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Masses

1.1 Masses

Masses occur in the action density as the coefficients of terms quadratic in
the fields. Thus the action density of a neutral, spin-zero field ¢ is

L= ~50400"¢ — 5°¢”, (1.1)
and the mass is u. The equation of motion is
(0a0" = ) ¢(x) = 0. (1.2)

The field obeying this equation is
3k
V/(2m)32k0°

The charged spin-zero field is a complex linear combination of two equal-

o(z) = / [a(k:)eikx + aT(k)e*"kx} (1.3)

mass real fields

¢ = \}i (qs(” + igb(2)> . (1.4)
Its action density is
L =—0,0"0" — pi*|¢|?, (1.5)
and its equation of motion is
(0,0 — p?) $(x) = 0. (1.6)
The charged field is
$(x) = / (k)™ + b (k)e | (;l;";%) (1.7)
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Example 1.1 (Two spinless fields) The action density

L = —30a010%1 — 504020 dy — 3mi¢T — §msds —m’¢1ga  (1.8)
implies the equations of motion

0a0"P1 = migy + m>¢o
0202 = m2p1 + m3e2,

and is really a theory of two spinless bosons ¢ and ¢_. The eigenvalues of
the matrix
2 2
2_ (my m7\ _ (a b
M” = (m2 m%) - <b c> (1.10)

1
in =5 <m%+m%i\/(m%—m§)2+4m4) . (1.11)

(1.9)

are

Its eigenvectors are

T (ii —a) (/\ib— a) = m (Aib_ C) (1.12)

in which Ay = m3.
The physical fields are the normal modes of the theory. In terms of the

vector
¢1>
_ , 1.13
o= (2 (113
the equations of motion (1.22)) are
0,0 ¢ = M? ¢. (1.14)

An orthogonal matrix O diagonalizes the real, symmetric matrix M?

2 2
M? =07 (””(‘; 732 ) O and M?0T =0T <"6+ nf;) . (L1p)

So the columns of OT are the eigenvectors (1.12)) of M?

(o) = v 0. 0) = v= ()
0Ty 2+ (A —a)? \ M\ —a P+ (O—c2\ b

(1.16)
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The eigenfields are

o\ _ ~ (O11¢1+O12¢2\  (OT1idn + OT21¢2)
(¢_> soes <021¢1 + O22¢2) - (OT12¢1 + 092 (1.18)

or more explicitly

1
¢t = [bp1 + (Ax — a)¢2]
/D2 L (s — a)2
* (1 +—a) (1.19)
= Ay —C)P1 + boa] .
EERyw—E [(A+ — c)p1 + boo]
In terms of the masses, these fields are
1
Pt = [m¢1 + (m3 —m3) ]
\Jmt + (md —m3)?
1 (1.20)
= [(mZ —m3)g1 + m°ea] .
Jmt+ (md —m3)?
They obey the wave equations
2 2
a - T(m3 O _(mi O
0,0°0¢ =00 <0 m2>0¢>—<0 m2>0¢ (1.21)
or
0.0+ =m32dy and 0,0%- =me_. (1.22)

When m = 0, the physical fields are ¢1 and ¢o with masses mi and mo.
In the opposite extreme case of my = mo = 0, the normal-mode fields are

1 1
¢y = E((ﬁl +¢2) and ¢ = E(le — ¢2) (1.23)
in terms of which ¢1 and ¢9 are
1 1
P11 = E(Qﬁ +¢-) and ¢ = E(Qﬂ —¢-). (1.24)
The fields ¢4 and ¢_ obey the equations of motion
0,0% . =m?p, and 9,0%_ = —m>p_. (1.25)

The particles of the field ¢_ are tachyons. More generally, the particles of
the field ¢_ are tachyons whenever m? > myms. 0

For a Dirac spin-one-half field, the action density is

L= -9 ("0a+tm)p= —y(P+m)y (1.26)
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in which ¢ = i)T70 = ¢T3, Weinberg’s choice of gamma matrices is

0 1 0 & 1 0
O——‘ _':—. 5: =
v = Z<1 0)7 v Z<_5 0>, v’ =5 <0 _1>- (1.27)

