five of these vectors are linearly inde-

pendent, but the third vector is equal to the sixth vector.

It may be clearer to study this model in terms of its six real fields. The

potential then is

V (ψ†ψ) = λ(ψ†ψ − µ2/λ)2 = λ

 6∑
j=1

φ∗jφj −
µ2

λ

2

(2.51)

in which ψ1 = (φ1 + iφ2)/
√

2, ψ2 = (φ3 + iφ4)/
√

2, and ψ3 = (φ5 + iφ6)/
√

2.

The eight 6× 6 real antisymmetric matrices Λi that have the same effect

as the iλj = 2itj in the sense that if

iλi

φ1 + iφ2
φ3 + iφ4
φ5 + iφ6

 =

δφ1 + iδφ2
δφ3 + iδφ4
δφ5 + iδφ6

 (2.52)

then Λαβφβ = δφα are

Λ1 =



0 0 0 −1 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, Λ2 =



0 0 1 0 0 0

0 0 0 1 0 0

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(2.53)

Λ3 =



0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, Λ4 =



0 0 0 0 0 −1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0


(2.54)

Λ5 =



0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 0 0 0

0 −1 0 0 0 0


, Λ6 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 1 0

0 0 0 −1 0 0

0 0 1 0 0 0


(2.55)
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as well as

Λ7 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 −1 0 0 0

0 0 0 −1 0 0


,Λ8 =

1√
3



0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 −1 0 0

0 0 1 0 0 0

0 0 0 0 0 2

0 0 0 0 −2 0


.

(2.56)

Properly scaled, these 8 matrices provide a real 6-dimensional representation

of SU(3). Only Λ6 and Λ7 annihilate the vacuum vector ψ0j = µ/
√
λ δ1j ,

but Λ3ψ0 and Λ8ψ0 are equal and therefore linearly dependent. So there are

five Goldstone bosons and one massive boson, φ1 − µ/
√
λ.

2.3 Gauge Invariance

The reason we could generalize our formulas for muon pair production to

tau pair production is that all the charged leptons are coupled to the photon

in the same way. Although electrodynamics is an abelian gauge theory, we

might as well consider the general case of a nonabelian gauge theory.

The action density of a Yang-Mills theory is unchanged when a space-time

dependent unitary matrix U(x) changes a vector ψ(x) of matter fields to

ψ′(x) = U(x)ψ(x). Terms like ψ†ψ are invariant because ψ†(x)U †(x)U(x)ψ(x) =

ψ†(x)ψ(x), but how can kinetic terms like ∂iψ
† ∂iψ be made invariant?

Yang and Mills introduced matrices Ai of gauge fields, replaced ordinary

derivatives ∂i by covariant derivatives Di ≡ ∂i + Ai, and required that

D′iψ
′ = UDiψ or that(

∂i +A′i
)
U = ∂iU + U∂i +A′iU = U (∂i +Ai) . (2.57)

Their nonabelian gauge transformation is

ψ′(x) = U(x)ψ(x)

A′i(x) = U(x)Ai(x)U †(x)− (∂iU(x))U †(x).
(2.58)

One often writes the unitary matrix as U(x) = exp(−ig θa(x) ta) in which

g is a coupling constant, the functions θa(x) parametrize the gauge trans-

formation, and the generators ta belong to the representation that acts on

the vector ψ(x) of matter fields.

In the case of electrodynamics, the unitary matrix is a member of the

group U(1); it is just a phase factor U(x) = exp(−ie θa(x)). The abelian
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gauge transformation is

ψ′(x) = U(x)ψ(x) = e−ie θ(x)ψ(x)

A′i(x) = U(x)Ai(x)U †(x)− (∂iU(x))U †(x) = Ai(x) + ie∂iθ(x).
(2.59)

I have been using a notation in which Ai is antihermitian to simplify the

algebra. So if Ai = iAb, then the abelian gauge transformation is

ψ′(x) = U(x)ψ(x) = e−ie θ(x)ψ(x)

A′b(x) = U(x)Ab(x)U †(x) + i (∂bU(x))U †(x) = Ab(x) + e∂bθ(x).
(2.60)

Similarly, with real gauge fields, Ab = −iAi, the nonabelian gauge transfor-

mation is

ψ′(x) = U(x)ψ(x)

A′b(x) = U(x)Ab(x)U †(x) + i (∂bU(x))U †(x).
(2.61)

2.4 Abelian Higgs Mechanism

A theory with action density

L = − 1

4
FabF

ab − (Daφ)∗Daφ−m2φ∗φ− 1

2
λ (φ∗φ)2 (2.62)

in which the complex field φ is

φ =
1√
2

(φ1 + iφ2) (2.63)

and its covariant derivative is

Dbφ = (∂b + ieAb)φ (2.64)

describes charged bosons φ of mass m interacting with themselves directly

and through the massless electromagnetic fieldAb. This theory has an abelian

gauge symmetry. That is, the action density is invariant under the spacetime-

dependent U(1) transformation U(x) = exp(−ieθ(x))

ψ′(x) = U(x)ψ(x) = e−ie θ(x)ψ(x)

A′b(x) = U(x)Ab(x)U †(x) + i (∂iU(x))U †(x) = Ab(x) + e∂iθ(x).
(2.65)

But if we flip the sign of the mass term from −m2φ∗φ to m2φ∗φ

L = − 1

4
FabF

ab − (Daφ)∗Daφ+m2φ∗φ− 1

2
λ (φ∗φ)2 (2.66)
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then things get more interesting. The complex field φ now minimizes the

energy of the ground state of the theory by assuming a mean value

|φ| = m√
λ
. (2.67)

The various possible vacua lie on a circle of radius m/
√
λ in the complex

φ-plane. We choose the one in which 〈0|φ|0〉 ≡ φ0 = m/
√
λ is real and set

φ = φ0 +
1√
2

(σ1 + iσ2) =
m√
λ

+
1√
2

(σ1 + iσ2) =
m√
λ

+ σ

=
(v + σ1 + iσ2)√

2
(2.68)

where φ0 = v/
√

2 = m/
√
λ. Now the potential energy is

V = −m2φ∗φ+
1

2
λ (φ∗φ)2

= −m2

[
1

2
(v + σ1)

2 +
1

2
σ22

]
+

1

2
λ

[
1

2
(v + σ1)

2 +
1

2
σ22

]2
= − m2

2

(
v2 + 2vσ1 + σ21 + σ22

)
+
λ

8

(
v2 + 2vσ1 + σ21 + σ22

)2
(2.69)

= − m2

2

(
v2 + 2vσ1 + σ21 + σ22

)
+
λ

8

[
v4 + 2v2(2vσ1 + σ21 + σ22) + (2vσ1 + σ21 + σ22

]2
= − m2

2

(
v2 + 2vσ1 + σ21 + σ22

)
+

1

2
λv3σ1

+
1

4
λv2(σ21 + σ22) +

1

2
λv2σ21 +

1

2
λvσ1(σ

2
1 + σ22) +

λ

8
(σ21 + σ22)2 +

λ

8
v4.

Since v2 = 2m2/λ, terms linear in σ1 cancel, as do terms quadratic in σ2.

We then have

V = m2 σ21 +m

√
λ

2
σ1(σ

2
1 + σ22) +

λ

8
(σ21 + σ22)2 − m4

2λ
. (2.70)

So the theory seems to have a spinless boson σ1 of mass
√

2m and a massless

spinless Goldstone boson σ2.
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But wait. What about the kinetic action of the scalar fields? It is

Lφ,K = − (Daφ)∗Daφ = − (∂a − ieAa) (φ0 + σ∗) (∂a + ieAa) (φ0 + σ)

= − (−ieφ0Aa +D∗aσ
∗) (ieφ0A

a +Daσ)

= −
[
−ieAaφ0 + (∂a − ieAa)

(
σ1√

2
− i σ2√

2

)]
×
[
ieAaφ0 + (∂a + ieAa)

(
σ1√

2
+ i

σ2√
2

)]
(2.71)

= − e2φ20AaAa − (Daσ)∗Daσ + ieAaφ0D
aσ − ieAaφ0 (Daσ)∗

= − e2φ20AaAa − (Daσ)∗Daσ −
√

2e2AaA
aφ0σ1 −

√
2eAaφ0∂aσ2

in which

s =
1√
2

(σ1 + iσ2) . (2.72)

The gauge field Aa has acquired a mass

M =
√

2 eφ0 =
√

2
em√
λ
. (2.73)

It makes sense to change the name of this field to

Ba ≡ Aa +
1

M
∂aσ2 = Aa +

1√
2 eφ0

∂aσ2 = Aa +

√
λ√

2 em
∂aσ2. (2.74)

Note that the extra gradient of σ2 does not change the Faraday tensor

Fab = ∂aAb − ∂bAa = ∂aBb − ∂bBa. (2.75)

Apart from cubic and quartic terms and a constant, the action density is

L = − 1

4
FabF

ab − 1

2
M2BaB

a − 1

2
(∂aσ1) ∂

aσ1 −m2σ21. (2.76)

This theory describes a vector boson Ab of mass M = em
√

2/λ interact-

ing with a scalar boson σ1 of mass
√

2m, at least at low energies and low

temperatures.

An algebraically simpler way to get the same result is to use the fact that

this theory is a U(1) gauge theory, so we can rotate the complex field φ at

every point of space-time so as to make it real. Then, instead of

L = − 1

4
FabF

ab − (Daφ)∗Daφ+m2φ∗φ− 1

2
λ (φ∗φ)2 , (2.77)
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we have

L = − 1

4
FabF

ab − (D∗aφ)Daφ+m2φ2 − 1

2
λφ4

= − 1

4
FabF

ab − (∂a − ieAa)φ (∂a + ieAa)φ+m2φ2 − 1

2
λφ4

= − 1

4
FabF

ab − ∂aφ∂aφ− e2 φ2AaAa +m2φ2 − 1

2
λφ4.

(2.78)

Now, we have the simplest kind of spontaneous symmetry breaking in which

the real field φ assumes a mean value φ0 whose square is m2/λ. We choose

〈0|φ|0〉 = φ0 =
m√
λ

(2.79)

and set

φ =
m√
λ

+
σ√
2

(2.80)

where now both φ and σ are real. In these terms, L is

L = − 1

4
FabF

ab − ∂aφ∂aφ− e2AaAa φ2 +m2φ2 − 1

2
λφ4

= − 1

4
FabF

ab − 1

2
∂aσ ∂

aσ − e2AaAa
(
m√
λ

+
σ√
2

)2

+m2

(
m√
λ

+
σ√
2

)2

− 1

2
λ

(
m√
λ

+
σ√
2

)4

= − 1

4
FabF

ab − e2m2

λ
AaA

a − 1

2
∂aσ ∂

aσ −m2σ2

−
√

2

λ
me2AaA

a σ − 1

2
e2AaA

a σ2 −
√
λ

2
mσ3 − λ

8
σ4 +

m4

λ
.