He also uses 8 = i7? and ¢ = ¢! = i1)T40. The Dirac equation of motion
is

(v*0u +m)p = (@ +m)yp =0. (1.28)
The field is
0y(@) = = (@) + 0P @)
- ; ) 3 (1.29)
B sz;/ [uj (7, 5)b(p, 8)e™* + v; (7, s)c! (p, s)e_lpx] (er)];/z

in which the fields ' and 1% are the Majorana fields that make the Dirac
field, and the Dirac index j runs from 1 to 4, px = p-&—p%t, p° = \/p? + m2,

b(p,s) = \}5 (a(p, s, 1) +ia(p,s,2)) (1.30)
cT(p, s) = \}5 (aT(p,s, 1)+ iaT(p, s,2)> , (1.31)

T

and the annihilation a; and creation a ; operators satisfy the anticommuta-

tion relations
{a(p’ S? Z)’ a(p/? 8/7])} = a(p? s? Z) a(p/7 5/7 + a(p/7 s/7j) a(p7 8? Z) = O

7)

ap)svli)aT p/78/7j :67;'588’5(3) ﬁ_p{
5J >

(1.32)

The physical mass of the fermion is the square root of m? and so is inde-
pendent of the sign of m.
For a massive vector field, the action density is

1 1
L= — ZFabF“b — §m2AaA“ (1.33)
in which Fy, = 0, Ay — 9y As. The equation of motion is
D F(x) = m? A% (x). (1.34)

This field contains a part that is spin zero. The spin-zero part is the diver-
gence 0, A, and the spin-one part has zero divergence

AL = 0. (1.35)
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So the equation of motion of the spin-one part is
(O —m?) Ay(z) = (A — 87 —m?) Ay(x) = 0. (1.36)
The spin-one field is

1
. . d3p
Ap(x) = /|:6 ,S)a 78€lpz+e* 7SCLT 73671pzi|7
o) = 3 [ [l ol e + (o o)al pro)e™] s
(1.37)
in which the sum is over s = —1,0, 1,
pea(p,s) =0, (1.38)
and the spin sum is
- Pap
* b
> calD,s)ep(p,s) = nap + 15 (1.39)

s=—1

Homework problem 1 of set 2: Use Lagrange’s equations to derive the

equation of motion (1.34) from the action density ((1.33).

Homework problem 2 of set 2: Use the condition d,A? = 0 to convert the

equation of motion (1.34)) to its spin-one form (|1.36]).

Homework problem 3 of set 2: Show that the zero-divergence condition

(1.35)) implies the spin condition (|1.38]).
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Spontaneous symmetry breaking

2.1 Linear sigma model

The usual ¢* theory has action density
1 1 1
L= - “p— —mPp? — —A\pt. 2.1
500 0°0 — SmA¢? — A (2.1)

In the limit A — 0, this theory is that of Section If we flip the sign of
the mass term in ([2.1)), then we have

_ 1 a, L oo 1oy
L= = 0:60° + 5m’¢* — A, (2.2)

Both action densities are symmetric under the reflection ¢(x) — — ¢(z),
which is a discrete symmetry.

To the extent that we understand such theories, the vacuum of the first
theory has (0]¢|0) = 0. This vacuum is invariant under the reflection ¢(z) —
— ¢(z). There are two classical vacua in the second theory. Its potential
energy

1 1
V=—-m?¢*+ =Ao* (2.3)
2 4
has two minima

by = i% = +o. (2.4)

The vacua ¢4 are not invariant under the reflection ¢(x) — — ¢(x); they

transform into each other ¢+ — ¢=+. So if the states of a universe are clus-
tered about ¢, then in that universe, the mean value of the field ¢ is

(04+]9]04) = - (2.5)

The vacuum spontaneously breaks the reflection symmetry.
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If
o(x) =v+o(x), (2.6)
then the action density of the theory near ¢ is
1 1 1
L= —-0,00% +-m?(w+0)* = -Av+o)
2 2 4
1 1
= =500 0% + §m2 (v? 4 2v0 + ?)
1
- Z)\(U4 + 4030 + 60202 + 4vo® 4 ot)
1 1 m \? m
= — 0,0 0% + =m? (> +2—0 402
27 2 [ VA VA

S (ORI CORRUCO Rt A
1

1
=5 aaaaa—mzaQ—ﬁmag—Zz\U4+ZT (2.7)

in which the last term is a constant (and so is relevant only in gravitational
theories where it might represent dark energy). In the limit A — 0, this
theory is that of a particle of mass V2m.