(2.81)

In this unitary gauge, the theory has a real scalar boson of mass
√

2m

interacting with a massive vector boson Aa of mass M = em
√

2/λ. In the

quadratic part of L, there are no terms coupling σ to Ab. If both e and λ

are small, then perturbation theory should describe σ interacting with Ab
and with itself through the cubic and quartic terms in the second line of the

last form of this equation. This is the abelian Higgs mechanism.

One may wonder whether one can transform to the unitary gauge even

when the mass term −m2|φ|2 has the “right” sign so that the U(1) symmetry

is unbroken. The phase eθ = atan(φ2/φ1) of the required gauge transforma-

tion is not defined where it is most needed, namely in the vicinity of the

vacuum where 〈0|φ|0〉 = 0. The derivatives of the phase eθ are singular at

φ = 0.
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2.5 SO(n) Nonabelian Higgs Mechanism

Let’s start with our SO(n) theory (2.9)

L = − 1

2

n∑
i=1

∂aφi ∂
aφi +

1

2
m2φ2 − 1

4
λ
(
φ2
)2
. (2.82)

in which the sign of the mass term induces spontaneous symmetry breaking

and

φ2 =
n∑
i=1

φi φi. (2.83)

We can make this global SO(n) symmetry local by introducing n(n −
1)/2 gauge fields Afb , one for each generator tf of the group O(n). The

antihermitian gauge-field matrix is

Ab(x) = ie

n(n−1)/2∑
f=1

tfAfb (x) (2.84)

in which the imaginary antisymmetric generators obey the commutation

relations

[tf , tg] = iffgkt
k (2.85)

with totally antisymmetric structure constants ffgk. The generators are

orthogonal but not normalized

Tr(tf†tg) = kδfg (2.86)

in which the positive constant k depends upon the representation to which

the generators belong. In the defining representation of O(n), the generators

are n×n imaginary antisymmetric matrices. One may also write the matrix

of gauge fields as a linear combination of n(n − 1)/2 real antisymmetric

matrices τ f = itf

Ab(x) = e

n(n−1)/2∑
f=1

τ fAfb (x). (2.87)

One may take the τ ’s to be defined for 0 < r < c ≤ n as

τ rcik = δri δck − δci δrk. (2.88)

For this representation, the parameter k is 2

Tr τ rcτ r
′c′ = − 2 δrr′ δcc′ = − k δrr′ δcc′ . (2.89)
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(We will not bother to rescale the generators so that they obey the standard

SO(n) commutation relations with the right structure constants.)

The covariant derivative is

Db = ∂b +Ab (2.90)

The nonabelian Faraday tensor

Fik = [Di, Dk] = ∂iAk − ∂kAi + [Ai, Ak] (2.91)

transforms covariantly

F ′ik = UFikU
−1. (2.92)

The action of the nonabelian Faraday tensor is invariant

Tr
(
UFikU

−1UF ikU−1
)

= Tr
(
UFikF

ikU−1
)

= Tr
(
FikF

ik
)
. (2.93)

The action density of this theory is

L =
1

4
Tr(FikF

ik)− 1

2
(Daφ)T (Daφ) +

1

2
m2φ2 − 1

4
λ
(
φ2
)2

(2.94)

in which the sign of the trace is because the trace τikτki of a real antisym-

metric matrix is negative

τikτki = − τikτik = −(τik)
2 < 0. (2.95)

Once again, we have spontaneous symmetry breaking. In the vacuum state

|0〉, the field φ, which is a real n-vector assumes a value on the sphere of

radius |φ| = φ0 = m/
√
λ. As before, we write

φ = (φ0 + σ, π2, π3, . . . , πn, ). (2.96)

We have one scalar field σ of mass mσ =
√

2m and at most n− 1 massless

scalar fields πi, one for each of the n − 1 generators tf = −iτ f that do not

annihilate the vector

〈0|φi|0〉 = φ0

1

0
...

 . (2.97)

Look now at the kinetic action of the fields φi

LKφ = − 1

2
(Daφ)T (Daφ)

= − 1

2

n∑
i,k,`=1

φk

δki∂a +

n(n−1)/2∑
f=1

eτ fikA
f
a

δi`∂a +

n(n−1)/2∑
g=1

eτ gi`A
ga

φ`.
(2.98)
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The part of this that involves φ0 quadratically is

LKφ0 = − 1

2
e2 φ20 τ

f
i1A

f
a τ

g
i1A

ga = −1

2
e2 φ20 τ

rc
1i τ

r′c′
1i Arca A

r′c′a

=
1

2
e2 φ20 δr1δr′1δciδc′iA

rc
a A

r′c′a =
1

2

n∑
c=2

e2 φ20A
1c
a A

1ca
(2.99)

in which we used our definition (2.88) of the unscaled generators τ f = τ rc.

Thus there are n− 1 massive gauge bosons. They have absorbed the n− 1

Goldstone bosons π1, . . . , πn.

So in this O(n) gauge theory of n scalar fields, n − 1 of the scalar fields

combine with n−1 of the gauge bosons to make n−1 gauge bosons massive.

One scalar field is massive and observable. Of the n(n− 1)/2 gauge bosons

of O(n),

n(n− 1)

2
− (n− 1) = (n− 1)

(n
2
− 1
)

=
(n− 1)(n− 2)

2
(2.100)

remain massless. For O(3) and 3 scalar fields, 2 gauge fields become massive;

one remains massless; and one scalar field is massive and observable. For

O(4) and 4 scalar fields, 3 gauge fields become massive; 3 remain massless;

and one scalar field is massive and observable.
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Standard model

3.1 SU(2) Higgs Mechanism

Let’s now consider a theory of a 2-component complex scalar field φ with

action density

L = −(Daφ)†Daφ+
1

4k
Tr(FabF

ab) +m2|φ|2 − λ|φ|4 (3.1)

in which |φ|2 = |φ1|2 + |φ2|2. Here the antihermitian gauge-field matrix is

Ab = ie
1

2
σ ·Ab (3.2)

in which the σ are the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0

0 −1

)
. (3.3)

The covariant derivative is

(Dbφ)i = ∂bφi + (Ab)ijφj = ∂bφi + (ie
1

2
σ ·Ab)ijφj = ∂bφi + ie

1

2
(σk)ij A

k
b φj .

(3.4)

This action density is invariant under SU(2) transformations

φ′(x) = U(x)φ(x) = exp(−iθ(x) · σ/2)φ(x)

A′b(x) = U(x)Ab(x)U †(x) + i (∂bU(x))U †(x)

= exp(−iθ(x) · σ/2)Ab(x) exp(iθ(x) · σ/2)

+ i (∂b exp(−iθ(x) · σ/2)) exp(iθ(x) · σ/2)

(3.5)

that depend upon the space-time point x. The trace relation for the gener-

ators σ/2 is

Tr(12σi
1
2σj) =

1

2
δij , (3.6)
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so the constant k = 1/2.

Going again to the unitary gauge, we rotate the field φ to

φ =
1√
2

(
0

v + σ

)
with φ0 =

1√
2

(
0

v

)
(3.7)

in which φ20 = m2/(2λ) and v = m/
√
λ is real. None of the three generators

σk annihilates the vacuum vector, so there is the possibility of three massless

Goldstone bosons and one massive scalar boson.

The kinetic action of the Higgs field φ has a term quadratic in φ[
ie

1

2
(σk)ij A

k
b φj

]†
ie

1

2
(σm)i`A

mb φ` (3.8)

which is simpler in matrix notation

e2

4
φ†0σ

kσmφ0A
k
b A

mb. (3.9)

Symmetrizing and using the relation

σkσm = δkmI + iεkm`σ
`, (3.10)

we find at φ = φ0

e2

8
φ†0 {σ

k, σm}φ0Akb Amb =
e2

4
φ†0 δkmI φ0A

k
b A

mb

=
e2v2

4
Akb A

kb ≡ 1

2
M2Akb A

kb.

(3.11)

So all three gauge bosons get the same mass M = ev/
√

2. They absorb all

three Goldstone bosons.

What if we had put φ in the adjoint representation of SU(2)? In this case,

its mean value would have been a real three vector of some length pointing

in some direction. There would be two Goldstone bosons and one massive

scalar boson. So one gauge boson would have remained massless. In fact,

this is a model we already have studied: it is just the SO(3) gauge theory

with the Higgs in the defining representation.

We now skip to section 3.7.

3.2 SU(2) with the Higgs in the adjoint representation

This section may be skipped on a first reading.
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If the Higgs field h is a matrix that transforms in the adjoint representa-

tion, so that h′ = UhU †, then its covariant derivative is

Dbh = ∂bh+ [Ab, h] (3.12)

in which the anti hermitian gauge field is

Ab = ie
1

2
σ ·Ab (3.13)

which is (3.2). The mass term for the gauge fields arises from the action of

the Higgs field

− Tr
[
(Dbh)†Dbh

]
= −Tr

[
(∂bh+ [Ab, h])†(∂bh+ [Ab, h])

]
. (3.14)

If h0 is the mean value of the Higgs field in the vacuum, then this kinetic

action makes the mass term

− Tr
(

[Ab, h0]
†[Ab, h0]

)
= −Tr

(
[h†0, A

†
b][Ab, h0]

)
= −Tr

(
[Ab, h

†
0][Ab, h0]

)
(3.15)

since A is antihermitian. When h0 is a multiple of the identity matrix, the

commutator [Ab, h0] vanishes, and all the gauge bosons remain massless.

3.3 Which gauge fields are left massless?

Suppose the Higgs field φ has a mean value φ0 in the vacuum. Suppose the

generator cbt
b sends φ0 to zero

cb t
b
ij φ

0
j = 0. (3.16)

The mass-squared term is

1

2
AaµM

2
abA

bµ = Aaµ φ
0†
i t

a
ij t

b
jkφ

0
k A

bµ (3.17)

and so the vector (c1, c2, . . . ) is an eigenvector of the matrix M2
ab with eigen-

value zero
1

2
M2
ab cb = φ0†i t

a
ij (tbjkφ

0
k cb) = 0. (3.18)

Thus the diagonal form of this matrix is

M2
ab =

c1c2
...

 0
(
c1 c2 . . .

)
+

d1d2
...

md

(
d1 d2 . . .

)
+ . . . , (3.19)
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and so coefficient or mass of the (unnormalized) gauge field

Aµ = cbA
b
µ (3.20)

in the mass-squared term (3.17) is zero:

1

2
AaµM

2
abA

bµ =
1

2
(caA

a
µ) 0 (cbA

bµ) +
1

2
(daA

a
µ)md (dbA

bµ) + . . . . (3.21)

and so a linear combination of gauge fields

Aµ =
cbA

b
µ√

c21 + c22 + . . .
(3.22)

remains massless if the corresponding linear combination of generators sends

the mean value φ0 of the Higgs field to zero (3.16) or equivalently if the

unitary transformation U = exp(icb t
b) leaves that mean value invariant

Uφ0 = eicb t
b
φ0 = φ0. (3.23)

The corresponding charge cbT
b leaves the vacuum invariant

U |φ0〉 = eicb T
b |φ0〉 = |φ0〉 (3.24)

and so generates an unbroken symmetry.

3.4 SU(3) Pure Gauge Theory

The Gell-Mann matrices are

λ1 =

0 1 0

1 0 0

0 0 0

 , λ2 =

0 −i 0

i 0 0

0 0 0

 , λ3 =

1 0 0

0 −1 0

0 0 0

 ,

λ4 =

0 0 1

0 0 0

1 0 0

 , λ5 =

0 0 −i
0 0 0

i 0 0

 , λ6 =

0 0 0

0 0 1

0 1 0

 ,

λ7 =

0 0 0

0 0 −i
0 i 0

 , and λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 . (3.25)

The generators ta of the 3 × 3 defining representation of SU(3) are these

Gell-Mann matrices divided by 2

ta = λa/2 = ta = λa/2 (3.26)

(Murray Gell-Mann, 1929–).
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The eight generators ta are orthogonal with k = 1/2

Tr (tatb) =
1

2
δab (3.27)

and satisfy the commutation relation

[ta, tb] = ifabc tc. (3.28)

A trace formula gives us the SU(3) structure constants as

fabc = (−i/k)Tr([ta, tb]tc) = −2iTr ([ta, tb]tc) . (3.29)

They are real and totally antisymmetric with f123 = 1, f458 = f678 =
√

3/2,

and f147 = −f156 = f246 = f257 = f345 = −f367 = 1/2.

While no two generators of SU(2) commute, two generators of SU(3) do.

In the representation (3.25,3.26), t3 and t8 are diagonal and so commute

[t3, t8] = 0. (3.30)

They generate the Cartan subalgebra of SU(3).

The gauge-field matrix is

Aµ(x) = ig

8∑
b=1

tbAbµ(x) (3.31)

in the defining representation. The covariant derivative in that representa-

tion is

Dµ = I∂µ +Aµ(x) = I∂µ + ig

8∑
b=1

tbAbµ(x). (3.32)

The Faraday matrix is

Fµν = [Dµ, Dν ] = [I∂µ +Aµ(x), I∂ν +Aν(x)] = ∂µAν − ∂νAµ + [Aµ, Aν ]

(3.33)

in matrix notation. With more indices exposed, it is

(Fµν)cd = (∂µAν − ∂νAµ + [Aµ, Aν ])cd

= ig

8∑
b=1

tbcd

(
∂µA

b
ν − ∂νAbµ

)
+

(
[ig

8∑
b=1

tbAbµ, ig

8∑
e=1

teAeν ]

)
cd

.

(3.34)
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To avoid the sum signs, we sum over repeated indices from 1 to 8

(Fµν)cd = igtbcd

(
∂µA

b
ν − ∂νAbµ

)
− g2AbµAeν

(
[tb, te]

)
cd

= igtbcd

(
∂µA

b
ν − ∂νAbµ

)
− g2AbµAeνifbef t

f
cd

= igtbcd

(
∂µA

b
ν − ∂νAbµ

)
− ig2AbµAeνfbef t

f
cd

= igtbcd

(
∂µA

b
ν − ∂νAbµ

)
− ig2AfµAeνffebtbcd

= igtbcd

(
∂µA

b
ν − ∂νAbµ − gAfµAeνffeb

)
= igtbcd

(
∂µA

b
ν − ∂νAbµ − gfbfeAfµAeν

)
= igtbcd F

b
µν

(3.35)

where

F bµν = ∂µA
b
ν − ∂νAbµ − gfbfeAfµAeν (3.36)

is the Faraday tensor.

The action density of this tensor is

LF = − 1

4
F bµνF

µν
b (3.37)

in which raising and lowering an index of a compact group is of cosmetic,

not cosmic, significance. The trace of the square of the Faraday matrix is

Tr [FµνF
µν ] = Tr

[
igtb F bµν igt

c Fµνc

]
= − g2F bµν Fµνc Tr(tbtc) = −g2F bµν Fµνc kδbc

= − kg2 F bµν F
µν
b .

(3.38)

So the Faraday action density is

LF = − 1

4
F bµνF

µν
b =

1

4kg2
Tr [FµνF

µν ] =
1

2g2
Tr [FµνF

µν ] . (3.39)

The theory described by this action density, without scalar or spinor fields,

is called pure gauge theory.

3.5 Quantum Chromodynamics

If we add massless quarks in the fundamental or defining representation,

then we get the theory of the strong interactions called Quantum Chro-

modynamics. Thus, let ψ be a complex 3-vector of Dirac fields

ψ =

ψrψg
ψb

 (3.40)
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(so 12 fields in all). This complex 12-vector could represent u or “up” quarks.

We use the covariant derivative

Dµ = I∂µ +Aµ(x) = I∂µ + ig

8∑
b=1

tbAbµ(x). (3.41)

The action density then is

L =
1

2g2
Tr [FµνF

µν ]− ψ (γµDµ +m)ψ. (3.42)

Nonperturbative effects are supposed to “confine” the quarks and massless

gluons. There are 6 known “flavors” of quarks—u, d, c, s, t, b.

3.6 SU(3) Higgs Mechanism

This section may be skipped on a first reading.

Let’s now add a triplet of complex scalar fields that transform according

to the defining representation

φ′b(x) = Ubc(x)φc(x) =
[
e−iθ

a(x)ta
]
bc
φc(x). (3.43)

The SU(3) gauge fields will transform as

A′µ(x) = U(x)Aµ(x)U †(x) + i(∂µU(x))U †(x)

= e−iθ
a(x)ta Aµ(x) eiθ

a(x)ta + i(∂µe
−iθa(x)ta)eiθ

a(x)ta
(3.44)

in which the gauge-field matrix is

Aµ(x) = ig
8∑
b=1

tbAbµ(x) (3.45)

in the defining representation.

Suppose the action density is

L =
1

4kg2
Tr [FµνF

µν ]− (Dµφ)†Dµφ+m2 |φ|2 − 1

2
λ2 |φ|4. (3.46)

I have fiddled with the coefficients so as to avoid extra factors and roots of

2. Once again, we have spontaneous breaking of the local SU(3) symmetry

as the vacuum arranges itself so as to give the scalar field a mean value

φ0 ≡ 〈0|φa(x)|0〉 = vδa3 =
m

λ
δa3 (3.47)

so that

φ3 =
1√
2

(
√

2v + σ + iφ3i) = v +
1√
2

(σ + iφ3i) (3.48)
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in which the choice of the third direction was arbitrary. The complex fields

φ1 and φ2, and the imaginary part of φ3 remain massless, but the real part

of φ3 acquires the mass
√

2m.

Now instead of (3.11), we have

e2

8
φ†0 {λ

k, λm}φ0Akb Amb ≡
1

2
M2Akb A

kb. (3.49)

The gauge fields that don’t move φ0, that is, the ones that have

λmφ0 = 0 (3.50)

remain massless. So A1, A2, and A3 remain massless. The other five gauge

bosons, A4 . . . A8 absorb the five massless scalar fields and acquire masses.

Homework set 3: Find those masses.

Let’s put the scalar fields in the adjoint representation of SU(3). Now

there are 8 real scalar fields, and we can write them as an 8-vector φ or as

a 3× 3 matrix

Φ =

8∑
a=1

taφa. (3.51)

The covariant derivative now is

Dµφ = (∂µ + igAµ)φ = (∂µ + igAbµT
b)φ (3.52)

where the generators in the adjoint representation are

T bac = ifabc (3.53)

in which the structure constants fabc are real and totally antisymmetric.

Thus, we have

(Dµφ)a = (δac∂µ + igAµac)φc = ∂µφa − gAbµfabcφc. (3.54)

We also can write this as

DµΦ = ∂µΦ + g[Aµ,Φ] = ta∂µφa + ig[tb, tc]Abµφ
c = ta∂µφa + igifbcat

aAbµφ
c

= ta∂µφa − gtaAbµfabcφc = ta
(
∂µφa − gAbµfabcφc

)
= ta(Dµφ)a.

(3.55)

Now the gauge-boson mass term inside 1
2(Dµφ)a(Dµφ)a is the proportional

to the trace

g2Tr
(

[ta,Φ][tb,Φ]
)
AaµA

µ
b . (3.56)

So is the vacuum gives Φ the mean value

Φ0 = 〈0|Φ|0〉, (3.57)
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then the gauge-boson mass term is proportional to the trace

g2Tr
(

[ta,Φ0][t
b,Φ0]

)
AaµA

µ
b . (3.58)

So those linear combinations of gauge fields times generators that commute

with Φ0 remain massless.

For instance, if

Φ0 ∝ λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 , (3.59)

then the gauge bosons A1, A2, A3 and A8 remain massless, while A4, A5,

A6, and A7 become massive. Interestingly, the SU(3) symmetry is broken

to SU(2)× U(1).

On the other hand, if

Φ0 ∝ λ3 =

1 0 0

0 −1 0

0 0 0

 , (3.60)

then only A3 and A8 remain massless, and the unbroken symmetry is just

U(1)× U(1).

3.7 GSW Electroweak Model and the Higgs Mechanism

The local gauge group is SU(2)` × U(1). It acts on a complex doublet (or

2-vector) of scalar fields H, the Higgs. What’s weird is that it acts only on

the “left-handed” quarks and leptons. So it violates parity maximally.