If we generalize the single field ¢ to an n-vector of fields ¢;, then we get
the linear sigma model with action density

n " n 2
L= - % ;aaqbi 0°¢; + %mQ ; ¢ — ix (; <z>?> . (29)
With ¢? = ¢? + - - + ¢2, this action density is
L= — lzn:aa@- 0% + m2e? — 1x (%)% (2.9)
2 po 2 4
Again the mass term has the wrong sign. In what follows, we will not bother

to indicate sums over a repeated index i from 1 to n.
This L is invariant when the fields change by

¢ = Oirdr (2.10)
in which O is an n x n orthogonal matrix. That is, the squared length
&7 = (Ouwsr)” = ¢ (2.11)

of ¢’ is the same as that of ¢. The action density is invariant under the
nonabelian Lie group O(n). This is a continuous symmetry.
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The minima of the potential energy
R S SCIN Y
V=—-—m"+-X¢ (2.12)
2 4
are the points of the sphere

m m
P =¢-¢p=— ofradius |¢p|=0v=—. 2.13
; ol =v =% (2.13)
Whereas in the discrete case there were two degenerate vacua, here there
are infinitely many.
As in the discrete case, we pick one vacuum. We imagine that in the
physical vacuum |0) the mean values of the n fields ¢; are

(0]g4]0) = % din = v din. (2.14)

Now we write the components of the field as
¢i = (1,72, ..., Tn_1,v + 0). (2.15)

So now

2

P =9t dp=m 4 tm o+ (0o =+ (v+0)?  (216)

and the action density (2.9) is

1 1 1
L= = 50u6: 01+ ;m*6? — A (¢)°
2 2 4
1 a 1 a I o5r o 2 1 2 212
— _iama m—gﬁaa@ a+§m (7% + (v+0)°] _Z)\ [7° + (v+0)°]
1 1 1
= _ iaam 0%m; — 58(10 0% + §m2 [7r2 + 02 4 2u0 + 02]
1
—=A [7T2 + 02 4 2u0 + 02]2

4
(2.17)

2

In this expression, m? = Av?, and so the coefficient of 72 vanishes while

that of o2 is —m?2

1 1
L= —iaawiaawi—§8a08aa—m202—m Ao — mV ) o®
(2.18)
1, 4, 1. 054 1., 1m?
4)\0 2)\7TJ +4)\7T 1

So the theory describes one field o of mass v/2m and n — 1 massless fields
7. These massless fields are called Goldstone bosons.
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2.2 Goldstone’s Theorem

Let V(¢) be a potential that is bounded below and that depends upon n
fields ¢;. Assume that the action density

1 a
L=~ 500,06~ V(9) (219)
is invariant under the global linear transformation

¢ = Ojrt (2.20)

in which the n x n orthogonal matrix O is a member of a representation
of a continuous Lie group such as O(n). Since V(¢) is bounded below and
invariant under the symmetry , it has several minima ¢g. At these
minima, the first-order partial derivatives must vanish

oV (9)

=0 2.21
Ok ‘¢=¢0 220
and the mixed second-order partial derivatives must be nonnegative
9V (¢)
= mye > 0. 2.22
a¢ka¢€ d=do ( )
Near each minimum, the potential is
1
V(9) = V(o) + 5(or — $r0)(d¢ — deo) mi (2.23)

apart from higher-order terms which we will ignore. The matrix mie is real
and symmetric. So it can be diagonalized by an orthogonal transformation.
Its eigenvalues are the squares of the masses of the scalar bosons of the
theory.