Let’s leave out the fermions for the moment and focus just on the Higgs

and the gauge fields. The gauge transformation is

H ′(x) = U(x)H(x)

A′µ(x) = U(x)Aµ(x)U †(x) + (∂µU(x))U †(x)
(3.61)

in which the 2× 2 unitary matrix U(x) is

U(x) = exp

[
i g
σa

2
αa(x) + i g′

Y

2
β(x)

]
. (3.62)

The generators here are the 3 Pauli matrices and the hypercharge Y which

is proportional to the identity matrix and takes on different values for dif-

ferent fields.
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The action density of the theory (without the fermions) is

L = − (DµH)†DµH +
1

4k
Tr(FµνF

µν) +m2|H|2 − λ|H|4 (3.63)

in which the covariant derivative for the Higgs doublet is

DµH =

(
I∂µ + i g

σa

2
Aaµ + i g′

Y

2
Bµ

)
H. (3.64)

The hypercharge of the Higgs is Y = 1, so this covariant derivative is

DµH =

(
I∂µ + i g

σa

2
Aaµ + i g′

1

2
Bµ

)
H. (3.65)

The minimum of the Higgs potential is where

0 =
∂V

∂|H|2
= 2λ|H|2 −m2. (3.66)

So

|H| = m√
2λ

=
v√
2
. (3.67)

Going to unitary gauge, we transform this mean value to

H0 = 〈0|H(x)|0〉 =
1√
2

(
0

v

)
. (3.68)

In unitary gauge, the Higgs potential is

V (v) = − 1

2
m2v2 +

1

4
λv4, (3.69)

and its second derivative is

V ′′(v) = 3λv2 −m2 = 2m2 = m2
H . (3.70)

The mass of the Higgs then is

mH =
√

2m =
√

2λ v. (3.71)

Experiments at SLAC and LEP2 (see below) revealed value of v to be

v = 246 GeV. (3.72)

In 2012, experiments at the LHC showed the Higgs’s mass to be

mH = 125 GeV. (3.73)

The self coupling λ therefore is

λ =
m2
H

2 v2
=

1

2

(
125

246

)2

= 0.129. (3.74)



3.7 GSW Electroweak Model and the Higgs Mechanism 35

In unitary gauge and after spontaneous symmetry breaking, the mass

terms for the gauge bosons that emerge from − (DµH)†DµH are

LM = − 1

2
(0, v)

(
g
σa

2
Aaµ + g′

1

2
Bµ

)(
g
σa

2
Aµa + g′

1

2
Bµ

)(
0

v

)
= − 1

8
(0, v)

(
gA3

µ + g′Bµ g(A1
µ − iA2

µ)

g(A1
µ + iA2

µ) −gA3
µ + g′Bµ

)
×
(
gAµ3 + g′Bµ g(Aµ1 − iA

µ
2 )

g(Aµ1 + iAµ2 ) −gAµ3 + g′Bµ

)(
0

v

)
(3.75)

= − v2

8

(
g(A1

µ + iA2
µ), −gA3

µ + g′Bµ
)( g(Aµ1 − iA

µ
2 )

−gAµ3 + g′Bµ

)
= − v2

8

[
g2
(
A1
µA

µ
1 +A2

µA
µ
2

)
+
(
−gA3

µ + g′Bµ
) (
−gAµ3 + g′Bµ

)]
.

The normalized complex, charged gauge bosons are

W±µ =
1√
2

(
A1
µ ∓ iA2

µ

)
(3.76)

and the normalized neutral one is

Zµ =
1√

g2 + g′2

(
gA3

µ − g′Bµ
)
. (3.77)

The orthogonal, normalized gauge boson

Aµ =
1√

g2 + g′2

(
g′A3

µ + g Bµ
)

(3.78)

remains massless. It is the photon.

In terms of these properly normalized fields, the mass terms are

LM = − g2v2

4
W−µ W

+µ − (g2 + g′2)v2

8
ZµZ

µ. (3.79)

So the W+ and the W− get the same mass

MW = g
v

2
= 80.385 GeV/c2. (3.80)

while the Z (also called the Z0) has mass

MZ =
√
g2 + g′2

v

2
= 91.1876 GeV/c2. (3.81)

Measurement of these masses at SLAC and LEP2 determined and the iden-

tification of the charge of the proton as

0 < e =
gg′√
g2 + g′2

(3.82)
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led to the determination of g, g′, and v.

Why do three gauge bosons become massive? Because there are three

Goldstone bosons corresponding to three ways of moving 〈0|H|0〉 without

changing the Higgs potential. Why does one gauge boson stay massless?

Because one linear combination of the generators of SUL(2) ⊗ U(1) maps

〈0|H|0〉 to zero, and so does not make an eigenstate of the gauge-boson mass

matrix with eigenvalue zero.

In terms of these mass eigenstates, the original gauge bosons are

A1
µ =

1√
2

(
W+
µ +W−µ

)
A2
µ =

1

i
√

2

(
W−µ −W+

µ

)
A3
µ =

1√
g2 + g′2

(
g′Aµ + gZµ

)
Bµ =

1√
g2 + g′2

(
gAµ − g′Zµ

)
.

(3.83)

Thus, the covariant derivative for a fermion of U(1) hypercharge Y and

coupling g to the SU(2)` gauge fields is

Dµ = I∂µ + i g
σa

2
Aaµ + i g′

Y

2
Bµ

= I∂µ + i g

[
σ1
2

1√
2

(
W+
µ +W−µ

)
+
σ2
2

1

i
√

2

(
W−µ −W+

µ

)
+
σ3
2

1√
g2 + g′2

(
g′Aµ + gZµ

) ]
+ i g′

Y

2

1√
g2 + g′2

(
gAµ − g′Zµ

)
= I∂µ + i

g√
2

(
W+
µ T

+ +W−µ T
−)+ i

1√
g2 + g′2

Zµ

(
g2T 3 − g′2Y

2

)
+ i

gg′√
g2 + g′2

Aµ

(
T 3 +

Y

2

)
.

(3.84)

So the electric charge operator is

Q = T 3 +
Y

2
(3.85)

and the absolute value of the charge of the electron is

0 < e =
gg′√
g2 + g′2

(3.86)
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in which

T± =
1

2
(σ1 ± iσ2) . (3.87)

The left-handed leptons have Y = −1; the left-handed quarks have Y = 1/3;

the right-handed charged leptons have Y = −2; the right-handed up-quarks

have Y = 4/3; the right-handed down-quarks have Y = −2/3; the Higgs

boson has Y = 1; and the gauge bosons have Y = 0. The electron neutrino

and the electron fit into the doublet

E` =

(
νe
e

)
. (3.88)

So the charge of the electron is

− e = − gg′√
g2 + g′2

. (3.89)

The charge of the neutrino is zero.

The fine-structure constant is

α =
e2

4π~c
= 1/137.035 999 074(44) ≈ 1/137.036. (3.90)

The photon-lepton term then is

gg′√
g2 + g′2

Aµ

(
T 3 +

Y

2

)
E` = eAµ

(
T 3 +

Y

2

)
E`

= eAµ

(
0 0

0 −1

)(
νe
e

)
= eAµ

(
0

−e

) (3.91)

in which the first e is the absolute value (3.86) of the charge of the electron

and the second (−e) is the field of the electron.

The weak mixing angle θw is defined by(
Z

A

)
=

(
cos θw − sin θw
sin θw cos θw

)(
A3

B

)
. (3.92)

Our equations (3.77 and 3.78) identify these trigonometric values as

cos θw =
g√

g2 + g′2
and sin θw =

g′√
g2 + g′2

. (3.93)

Since the charge is Q = T 3 + Y/2, we can use Q− T 3 instead of Y/2, so

that the coupling to the Z is

1√
g2 + g′2

Zµ

[
g2T 3 − g′2Y

2

]
=

1√
g2 + g′2

Zµ
[
(g2 + g′2)T 3 − g′2Q

]
(3.94)
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and the coupling to the photon is

gg′√
g2 + g′2

Aµ

(
T 3 +

Y

2

)
=

gg′√
g2 + g′2

AµQ. (3.95)

We also have

g2 + g′2√
g2 + g′2

=
√
g2 + g′2 =

g

cos θw
and (3.96)

g′2√
g2 + g′2

=
√
g2 + g′2

g′2

g2 + g′2
=

g

cos θw
sin2 θw. (3.97)

So the coupling to the Z is

1√
g2 + g′2

Zµ
[
(g2 + g′2)T 3 − g′2Q

]
=

g

cos θw
Zµ
(
T 3 − sin2 θwQ

)
. (3.98)

The charge of the proton is

e = g sin θw, (3.99)

and the coupling to the photon A is

gg′√
g2 + g′2

AµQ = g sin θw AµQ = eAµQ. (3.100)

In these terms, the covariant derivative (3.84) is

Dµ = I∂µ + i
g√
2

(
W+
µ T

+ +W−µ T
−)

+ i
1√

g2 + g′2
Zµ

(
g2T 3 − g′2Y

2

)
+ i

gg′√
g2 + g′2

Aµ

(
T 3 +

Y

2

)
= I∂µ + i

g√
2

(
W+
µ T

+ +W−µ T
−)

+ i
g

cos θw
Zµ
(
T 3 − sin2 θwQ

)
+ ieAµQ

(3.101)

in which the matrices T± and T 3 are those of the representation to which the

fields they act on belong. When acting on left-handed fermions, they are

half the Pauli matrices, T = 1
2σ. When acting on right-handed fermions,

they are zero, T = 0. Since g = e/ sin θw, the couplings involve one new

parameter θw.

Our mass formulas (3.80 and 3.81) for the W and the Z show that their
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masses are related by

MW = g
v

2
=

g√
g2 + g′2

√
g2 + g′2

v

2
= cos θw

√
g2 + g′2

v

2
= cos θwMZ .

(3.102)

Experiments have determined the masses and shown that

sin2 θw = 0.231 or θw = 0.233 (3.103)

and that

v = 246.22 GeV. (3.104)

3.8 Quark and Lepton Interactions

The right-handed fermions ur, dr, er, and νe,r are singlets under SUL(2)⊗
UY (1). So they have T 3 = 0. The definition (3.85) of the charge Q

Q = T 3 +
Y

2
(3.105)

then implies that

Yr = 2Qr. (3.106)

That is, Yνe,r = 0, Yer = −2, Yur = 4/3, and Ydr = −2/3.

The left-handed fermions are in doublets

L` =

(
νe
e−

)
and Q` =

(
u

d

)
(3.107)

with T 3 = ±1/2. So the choices YL` = −1 and YQ` = 1/3 and the definition

(3.85) of the charge Q give the right charges:

QL` = Q

(
νe
e−

)
=

(
0

−e−
)

and QQ` = Q

(
u

d

)
=

(
2u/3

−d/3

)
. (3.108)

Fermion-gauge-boson interactions are due to the covariant derivative (3.101)

acting on either the left- or right-handed fields. On right-handed fermions,

the covariant derivative is just

Dr
µ = I∂µ + i

g

cos θw
Zµ
(
− sin2 θwQ

)
+ ieAµQ

= I∂µ − ie
sin θw
cos θw

ZµQ+ ieAµQ

= I∂µ − ie sin θw tan θw ZµQ+ ieAµQ.

(3.109)

So the covariant derivative of a neutral right-handed fermion is just the
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ordinary derivative. And the right-handed neutrino does not interact except

with gravity.

On left-handed fermions, the covariant derivative is

D`
µ = I∂µ + i

g√
2

(
W+
µ T

+ +W−µ T
−)

+ i
g

cos θw
Zµ
(
T 3 − sin2 θwQ

)
+ ieAµQ

= I∂µ + i
e√

2 sin θw

(
W+
µ T

+ +W−µ T
−)

+ i
e

cos θw
Zµ

(
T 3

sin θw
− sin θwQ

)
+ ieAµQ.

(3.110)

For the first family or generation of quarks and leptons, the kinetic

action density is

Lk = − L` /D
`
L` − Lr /D

r
Lr −Q` /D

`
Q` −Qr /D

r
Qr (3.111)

in which /D ≡ γµDµ. The 4 × 4 matrix γ5 = γ5 plays the role of a fifth

(spatial) gamma matrix γ4 = γ5 in 5-dimensional space-time in the sense

that the anticommutator

{γa, γb} = 2ηab (3.112)

in which η is the 5×5 diagonal matrix with η00 = −1 and ηaa = 1 for a = 1,

2, 3, 4. In Weinberg’s notation, γ5 is

γ5 =

(
1 0

0 −1

)
. (3.113)

The combinations

P` =
1

2
(1 + γ5) and Pr =

1

2
(1− γ5) (3.114)

are projection operators onto the left- and right-handed fields. That is,

P`Q = Q` and P`Q` = Q` (3.115)

with a similar equation for Pr. We can write Lk as

Lk = − L /D` 1
2(1 + γ5)L− L /D

r 1
2(1− γ5)L

−Q /D
` 1
2(1 + γ5)Q−Q /D

r 1
2(1− γ5)Q

= − 1

2

[
L /D

`
(1 + γ5)L+ L /D

r
(1− γ5)L

s+Q /D
`
(1 + γ5)Q+Q /D

r
(1− γ5)Q

]
.

(3.116)
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Homework set 4, problem 1: Show that

L` /D
`
L` = [12(1 + γ5)L]†iγ0 /D

` 1
2(1 + γ5)L = L /D

` 1
2(1 + γ5)L. (3.117)

Recall that in Weinberg’s notation

ψ = ψ†iγ0 = ψ†β = ψ†
(

0 I

I 0

)
(3.118)

in which I is the 2× 2 identity matrix.

3.9 Quark and Lepton Masses

The Higgs mechanism also gives masses to the fermions, but somewhat ar-

bitrarily. Dirac’s action density (1.26) has as its mass term

−mψψ = − imψ†γ0ψ = −imψ†γ0(P` + Pr)ψ = −imψ†γ0(P 2
` + P 2

r )ψ.

(3.119)

Since {γ0, γ5} = 0, this mass term is

−mψψ = − imψ†Prγ
0P`ψ − imψ†P`γ

0Prψ

= − im (Prψ)†γ0P`ψ − im (P`ψ)†γ0Prψ

= − imψ†rγ
0ψ` − imψ†`γ

0ψr = −mψrψ` −mψ`ψr.

(3.120)

Incidentally, because the fields ψ` and ψr are independent, we can redefine

them

ψ′` = eiθ ψ` (3.121)

ψ′r = eiφ ψr (3.122)

at will. Such a redefinition changes the mass term to

−m′ ψrψ` −m′∗ ψ`ψr = −mei(θ−φ) ψrψ` −me−i(θ−φ) ψ`ψr. (3.123)

So the phase of a Dirac mass term has no significance.

The definition (3.118) of ψ shows that the Dirac mass term is

−mψψ = −mψ†βψ = −m
(
ψ†` , ψ

†
r

)(0 I

I 0

)(
ψ`
ψr

)
= −m

(
ψ†`ψr + ψ†rψ`

)
.

(3.124)

These mass terms are invariant under the Lorentz transformations

ψ′` = exp(−z · σ)ψ`

ψ′r = exp(z∗ · σ)ψr (3.125)
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because

ψ′†` ψ
′
r = ψ†` exp(−z∗ · σ) exp(z∗ · σ)ψr = ψ†` ψr

ψ′†r ψ
′
` = ψ†r exp(z · σ) exp(−z · σ)ψ` = ψ†r ψ`.

(3.126)

They are not invariant under rigid, let alone local, SU(2)` transforma-

tions. But we can make them invariant by using the Higgs field H(x). For

instance, the quantity Q†`Hdr is invariant under local SU(2)` transforma-

tions. In unitary gauge, its mean value in the vacuum is

〈0|Q†`Hdr|0〉 =
1√
2
v 〈0|d†`dr|0〉. (3.127)

So the term

− cdQ†`Hdr − c
∗
d d
†
rH
†Q` (3.128)

is invariant, and in the vacuum it is

〈0| − cdQ†`Hdr − c
∗
d d
†
rH
†Q`|0〉 =

1√
2
v 〈0| − cd d†`dr − c

∗
d d
†
rd`|0〉 (3.129)

which gives to the d quark the mass

md =
|cd|√

2
v. (3.130)

Note that we must add one new parameter cd to get one new mass md. This

parameter cd is complex in general, but the mass md depends only upon the

absolute value and not upon its phase of cd.

Similarly, the term

− ce L†`Her − c
∗
e e
†
rH
†L` (3.131)

is invariant, and in the vacuum it is

〈0| − ce L†`Her − c
∗
e e
†
rH
†Q`|0〉 =

1√
2
v 〈0| − ce e†`er − c

∗
e e
†
re`|0〉 (3.132)

which gives to the electron the mass

me =
|ce|√

2
v. (3.133)

Again, we must add one new (complex) parameter ce to get one new mass

me.

The mass of the up quark requires a new trick. The Higgs field H trans-

forms under SU(2)` × U(1) as

H ′(x) = exp

[
i g
σa

2
αa(x) + i g′

Y

2
β(x)

]
H(x). (3.134)
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If for clarity, we leave aside the U(1) part for the moment, then the Higgs

field H transforms under SU(2)` as

H ′(x) = exp

[
i g
σa

2
αa(x)

]
H(x). (3.135)

Let us use H∗ to be the complex column vector whose components are H†1
and H†2 . How does σ2H

∗ transform under SU(2)`? Suppressing our explicit

mention of the space-time dependence and using the asterisk to mean hermi-

tian conjugation when applied to operators but complex conjugation when

applied to matrices and vectors, we have, since σ2 is imaginary with σ22 = I

while σ1 and σ3 are real,

(σ2H
∗)′ = σ2

[
exp

(
i g
σa

2
αa
)
H

]∗
= σ2 exp

(
−i g σ

∗
a

2
αa
)
H∗

= σ2 exp

(
−i g σ

∗
a

2
αa
)
σ2σ2H

∗ = exp

(
i g
σa

2
αa
)
σ2H

∗.

(3.136)

Thus, the term

− cuQ†`σ2H
∗ur − c∗uu†rHTσ2Q` (3.137)

is invariant under SU(2)`. In the vacuum of the unitary gauge, it is

〈0| − cuQ†`σ2H
∗ur − c∗uu†rHTσ2Q`|0〉 =

1√
2
v〈0|icuu†`ur − ic

∗
uu
†
ru`|0〉

(3.138)

which gives the up quark the mass

mu =
|cu|√

2
v. (3.139)

Analogous terms can give masses to neutrinos. But why are the constants

cν smaller by 106?

But there are three families of generations of quarks and leptons on which

the gauge fields act simply:

F1 =


u

d

νe
e


′

, F2 =


c

s

νµ
µ


′

, and F3 =


t

b

ντ
τ


′

. (3.140)
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The quark and lepton flavor families are

Q′1 =

(
u

d

)′
, Q′2 =

(
c

s

)′
, and Q′3 =

(
t

b

)′
;

L′1 =

(
νe
e

)′
, L′2 =

(
νµ
µ

)′
, and L′3 =

(
ντ
τ

)′
.

(3.141)

These are called the flavor eigenstates or more properly flavor eigenfields,

designated here with primes. They are the ones on which the W± act simply.

The weak interactions useW−µ T
− to map the flavor up fields u′1 = u′, u′2 = c′,

u′3 = t′ into the flavor down fields d′1 = d′, d′2 = s′, d′3 = b′, and W+
µ T

+ to

map the flavor down fields d′i into the flavor up fields u′i.

The action density

3∑
i,j=1

−cdij Q′†`iHd
′
rj − c∗dij d

′†
rjH

†Q′`i (3.142)

gives for the d′, s′, and b′ quarks the mixed mass terms

v√
2

3∑
i,j=1

−cdij d′†`id
′
rj − c∗dij d

′†
rjd
′
`i. (3.143)

The 3× 3 mass matrix Md with entries

[Md]ij =
v√
2
cdij (3.144)

need have no special properties. It need not be hermitian because for each i

and j, the term (3.143) is hermitian. But every 3× 3 complex matrix has a

singular-value decomposition

Md = LdΣdR
†
d (3.145)

in which Ld and Rd are 3 × 3 unitary matrices, and Σd is a 3 × 3 diagonal

matrix with nonincreasing positive singular values on its main diagonal.

The singular value decomposition works for any N ×M (real or) complex

matrix. Every complex M × N rectangular matrix A is the product of an

M × M unitary matrix U , an M × N rectangular matrix Σ that is zero

except on its main diagonal which consists of its nonnegative singular values

Sk, and an N ×N unitary matrix V †

A = U ΣV †. (3.146)

This singular-value decomposition is a key theorem of matrix algebra. One
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can use the Matlab command “[U,S,V] = svd(A)” to perform the svd A =

USV †.

The singular values of Σd are the masses mb, ms, and md:

Σd =

mb 0 0

0 ms 0

0 0 md

 . (3.147)

So the mass eigenfields of the left and right down-quark fields are

dri = R†dijd
′
rj and d†`i = d′†`jLdji or d`i = L†dijd`j . (3.148)

The inverse relations are

d′ri = Rdijdrj and d′†`i = d†`jL
†
dji or d′`i = Ldijd`j (3.149)

or in matrix notation

d′r = Rd dr, d′†r = d†r R
†
d, d′†` = d†`L

†
d, and d′` = Ld d` (3.150)

in which

d` =

bs
d


`

(3.151)

are the down-quark fields of definite masses.

Similarly, the up quark action density

3∑
i,j=1

−cuijQ′†`iσ2H
∗u′rj − c∗uiju

′†
rjH

Tσ2Q
′
`i (3.152)

gives for the three known families the mixed mass terms

iv√
2

3∑
i,j=1

cuiju
′†
`i u
′
rj − c∗uiju

′†
rj u
′
`i. (3.153)

The 3× 3 mass matrix Mu with entries

[Mu]ij =
iv√

2
cuij (3.154)

need have no special properties. It need not be hermitian because for each

i and j, the term (3.153) is hermitian. But every 3× 3 complex matrix Mu

has a singular value decomposition

Mu = LuΣuR
†
u (3.155)

in which Lu and Ru are 3× 3 unitary matrices, and Σu is a 3× 3 diagonal
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matrix with nonincreasing positive singular values on its main diagonal.

These singular values are the masses mt, mc, and mu:

Σu =

mt 0 0

0 mc 0

0 0 mu

 . (3.156)

So the mass eigenfields of the left and right up-quark fields are

uri = R†uiju
′
rj and u†`i = u′†`jLuji or u`i = L†uiju

′
`j . (3.157)

The inverse relations are

u′ri = Ruijurj and u′†`i = u†`jL
†
uji or u′`i = Luiju`j (3.158)

or in matrix notation

u′r = Ru ur, u′†r = u†r R
†
u u′†` = u†`L

†
u, and u′` = Luu` (3.159)

in which

u` =

tc
u


`

(3.160)

are the up-quark fields of definite masses.