Near the identity, the orthogonal matrix O is

O =1+if,t" (2.24)

in which the generators " are hermitian, " = ¢". An orthogonal matrix
is real, so the antihermitian matrices it" are real and antisymmetric. Since
V(0¢) = V(¢), the derivatives with respect to 6, vanish

aV(g) _9V(g)dg;
5, = b, 20, =0 (2.25)

whether or not the field ¢ is at a minimum of V. Now

(Z)j(@) = ¢j(0) + 10, t;k #r(0) (2.26)
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so the derivative (2.25)) vanishes

oV (¢) 0¢; _ OV(9)
op; 00,  0¢;

itldr =0 (2.27)

because of the symmetry whether or not the field ¢ is at a minimum of V.
The derivative of this wanishing quantity with respect to ¢, also must be
Zero
PV (9) V() e
00 d¢; 7
So at one of the minima of V' where the first derivatives vanish ([2.21)), this
second derivative is

2V (o) ., V(o) .. _ 9°V(¢o)
965000 T "6, = 95,06,

But these second derivatives are the elements my; of the mass matrix (2.22]).
So we have for each generator t" an eigenvector t;kqﬁok of the n X n mass-
squared matrix with eigenvalue zero

itk Pk + =0. (2.28)

it’ ko = 0. (2.29)

mi; tixdok = 0 (2.30)

unless t§k¢0k itself vanishes, in which case it can’t be an eigenvector at all.
So for every generator t" that does not annihilate t;kqﬁ()k = 0 the vector
¢o, there is an eigenvector t§k¢0k of the mass matrix with eigenvalue zero.
These eigenvectors may or may not be linearly independent. So the number
of massless Goldstone bosons is at most the number of generators that do
not annihilate the vacuum vector ¢q.

Goldstone’s theorem also holds for complex fields. Suppose the action
density

L= = 04950%; — V(¥j1h;) = —0a505¢ — V(hj15) (2.31)

is invariant under the global linear transformation

Vi =Upty, and 7" = USyy, (2.32)

in which the n X n unitary matrix U is a member of a representation of a
continuous Lie group such as SU(n). Since V (1T¢)) = V(¥51;) is bounded
below and invariant under the symmetry , it has several minima 1.
At these minima, the first-order partial derivatives must vanish

vy g Y (2.33)

Ok ly=yo M y=yo
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and the mixed second-order partial derivatives must be nonnegative

9*V (1) _

Near each minimum, the potential looks like this:

V() = V(o) + (0 — o) (e — o) m3y (2.35)

apart from terms of higher orders which we ignore. The matrix m, is hermi-
tian. So it can be diagonalized by a unitary transformation. Its eigenvalues
are the squares of the masses of the scalar bosons of the theory.

Near the identity, the matrix U is

U=1+ift" (2.36)

in which the generators ¢ are hermitian, ¢} = ¢". Since V(U)TUYp) =
V (1), the derivatives with respect to the 6,’s must vanish

oV (i) v (wiy) 0y, N OV (ply) Yy

06, o0, 06, T our 06, " (2:37)

whether or not the field 1 is at a minimum of V. Now
i (0) = 1;(0) + 16y t5,, Y (0) and  Yp(0) = 1p(0) — ifr i ¥ (0) (2.38)
so the derivative ([2.25) is

oV(¥ly) _ V(YY) oV (i) .
— " i — Tk 2.
a0, o t jml/f o ity Y =0 (2.39)
because of the symmetry. Since this quantity always vanishes due to the
symmetry ([2.32)), its derivatives also vanish:

PVW) _ PV o EVE) e V),
00.0u5, — Ovndy; T ke

D300 oup Ik
PV (yly) _ 02V (vly) PV (WTY) . L OV (wiy)
00,.01; 0O

ooy R ;i

Terms like 171y and ;1) don’t occur in the potential (2.35)) near any of its
minima. So when all the fields are equal to their values 1rg at a minimum
of V, then the first derivatives vanish (2.33)), and we have

O*V (yTy) B RV (i) . ., B
Wtjm ¥m =0 and “opioyr K Yy = 0. (2.40)

But the second derivatives are just the elements my; of the mass matrix

L =0

it Y — ith; = 0.
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(2-22). So the vector t7x %ok, unless it vanishes, is an eigenvector of the mass
matrix with eigenvalue zero

my; t;k@bok =0. (2.41)

But these vectors may not be linearly independent. Thus the number of
massless bosons is at most the number of generators that do not annihilate
the vacuum vector .

Example 2.1 (SU(2)) Suppose the vector

do = (é) (2.42)

is the mean value in the vacuum (0|¢|0) of a complex doublet ¢ that trans-
forms under the fundamental representation of the group SU(2). Then

v (10 (0)= ()

, (2.43)
To¢0 = <z) , and o3¢9 = ¢o.

None of the three generators annihilates the vector ¢g. So for a potential
like V(¢) = M(pTp — u2/N)?, three of the four real fields that make up the
complex doublet ¢ are massless Goldstone bosons, while the fourth field, the
one associated with the magnitude ¢f¢ of the doublet, is massive.

This model is easier to understand when written in terms of the four real
fields ¢; that make up the doublet ¥

¢1> 1 <¢>1 + i¢2>

= = — ) . 2.44
o=() =z (1 (244)
We need four 4 x 4 real antisymmetric matrices 3; whose effect on the four
real fields ¢; is the same as that of the Pauli matrices o; so that if

. (1 +ida\ _ [0¢1 +idg2
1 <¢3 + i¢4> B <5<Z53 + i5¢4> (2.45)

then Y0303 = 0¢. The 4 x 4 real antisymmetric matrices that represent
the matrices iG are

0 0 0 —1 0 0 1 0 0 -1 0 0
0 0 1 0 0 0 0 1 1 0 0 0
=1 10 o[ 21 0 oo™ o 0 o -1
1 0 0 0 0 -1 0 0 0 0 1 0
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They generate an SO(3) subgroup of SO(4) which is the symmetry group
of the action. (What breaks SO(4) to SU(2)?) They map the vacuum
vector &y = (1,0,0,0) into BBy = (0,0,0,1), Zy®y = (0,0,—1,0), and
Y3P9 = (0,1,0,0). These vectors are linearly independent. So there are
three massless Goldstone bosons. The subgroup H that leaves the vacuum
®( invariant is generated by three 4 x 4 real symmetric matrices generators
all of which annihilate the vector ®.

Example 2.2 (SU(3)) Suppose the vector

1
o= 10 (2.47)
0
is the mean value in the vacuum (0]1)|0) of a complex triplet ¢ that trans-

forms under the fundamental representation of the group SU(3). The Gell-
Mann matrices \; = 2t lack a factor of 1/2 and so are twice the usual

generators of SU(3):
010 0 —i 0 1 0 O
A=(10 0|, X=[¢z 0 0], A3=]10 -1 0],
0 00 0 0 O 0 0 0
0 01 0 0 —i 0 00
AM=10 0 0|, X=[(00 0], =100 1],
1 00 i 0 0 010
00 0 1 1 0 0
Ar=[0 0 —i], and As=— 1 0 |. (2.48)
0 ¢« 0 V3 0 0 -2
Of the eight generators t" = A\/2 only
1 0 00 1 00 0
t6:§ 0 0 1| and t7:§ 00 —i (2.49)
010 0 ¢« 0

annihilate the vector 1. So if the potential is like V' ()t4)) = A(vpTp—p2 /)2,
then six of the six real fields that make up the complex triplet ¢ are massless
Goldstone bosons. But surely one of the six real fields becomes massive.

So the six vectors t"iy for r = 1,...,5 and » = 8 must not be linearly
independent. Suitably normalized, they are

0 0 1 0 0 1

1), lé],lo].,lo],|0], and [O]. (2.50)

0 0 0 1 7 0
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If we allow only real coefficients, then five of these vectors are linearly inde-
pendent, but the third vector is equal to the sixth vector.

It may be clearer to study this model in terms of its six real fields. The
potential then is

2

6 2
V) = Al A = | S - 5 (2:51)

in which ¥y = (¢1 +1i¢2)/V2, Y2 = (¢3+i¢4)/V2, and ¢35 = (¢5+idg)/V2.