3.10 CKM Matrix

We will use the labels u, c, t and d, s, b for the states that are eigenstates of

the quadratic part of the hamiltonian after the Higgs mechanism has given a

mean value to the real part of the neutral Higgs boson in the unitary gauge.

The u, c, t quarks have the same charge 2e/3 > 0 and the same T 3 = 1/2, so

they all have the same electroweak interactions. Similarly, the d, s, b quarks

have the same charge −e/3 < 0 and the same T 3 = −1/2, so they also all

have the same electroweak interactions.

The right-handed covariant derivative (3.109)

Dr
µ = I∂µ − ie sin θw tan θw ZµQ+ ieAµQ (3.161)

just sends the fields of these mass eigenstates into themselves multiplied by

their charge and either a Z or a photon. That is,

u′†r D
r
µu
′
r = u†rR

†
uD

r
µRuur = u†rD

r
µur

d′†r D
r
µd
′
r = d†rR

†
dD

r
µRddr = d†rD

r
µdr

(3.162)

In these terms, the interactions of the Z and the photon with the right-

handed fields are diagonal both in mass and in flavor.
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But the left-handed covariant derivative (3.110) is

D`
µ = I∂µ + i

e√
2 sin θw

(
W+
µ T

+ +W−µ T
−)

+ i
e

cos θw
Zµ

(
T 3

sin θw
− sin θwQ

)
+ ieAµQ.

(3.163)

So we have

(
u′†` d′†`

)
D`
µ

(
u′`
d′`

)
=
(
u†`L

†
u d†`L

†
d

)
D`
µ

(
Lu u`
Ld d`

)
. (3.164)

Some of the unitary matrices just give unity, L†uLu = I and L†dLd = I like

R†uRu = I and R†dRd = I in the right-handed covariant derivatives (3.162).

Thus the interactions of the Z and the photon with the both the right-

handed fields and with the left-handed fields are diagonal both in mass and

in flavor. The Z and the photon do not mediate top-to-charm or charm-to-

up or µ− → e− + γ decays. Also, the Higgs mass terms are diagonal, so the

neutral Higgs boson can’t mediate such processes. Thus, in the standard

model, there are no flavor-changing neutral-currents.

The only changes are in the nonzero parts of T± which become

T+
ckm =

(
0 L†uLd
0 0

)
≡
(

0 V

0 0

)
and T−ckm =

(
0 0

L†dLu 0

)
≡
(

0 0

V † 0

)
(3.165)

in which the unitary matrix V = L†uLd is the CKM matrix (Nicola Cabibbo,

Makoto Kobayashi, and Toshihide Maskawa). The left-handed covariant

derivative on the mass eigenfields then is

D`
µ = I∂µ + i

e√
2 sin θw

(
W+
µ T

+
ckm +W−µ T

−
ckm

)
+ i

e

cos θw
Zµ

(
T 3

sin θw
− sin θwQ

)
+ ieAµQ.

(3.166)

It has a second part that acts more or less like the right-handed covariant

derivative, but the first part uses W−µ T
− to map the up fields u, c, t into

linear combinations of the down fields d, s, b and W+
µ T

+ to map the down

fields into linear combinations of the up fields. The W±µ terms are sensitive
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to the CKM matrix V = L†uLd. We write them suggestively as

(
u c t d s b

)†( 0 VW+
µ

V †W−µ 0

)


u

c

t

d

s

b


(3.167)

=

u c t V

ds
b

†( 0 W+
µ

W−µ 0

)


u

c

t

V

ds
b




.

(3.168)

By choosing the phases of the six quark fields, that is, u(x) → eiθuu(x)

. . . b(x) → eiθbb(x), one may make the CKM matrix L†uLd real apart from

a single phase. The existence of that phase probably is the cause of most

of the breakdown of CP invariance that Fitch and Cronin and others have

observed since 1964. The magnitudes of the elements of the CKM matrix V

are

V =

|Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

0.97427 0.22536 0.00355

0.22522 0.97343 0.0414

0.00886 0.0405 0.99914

 . (3.169)

Although there is only one phase exp(iδ) in the CKM matrix V , the exper-

imental constraints on this phase often are expressed in terms of the angles

α, β, and γ defined as

α = arg [−VtdV ∗tb/ (VudV
∗
ub)]

β = arg [−VcdV ∗cb/ (VtdV
∗
tb)] (3.170)

γ = arg [−VudV ∗ub/ (VcdV
∗
cb)] .

If V is unitary, then α + β + γ = 180◦. From B → ππ, ρπ, and ρρ decays,

the limits on the angle α are roughly

α = (85.4± 4)◦. (3.171)

From B± → DK± decays, the limits on the angle γ are roughly

γ = (68.0± 8)◦. (3.172)
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So the angle β is about 26.6◦.

One of the quark-Higgs interactions is

−cdijQ′†`iHd
′
rj = −

√
2

v
Q′†`Mdd

′
rH = −

√
2

v
Q′†` LdΣdR

†
dd
′
rH

= −
√

2

v
Q†`ΣddrH = −

√
2

v
Q†`

(
0

(v + h)/
√

2

)
Σddr

= − d†`

(
1 +

h

v

)
Σddr = −mdid

†
`i

(
1 +

h

v

)
dri.

(3.173)

A similar term describes the coupling of the up quarks to the Higgs

−muiu
†
`i

(
1 +

h

v

)
uri. (3.174)

Thus, the rate of quark-antiquark to Higgs is proportional to the mass of

the quark in the standard model.

3.11 Lepton Masses

We can treat the leptons just like the quarks. The up leptons are the flavor

neutrinos ν ′e, ν
′
µ, and ν ′τ , and the down leptons are the flavor charged leptons

e′, µ′, and τ ′. The action density

3∑
i,j=1

−ceij L′†`iHe
′
rj − c∗eij e

′†
rjH

†L′`i (3.175)

gives for the e′, µ′, and τ ′ the mixed mass terms

v√
2

3∑
i,j=1

−ceij e′†`ie
′
rj − c∗eij e

′†
rje
′
`i. (3.176)

The 3× 3 mass matrix Me with entries

[Me]ij =
v√
2
ceij (3.177)

has a singular value decomposition

Me = LeΣeR
†
e (3.178)

in which Le and Re are 3 × 3 unitary matrices, and Σe is a 3 × 3 diagonal

matrix with nonincreasing positive singular values mτ , mµ, and me on its

main diagonal.
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3.12 Neutrino Masses

Before spontaneous symmetry breaking, all the fields of the standard model

are massless, and the local symmetry under SU(2)` ⊗ U(1) is exact. Under

these gauge transformations, the left-handed electron and neutrino fields are

rotated among themselves. If e′` is a linear combination of itself and of ν ′e`,

then these two fields, e′` and ν ′e`, must be of the same kind. The left-handed

electron field is a Dirac field. Thus, the left-handed neutrino field also must

be a Dirac field. This makes sense because before symmetry breaking, all

the fields are massless, and so there is no problem combining two Majorana

fields of the same mass, namely zero, into one Dirac field. Thus, there are

three Dirac neutrino fields, one for each family ν ′e`, ν
′
µ`, and ν ′τ`.

A massless left-handed neutrino field ν` satisfies the two-component Dirac

equation

(∂0I −∇ · σ) ν`(x) = 0 (3.179)

which in momentum space is

(E + p · σ) ν`(p) = 0. (3.180)

Since the angular momentum is J = σ/2, and E = |p|, we have

p̂ · J ν`(p) = −1

2
ν`(p). (3.181)

The left-handed neutrino field ν` annihilates neutrinos of negative helicity

and creates antineutrinos of positive helicity.

Since the neutrinos are massive, there may be right-handed neutrino fields.

As for the up quarks, we can use them to make an action density

3∑
i,j=1

−cνijL′†`iσ2H
∗ν ′rj − c∗νijν

′†
rjH

Tσ2L
′
`i (3.182)

that is invariant under SU(2)` ⊗ U(1) and that gives for the neutrinos the

mixed mass terms

3∑
i,j=1

iv√
2

(cνijν
′†
`iν
′
rj − c∗νijν

′†
rjν
′
`i). (3.183)

The 3× 3 mass matrix Mν with entries

[Mν ]ij =
iv√

2
cνij (3.184)

has a singular value decomposition

Mν = LνΣνR
†
ν (3.185)
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in which Lν and Rν are 3× 3 unitary matrices, and Σν is a 3× 3 diagonal

matrix with nonincreasing positive singular values mντ , mνµ , and mνe on its

main diagonal (here, I have assumed that the neutrino masses mimic those

of the charged leptons and quarks, rising with family number). The neutrino

CKM matrix then would be L†ν Le, but since we are accustomed to treating

the charged leptons as flavor and mass eigenfields, we apply the neutrino

CKM matrix to the neutrinos rather than to the charged leptons. Thus the

neutrino CKM matrix is

Vν = L†e Lν . (3.186)

By choosing the phases of the six lepton fields, we can make the neutrino

CKM matrix real except for CP -breaking phases. If the neutrinos are Dirac

fields, then there is one such phase; if not, there are three.

3.13 Other Mass Terms

Under a Lorentz transformation z, a left-handed field ` goes as

`′ = e−z·σ ` (3.187)

and a right-handed field r goes as

r′ = ez
∗·σ r. (3.188)

A Dirac mass term looks like this

Lm = −mψψ = −m(`†, r†)

(
0 1

1 0

)(
`

r

)
= −m(`† r + r† `). (3.189)

It is Lorentz invariant because

`′†r′ = `†e−z
∗·σ ez

∗·σ ` = `† r. (3.190)

If ` is left handed, then ρ = σ2`
∗ is right handed because

ρ′ = σ2`
′∗ = σ2(e

−z·σ `)∗ = σ2e
−z∗·σ∗ `∗

= σ2e
−z∗·σ∗σ2 σ2`

∗ = ez
∗·σ σ2`

∗ = ez
∗·σ ρ

(3.191)

which is how right-handed fields go. Similarly if r is right handed, then

λ = σ2r
∗ is left handed. So since `† r and r† ` are Lorentz invariant, so too

are λ† r = rTσ2r and ρ† ` = `Tσ2 `.