The eight 6 x 6 real antisymmetric matrices A; that have the same effect
as the i)\; = 2itJ in the sense that if

D1+ id9 01 + 10¢o
N | ¢3+ids | = | o3 + 10y (2.52)
®5 + ige S5 + idoe
then Aygpg = dpo are
0 0 0 -1 0 0 0 0 1000
0 0 1 0 00 0 0 0100
0 -1 0 0 0 0 1 0 0000
Ay = Ay = 2.
L 1 0 0 0 0 o0 "2 0 -1 0000 (2.53)
0 0 0 0 00 0 0 0000
00 0 0 00 0 0 0000
0 -1 0 00 0 0 0 000 —1
1 0 0 000 0 0 001 0
0 0 0 100 0 0 000 O
3 0 0 -1 000" 0 0 000 O (2.54)
00 0 00 0 0 -1 000 O
0 0 0 00 0 1 0 000 0
0 0 0010 000 O 0 O
0 0 0001 000 0O 0 O
0 0 0000 000 0 0 —1
As = Ag = 2.
> 0O 0 0O0O0Of"F 000 0 1 0 (2.55)
1 0 0000 000 -1 0 0
0 -1 000 0 001 0 0 0
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as well as
00 0 0 00O 0O -10 0 0 O
00 0 0 00O 1 0 0 0 0 O
A= 00 0 0 10 As = 1 fo o 0o -1 0 0
00 0 0 0 1}’ v310 0 1 0 0 O
00 -1 0 00 o 0 0 0 o0 2
00 0 -1 00 0o 0 0 0 =220
(2.56)

Properly scaled, these 8 matrices provide a real 6-dimensional representation
of SU(3). Only Ag and A7 annihilate the vacuum vector ¥o; = u/v/Ad1j,
but Ay and Agty are equal and therefore linearly dependent. So there are
five Goldstone bosons and one massive boson, ¢1 — 1/ V. ]

2.3 Gauge Invariance

The reason we could generalize our formulas for muon pair production to
tau pair production is that all the charged leptons are coupled to the photon
in the same way. Although electrodynamics is an abelian gauge theory, we
might as well consider the general case of a nonabelian gauge theory.

The action density of a Yang-Mills theory is unchanged when a space-time
dependent unitary matrix U(x) changes a vector ¢ (z) of matter fields to
Y/ (x) = U(z)h(x). Terms like ¢ 11) are invariant because ¢ (2)UT (2)U (z)(x) =
YT (x)y(z), but how can kinetic terms like 9;T 9%) be made invariant?
Yang and Mills introduced matrices A; of gauge fields, replaced ordinary
derivatives 0; by covariant derivatives D; = 0; + A;, and required that
Dy’ = UD;y or that

(i + AU =0,U+Ud; + AU =U (9; + 4;) . (2.57)
Their nonabelian gauge transformation is

Y(x) = Ulx)y(x)

/ (2.58)
Aj(x) = U(2)Ai(2)UT(z) = (8U (2)) U' ().

One often writes the unitary matrix as U(x) = exp(—ig 0,(x) t,) in which
g is a coupling constant, the functions 0,(x) parametrize the gauge trans-
formation, and the generators ¢, belong to the representation that acts on
the vector ¢ (z) of matter fields.

In the case of electrodynamics, the unitary matrix is a member of the
group U(1); it is just a phase factor U(x) = exp(—ief,(x)). The abelian
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gauge transformation is

V(@) = Ux)ip(x) = e (x)
Al(z) = U(x)Ai(2)UT (z) — (0;U (2)) UT(x) = Ay(x) + ied;f(z).