So if we split a complex Dirac field

ψ(x) =

(
`

r

)
(3.192)
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into its components

` =
1√
2

(`1 + i`2) and r =
1√
2

(r1 + ir2), (3.193)

then its Dirac mass term is

Lm = − m

2

[
(`†1 − i`

†
2)(r1 + ir2) + (r†1 − ir

†
2)(`1 + i`2)

]
. (3.194)

If the field is Majorana, then its Dirac mass term is

Lm = − m

2

(
`†r + r†`

)
. (3.195)

A Majorana field

ψ(x) =

(
`

r

)
(3.196)

describes a particle that is its own antiparticle and so has an expansion in

which the creation operators are the adjoints of the annihilation operators

ψ(x) =
∑
s

∫
d3p

(2π)3/2

[
u(~p, s) eip·x a(~p, s) + v(~p, s) e−ip·x a†(~p, s)

]
. (3.197)

Dirac spinors obey the Majorana conditions

u(p, s) = γ2 v∗(p, s) and v(p, s) = γ2 u∗(p, s) (3.198)

and so a Majorana field obeys the Majorana conditions

ψ∗ = γ2ψ and ψ = γ2ψ∗. (3.199)

Since

γ2 = − i
(

0 σ2
−σ2 0

)
, (3.200)

these conditions (3.199) say that

ψ =

(
`

r

)
= −i

(
0 σ2
−σ2 0

)(
`∗

r∗

)
=

(
−iσ2r∗
iσ2`

∗

)
. (3.201)

So a Majorana field can be written entirely in terms of its left- or right-

handed components

ψ =

(
`

r

)
=

(
`

iσ2`
∗

)
=

(
−iσ2r∗
r

)
. (3.202)

We can form many Lorentz-invariant terms

`†i rj , r†i `j , `i
Tσ2`j , and ri

Tσ2rj . (3.203)
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We can form a seesaw mass term like(
`†1 `†2

)( 0 m

m M

)(
r1
r2

)
(3.204)

which has mass eigenvalues that are approximately M and m2/M . This is

one form of the seesaw mechanism. Other seesaw mass terms are(
`1

Tσ2 `2
Tσ2
)( 0 m

m M

)(
`1
`2

)
and

(
r1

Tσ2 r2
Tσ2
)( 0 m

m M

)(
r1
r2

)
.

(3.205)

3.14 Effective Field Theories

Another possibility is to say that new a field of very high mass M plays a

role, and that when one path-integrates over this heavy field, one is left with

a term in the action

g2

M
Lσ2H

∗HTσ2L (3.206)

that gives a tiny mass to ν`. Here’s how this can work: take as part of the

action density of the high-energy theory

Lψ = −ψ(/∂ +M)ψ + g ψHTσ2L+ g Lσ2H
∗ψ (3.207)

where M is huge. Drop /∂ and complete the square:

Lψ0 = −M
(
ψ− g

M
Lσ2H

∗
)(
ψ− g

M
HTσ2L

)
+
g2

M
Lσ2H

∗HTσ2L. (3.208)

The path integral over the field ψ of mass M yields a field-independent

constant and leaves in the action the term

Lν =
g2

M
Lσ2H

∗HTσ2L. (3.209)

Replacing the Higgs field by its mean value in the vacuum, we have

Lν =
g2v2

2M
νν. (3.210)

If the neutrino field ν is a Dirac field, then this is a Dirac mass term

νν = − m

2

[
(`†1 − i`

†
2)(r1 + ir2) + (r†1 − ir

†
2)(`1 + i`2)

]
. (3.211)

If the neutrino field ν is a Majorana field, then this is a Majorana mass term

νν = −m
(
`†r + r†`

)
= −im

(
rTσ2r − `Tσ2`

)
. (3.212)
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In both cases, the mass is intrinsically tiny

mν ∼
g2v2

2M
. (3.213)

3.15 Neutrino Oscillations

The phase of a particle of energy E and momentum p going a distance L

in a time t is exp(i(pL − Et)/~). Neutrinos are nearly massless and go at

nearly the speed of light, hence cm/p ≈ 0 and t ≈ L/c. These excellent

approximations give

pL− Et = pL−
√
c2p2 + c4m2 L/c = pL− pL

√
1 + c2m2/p2 ≈ −c

2m2L

2p
.

(3.214)

Since E ≈ cp, the phase difference ∆φ between two such neutrinos varies

with their masses m1 and m2 as

∆φ = − c3(m2
1 −m2

2)L

~E
= − c3 ∆m2 L

~E
. (3.215)

3.16 Experimental Results

Models with both right-handed and left-handed neutrinos are easier to think

about, but only experiments can tell us whether right-handed neutrinos

exist.

What is known experimentally is that there are at least three masses that

satisfy∣∣∆m2
21

∣∣ ≡ ∣∣m2
2 −m2

1

∣∣ = (7.53± 0.18)× 10−5 eV2 (3.216)∣∣∆m2
32

∣∣ ≡ ∣∣m2
3 −m2

2

∣∣ = (2.44± 0.06)× 10−3 eV2 normal mass hierarchy∣∣∆m2
32

∣∣ ≡ ∣∣m2
3 −m2

2

∣∣ = (2.52± 0.07)× 10−3 eV2 inverted mass hierarchy.

If the neutrinos are Dirac particles, then they have a CKM matrix like

that of the quarks with one CP -violating phase. But whereas one chooses

to make the mass and flavor eigenfields the same for the up quarks u, c, t,

for the leptons one makes the mass and flavor eigenfields the same for the

down or charged leptons e, µ, τ . So the neutrino CKM matrix actually is

V = L†eLν . If they are three Majorana particles, then their CKM matrix has

two extra CP -violating phases α12 and α31. A common convention for the
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neutrino CKM matrix is

V =

1 0 0

0 cos θ23 sin θ23
0 − sin θ23 cos θ23

 cos θ13 0 sin θ13e
−iδ

0 1 0

− sin θ13e
iδ 0 cos θ13


×

 cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1

1 0 0

0 eiα12/2 0

0 0 eiα31/2

 . (3.217)

This convention without the last 3 × 3 matrix also is used for the quark

CKM matrix. The current estimates are

sin2(2θ12) = 0.846± 0.021 (3.218)

sin2(2θ23) = 0.999
+0.001

−0.018
normal mass hierarchy (3.219)

sin2(2θ23) = 1.000
+0.000

−0.017
inverted mass hierarchy (3.220)

sin2(2θ13) = 0.093± 0.008. (3.221)

Two of these are big angles: 2θ12 ≈ 2θ23 = π/2±nπ. In the normal hierarchy,

the lightest neutrino is about 2/3 electron, 1/6 muon, and 1/6 tau; the very

slightly heavier neutrino is about 1/3 electron, 1/3 muon, and 1/3 tau; and

the much heavier heavier neutrino is about 1/6 electron, 5/12 muon, and

5/12 tau.

3.17 Some theoretical considerations

Readers may wish to skip the rest of this chapter.

So far, I have assumed that the mass terms for the neutrinos are the usual

Dirac mass terms. However, the right-handed Majorana neutrino fields ν ′r
are not affected by the SU(2)` ⊗ U(1).

Note that a gauge transformation between e and νe rotates the

operators a(p, s, e) and a(p, s, νe) into each other. This rotation makes

sense only when the two particles have the same mass. In the stan-

dard model, such a gauge transformation makes sense only before

symmetry breaking when all the particles are massless. Moreover,

only when the particles are massless can one say that they are

left- or right-handed. While the particles are massless, the oper-

ator a(p,−) annihilates a particle of negative helicity and occurs

only in a left-handed field, while the operator a(p,+) annihilates

a particle of positive helicity and occurs only in a right-handed
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field. But when the particles are massive, the operator a(p, 12) an-

nihilates a particle that is spin up and occurs in both left-handed

and right-handed fields. So a symmetry transformation that acted

on the operator a(p, 12) would change both left-handed and right-

handed fields.

The left-handed fields of the neutrino and electron are

νe,`(x) =

∫
u(p,−)

a1(p,−, νe) + ia2(p,−, νe)√
2

eipx

+ v(p,+)
a†1(p,+, νe) + ia†2(p,+, νe)√

2
e−ipx

d3p

(2π)3/2
(3.222)

and

e`(x) =

∫
u(p,−)

a1(p,−, e) + ia2(p,−, e)√
2

eipx

+ v(p,+)
a†1(p,+, e) + ia†2(p,+, e)√

2
e−ipx

d3p

(2π)3/2
(3.223)

where (p,−, νe) means momentum p, spin down, and electron flavor,

and (p,+, νe) means momentum p, spin up, and electron flavor.

These fields satisfy equations like (3.179–3.181) apart from their

interactions with other fields. Since a gauge transformation maps

the fields νe,`(x) and e`(x) into each other, we know that when all

the fields are massless, before symmetry breaking, there are (for

each momentum) at least two neutrino and antineutrino states

1√
2

[
a†1(p,−, νe)− ia

†
2(p,−, νe)

]
|0〉 (3.224)

1√
2

[
a†1(p,+, νe) + ia†2(p,+, νe)

]
|0〉 (3.225)

for each of the three flavors, f = e, µ, τ . So there are at least six

neutrino (and antineutrino) states.

The right-handed electron field exists and interacts with gauge

bosons and other fields. So there are 12 electron states a†i (p,±, ef )|0〉
for i = 1 and 2 and for the three flavors, f = e, µ, τ . We don’t know

yet whether a right-handed neutrino field exists or interacts with

other fields. So there may be only 6 neutrino states or as many as

12.

Neutrino oscillations tell us that neutrinos have masses. If there are 12

neutrino states, then there can be three massive Dirac neutrinos analagous

to the e, µ, and τ or six massive Majorana neutrinos or some intermediate
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combination. If there are only 6, then there can be 3 massive Majorana

neutrinos.

The Majorana mass terms for the right-handed neutrino fields are

6∑
ij=1

1

2

[
imijν

′T
ri σ2 ν

′
rj + (imijν

′T
ri σ2 ν

′
rj)
†
]
. (3.226)

They are Lorentz invariant because under the Lorentz transformations (3.125)

ν ′′Trσ2ν
′′
r = ν ′Tr exp(z∗ · σT)σ2 exp(z∗ · σ) ν ′r

= ν ′Tr σ2 exp(−z∗ · σ) exp(z∗ · σ) ν ′r = ν ′Tr σ2 ν
′
r.

(3.227)

The Majorana mass terms (3.226) are unrelated to the scale v of the Higgs

field’s mean value. One can show that the complex matrix mij is symmetric.

One then must combine the mass matrix in (3.226) with the mass matrix

Mν in (3.184). The resulting mass matrix will have a singular-value decom-

position with six singular values that would be the masses of the “physical”

neutrinos. If these six masses are equal in pairs, then the three pairs would

form three Dirac neutrinos.

Whether or not there are right-handed neutrinos, we can make Majorana

mass terms like ν`
Tσ2ν`, which are Lorentz invariant but not invariant under

SU`(2) or UY (1). We can make them gauge invariant by using a triplet
~φ = σiφi of Higgs fields that transforms as ~φ′ · ~σ = g(~φ · ~σ)g† for g ∈ SU`(2)

and that carries a value of Y = −1. Then if σ2 has Lorentz indices and σ′2
has SU`(2) indices, the term

L`
Tσ2σ

′
2(
~φ · ~σ)L` (3.228)

is both Lorentz invariant and gauge invariant. If the potential V (~φ) has min-

ima at ~φ 6= 0, then this term violates lepton number and gives a Majorana

mass to the neutrino.