(2.59)

I have been using a notation in which A; is antihermitian to simplify the
algebra. So if A; = iA;, then the abelian gauge transformation is

V(@) = Ua)y(z) = e "y (x)

' (2.60)
Ap(z) = U(x) Ap(2)UT (2) + i (0U (2)) U () = Ap() + edpb(z).
Similarly, with real gauge fields, A, = —iA;, the nonabelian gauge transfor-
mation is
v'(@) = U@)i(a) 26
Ay(x) = U(a) Ap(2)UT (2) + i (8U () U (2).
2.4 Abelian Higgs Mechanism
A theory with action density
1 * a * 1 *
L= = JFpF® = (Dag)" D¢ —m?¢"¢ — S\ (67¢)" (2:62)
in which the complex field ¢ is
1 .
6= (61 +id0) (2:63)
and its covariant derivative is
Dyp = (0 + ieAyp) ¢ (2.64)

describes charged bosons ¢ of mass m interacting with themselves directly
and through the massless electromagnetic field A;. This theory has an abelian
gauge symmetry. That is, the action density is invariant under the spacetime-
dependent U(1) transformation U(z) = exp(—ief(x))

(@) = Ulx)ip(z) = e " (a)

(2.65)
Al (x) = U(z) Ap(2)UN () + 0 (U (2)) Ut (z) = Ap(z) + edif(z).

But if we flip the sign of the mass term from — m?¢*¢ to m2¢*¢

L= — {FuF® — (Dad)" D6+ mP6") — S\ (670 (2.66)
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then things get more interesting. The complex field ¢ now minimizes the
energy of the ground state of the theory by assuming a mean value

o] = 7 (2.67)

The various possible vacua lie on a circle of radius m/ VX in the complex
¢-plane. We choose the one in which (0]¢|0) = ¢o = m/+/\ is real and set

¢:¢0+7(0—1+Z0—2):7‘1‘*(014‘202):—4—0

V2 VA V2 VA

B (’l)+0'1 +i02)

2.68
7 (2.68)
where ¢g = v/v/2 = m/vA. Now the potential energy is
2 1% 1 * 1\2
V= —mi'o+ SA(679)
1 1 1. [1 1,17
2L 2 , L of L1 2 1 9
= -m 2(v+01) +202]+2)\[2(v+01) + 503
m* 2 2 Ao 2 22
:—7( +2v01+01—|—02)~|—§(v + 2v01 + 07 + 03) (2.69)
2
m
:_7(2+2wl+a%+a§)
A
+ 3 [ +20° oo + of + 03) + (200 + 02+ 02
m? 1
:_?(2+2v01+0%+03)+§)\v301
Lyg o, o0 1 9,5 1 2, oy, Ao o0 Ay
+1)\U (0'1 +O'2)+§>\’U 01 +§)\UO'1(O'1 +0'2)+§(0'1 +0'2) +§’U .

Since v?2 = 2m?/\, terms linear in oy cancel, as do terms quadratic in os.
We then have

_ 2 2 Ao o Ao o m! (2.70)
V=m"oi+m 201(01+02)+8(01+0’2) o\

So the theory seems to have a spinless boson oy of mass v/2m and a massless
spinless Goldstone boson os.
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But wait. What about the kinetic action of the scalar fields? It is

Ly = = (Datp)” D¢ = — (9a — ieAa) (¢o + 0*) (0° + ieA”) (do + o)
= — (—teppAq + D0™) (iegpgA® + D)

et (3%

X I:ieAa¢0 + (8“ + ieAa) <\/» +1 \/»>:| (271)
= — 2PaA A" — (Doo)* D% +ieAqo D% — ieA%g (Dgo)*

= — 2P3ALAY — (Dyo)* D% — V2e2 Ay AP0 — V2e A% 0,0
in which

s = 1 (o1 +i02) . (2.72)

V2

The gauge field A, has acquired a mass

M =V2epy = V2 % (2.73)

It makes sense to change the name of this field to

1 VA
By =As+ — 0,00 = Ay + o9 =A+—
M \[eo V2em

Note that the extra gradient of oo does not change the Faraday tensor

Baoa.  (2.74)

Fop = 0g Ay — 9yAq = 0uBy, — 0, Ba. (2.75)

Apart from cubic and quartic terms and a constant, the action density is

L= — i L F — %MQBQBG — % (D401) %01 — m?0?. (2.76)
This theory describes a vector boson A, of mass M = em/2/\ interact-
ing with a scalar boson o1 of mass v/2m, at least at low energies and low
temperatures.
An algebraically simpler way to get the same result is to use the fact that
this theory is a U(1) gauge theory, so we can rotate the complex field ¢ at
every point of space-time so as to make it real. Then, instead of