3.17.1 Seesaw Mechanism

Why are the neutrino masses so light? Suppose we wish to find the eigen-

values of the real, symmetric mass matrix

M =

(
0 m

m M

)
(3.229)

in which m is an ordinary mass and M is a huge mass. The eigenvalues µ of

this hermitian mass matrix satisfy det (M− µI) = µ(µ−M)−m2 = 0 with

solutions µ± =
(
M ±

√
M2 + 4m2

)
/2. The larger mass µ+ ≈M+m2/M is
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approximately the huge mass M and the smaller mass µ− ≈ −m2/M is tiny.

The physical mass of a fermion is the absolute value of its mass parameter,

here m2/M .

The product of the two eigenvalues is the constant µ+µ− = detM = −m2

so as µ− goes down, µ+ must go up. In 1975, Gell-Mann, Ramond, Slansky,

and Jerry Stephenson invented this “seesaw” mechanism as an explanation

of why neutrinos have such small masses, less than 1 eV/c2. If mc2 = 10

MeV, and µ−c
2 ≈ 0.01 eV, which is a plausible light-neutrino mass, then

the rest energy of the huge mass would be Mc2 = 107 GeV. This huge mass

would be one of the six neutrino masses and would point at new physics,

beyond the standard model. Yet the small masses of the neutrinos may be

related to the weakness of their interactions.

Before leaving the subject of fermion masses, let’s look more closely at

Dirac and Majorana mass terms. A Dirac field is a linear combination of

two Majorana fields of the same mass

ψ =
1√
2

(
L+ i`

R+ ir

)
(3.230)

in which L and ` are two-component left-handed spinors, and R and r are

two-component right-handed spinors. The Dirac mass term

mψψ = imψ†γ0ψ = mψ†
(

0 I

I 0

)
ψ

= m
1

2

(
L† − i`†, R† − ir†

)(0 I

I 0

)(
L+ i`

R+ ir

)
= m

1

2

(
L† − i`†, R† − ir†

)(R+ ir

L+ i`

)
= m

1

2

[(
L† − i`†

)
(R+ ir) +

(
R† − ir†

)
(L+ i`)

]
(3.231)

= m
1

2

(
R† − ir†

)
(L+ i`) + h.c.,

in which h.c. means hermitian conjugate, gives mass m to the particle and

antiparticle of the Dirac field ψ.

We may set

R = iσ2 L
∗ ⇐⇒ L = −iσ2R∗ (3.232)

r = iσ2 `
∗ ⇐⇒ ` = −iσ2 r∗ (3.233)

(3.234)
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or equivalently (
R1

R2

)
=

(
L†2
−L†1

)
⇐⇒

(
L1

L2

)
=

(
−R†2
R†1

)
(3.235)

(
r1
r2

)
=

(
`†2
−`†1

)
⇐⇒

(
`1
`2

)
=

(
−r†2
r†1

)
(3.236)

(3.237)

which are the Majorana conditions. Since R† = −iLTσ2, we can write the

Dirac mass term (3.231) in terms of left-handed fields as

mψψ =
1

2
m
(
−i LT − `T

)
σ2 (L+ i`) + h.c. (3.238)

=
1

2
m
(
LT − i`T

)
(−i σ2) (L+ i`) + h.c. (3.239)

=
1

2
m
(
L1 − i`1, L2 − i`2

)(0 −1

1 0

)(
L1 + i`1
L2 + i`2

)
+ h.c. (3.240)

=
1

2
m
(
L1 − i`1, L2 − i`2

)(−L2 − i`2
L1 + i`1

)
+ h.c. (3.241)

=
1

2
m (L1 − i`1) (−L2 − i`2) + (L2 − i`2) (L1 + i`1) + h.c. (3.242)

The fermion fields anticommute, so the Dirac mass term is

mψψ =
1

2
m (−2L1L2 − 2`1`2) + h.c. = −m (L1L2 + `1`2) + h.c., (3.243)

and it says that the fields L and ` have the same mass m, as they must if

they are to form a Dirac field.

Since L† = iRT σ2, we also can write the Dirac mass term in terms of the

right-handed fields as

mψψ =
1

2
m
(
RT − irT

)
iσ2 (R+ ir) + h.c. (3.244)

=
1

2
m
(
R1 − ir1, R2 − ir2

)( 0 1

−1 0

)(
R1 + ir1
R2 + ir2

)
+ h.c. (3.245)

= m (R1R2 + r1r2) + h.c. (3.246)

So the fields R and r have the same mass m, as they must if they are to

form a Dirac field.

The Majorana mass term for a right-handed field r of mass m evidently

is

mr1 r2 + h.c. (3.247)
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Beyond the standard model

4.1 Grand Unification

The success of the electroweak unification of the standard model led physi-

cists in the 1970s to propose what they called grand unification. Their goal

was to unify the electroweak and the strong interactions.

Howard Georgi and Sheldon Glashow made the first attempt in 1974.

They chose the group SU(5) which with 24 generators is big enough to

house SUc(3)⊗ SU`(2)⊗ UY (1) and its 12 generators.

Compact internal-symmetry groups can’t rotate left-handed fields into

right-handed fields. So the first problem they overcame was how to combine

transformations SU`(2) that act only on left-handed fields with ones SUc(3)

that act on both left- and right-handed fields. They solved that problem

by writing all fields as left-handed fields. Recall for instance that if ur is a

right-handed up-quark field, that is if it transforms like

u′r = exp(~z · ~σ)ur (4.1)

then

uc` = σ2 u
∗
r (4.2)

is left-handed, that is, it transforms as

(uc`)
′ = σ2 (u′r)

∗ = σ2 [exp(~z · ~σ)ur]
∗ (4.3)

= σ2 exp(~z∗ · ~σ∗)u∗r = exp(−~z∗ · ~σ)σ2 u
∗
r (4.4)

= exp(−~z∗ · ~σ)uc` (4.5)

because

σ2 ~z
∗ · ~σ∗ = −~z∗ · ~σ σ2. (4.6)

So they wrote all the fields as left-handed fields. They had 15 left-handed
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Fermi fields in each generation; at that time, only two generations were

known. Since all 15 fields are left handed, we may drop the subscript `.

They had ur, ug, ub, dr, dg, db, e, ν = νe, ur
c, ug

c, ub
c, dr

c, dg
c, db

c, and ec.

They left out νc which is a right-handed neutrino and took the neutrinos

to be massless. (The physics community had not yet accepted Ray Davis’s

late-1960s discovery of neutrino oscillations.)

Georgi and Glashow put the 15 left-handed quark and lepton fields into

the 5∗

5∗ =


dr
c

dg
c

db
c

e

ν

 (4.7)

and a 10

10 =


0 ub

c −ugc −ur −dr
−ubc 0 ur

c −ug −dg
ug
c −urc 0 −ub −db

ur ug ub 0 −ec
dr dg ub ec 0

 (4.8)

and introduced 13 new gauge bosons Yr
µ, Yg

µ, Yb
µ; Yr

cµ, Yg
cµ, Yb

cµ; Xr
µ,

Xg
µ, Xb

µ; Xr
cµ, Xg

cµ, and Xb
cµ; and Aµ.

All the generators of SU(5) are traceless matrices. Thus the diagonalized

charge operator Q is traceless. In the 5∗ representation, the sum of its its

diagonal elements must vanish:

q(dr
c) + q(dg

c) + q(db
c) + q(e) + q(ν) = 0. (4.9)

The neutrino is neutral, and the charges of the antidown quarks are color

independent. Thus

3 q(dc) = − q(e) (4.10)

or q(dc) = |e|/3.

But gauge theories with quarks and antiquarks, leptons and antileptons

in the same multiplet have gauge bosons that mediate changes of quark

and lepton number. Putting quarks and antiquarks into the same multiplet

means that nucleons are unstable. The proton is a colorless s-state of ur,

ug, and ub. The processes ug + db → Yr
c and Yr

c → ur
c + ec lead to proton
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decay:

p = ur + ug + db → ur + Yr
c (4.11)

ur + Yr
c → ur + ur

c + ec (4.12)

ur + ur
c + ec → π0 + e+. (4.13)

Other processes lead to other modes of proton decay and to the decay of neu-

trons in otherwise stable nuclei. The lifetime τp of the proton is proportional

to the fourth power of the mass of the Y

τp ∝
M4
Y

α2m5
p

(4.14)

in which α is the fine structure constant of SU(5). The lower bound on the

lifetime of the proton due to this decay mode is 8.3 × 1033 years. Putting

charge-conjugated right-handed fields into the same multiplet as left-handed

fields changes the focus of physics from accessible energies to the GUT scale

or MY > 1016 GeV. This seems premature.

Harald Fritzsch, Peter Minkowski, Howard Georgi, and Edward Witten

put the left-handed fields of a single family into a 16-dimensional multiplet

of SO(10), which to save paper I represent as a row vector

16 =



νc

ec

ur
dr
ug
dg
ub
db
ur
c

ug
c

ub
c

dr
c

dg
c

db
c

ν

e



(4.15)

This theory of grand unification is more symmetrical and has room for a

right-handed neutrino, which appears as νc. This theory also produces pro-

ton decay unless the masses of the gauge bosons exceed about 1016 GeV.
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Unfortunately, SO(10) does not seem to explain the charges as directly as

SU(5) because the sum of the charges of the particles of the 16 vanishes no

matter what they are as long as q + qc = 0. This may be why Georgi and

Glashow opted for SU(5), which Georgi discovered only a few hours after

figuring out SO(10). But if one fits the 16 particles of the 16 into SU(5)

multiplets, then one recovers the SU(5) version of charge quantization.

The gauge group of the standard model is SUc(3)⊗ SU`(2)⊗UY (1) with

three coupling constants gs, g, and g′ which have nothing to do with each

other. Grand unification puts these three groups into a simple group with a

single coupling constant and traceless generators T a that are related to one

another by the structure constants fabc

[T a, T b] = ifabcT
c (4.16)

which are real and totally antisymmteric, and the same for every represen-

tation whether reducible or irreducible. A simple group G is one that has

no nontrivial invariant subgroup S; that is, if

g−1sg = s′ ∈ S for all s ∈ S and all g ∈ G (4.17)

then either S = G or S consists of the identity element of G. The group of

the standard model SUc(3)⊗SU`(2)⊗UY (1) is not simple (or semi-simple).

Its structure constants don’t relate the SUc(3) generators to the SU`(2)

generators or to the UY (1) generator.

The generators of any representation whether reducible or irreducible of a

group may be taken to be orthogonal with a normalization ND that depends

upon the representation D

TrT aT b = ND δab. (4.18)
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