1

L= — {FuF® — (Dag)” D'+ m6"0 — A (6°6), (2.77)
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we have
1 1
L= = JFaF" = (D;6) D6+ m*¢® — SA0!
1

1
= — JFaF® = (9 —ieAd) ¢ (9" +ieA") ¢ +m’¢* — Sho' (278)

1 1
=1 abF“b—i%¢5w¢-—62¢2AuA9%—nﬂ¢2—-§A¢4
Now, we have the simplest kind of spontaneous symmetry breaking in which

the real field ¢ assumes a mean value ¢y whose square is m?/A. We choose

(0[¢]0) = ¢o = % (2.79)

and set
m o

b= 5+ (2.80)

where now both ¢ and o are real. In these terms, L is

L= — (FaF® ~ 0,00% — & A A" 6 + m*¢? — L)
_ g g 808a0—eAA“< ”)2
4 NN

o (i) n ()

1 2 1
= — = abFab e/r\n AL AT — faaaa“a—m%Q

A A m*
A, A% — L2 4,00 2_\f S_Zot+ —.
\/7me o e o 2ma 804—/\

In this unitary gauge, the theory has a real scalar boson of mass v/2m
interacting with a massive vector boson A, of mass M = emm. In the
quadratic part of L, there are no terms coupling o to Ap. If both e and A
are small, then perturbation theory should describe o interacting with A
and with itself through the cubic and quartic terms in the second line of the
last form of this equation. This is the abelian Higgs mechanism.

One may wonder whether one can transform to the unitary gauge even
when the mass term —m?|¢|? has the “right” sign so that the U(1) symmetry
is unbroken. The phase ef = atan(¢2/¢1) of the required gauge transforma-
tion is not defined where it is most needed, namely in the vicinity of the
vacuum where (0|¢|0) = 0. The derivatives of the phase ef are singular at

¢ =0.
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2.5 SO(n) Nonabelian Higgs Mechanism
Let’s start with our SO(n) theory ([2.9))

1 & Y 1 1
L==3 ;%a o+ 3m’¢ = A (%) (2.82)

in which the sign of the mass term induces spontaneous symmetry breaking
and

¢* = Z bi Pi. (2.83)
i1

We can make this global SO(n) symmetry local by introducing n(n —
1)/2 gauge fields A{: , one for each generator t/ of the group O(n). The
antihermitian gauge-field matrix is
n(n—1)/2
Ay(w)=ie Y tHAl(x) (2.84)
f=1

in which the imaginary antisymmetric generators obey the commutation
relations

[t7, 9] = i f pgnt” (2.85)

with totally antisymmetric structure constants f,.. The generators are
orthogonal but not normalized

Te(t/119) = ko, (2.86)

in which the positive constant k depends upon the representation to which
the generators belong. In the defining representation of O(n), the generators
are n X n imaginary antisymmetric matrices. One may also write the matrix
of gauge fields as a linear combination of n(n — 1)/2 real antisymmetric
matrices 7/ = it!
n(n—1)/2
Ay =e Y TA(). (2.87)
f=1

One may take the 7’s to be defined for 0 <r < c < n as
Tzrkc = 0pi Ock — Oci Opk- (288)
For this representation, the parameter k is 2

Tl“ TTCTT’C/ _ 25rr/ 5@0’ — kér?”/ 566/‘ (289)
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(We will not bother to rescale the generators so that they obey the standard
SO(n) commutation relations with the right structure constants.)
The covariant derivative is

Dy =0y + Ay (2.90)
The nonabelian Faraday tensor
Fi. = [D;, Di| = 0;Ax, — Ok Ai + [As, Ak (2.91)
transforms covariantly
F, =UF, U (2.92)
The action of the nonabelian Faraday tensor is invariant
Tr (UFikU_lUFikU_l) — Tr (UFikF““U_1> — Tr (Fka) . (2.93)
The action density of this theory is
L= PT(FuF™) — (Do) (D°0) + 5m’d — A (#7) (204)
in which the sign of the trace is because the trace 7;;7g; of a real antisym-
metric matrix is negative
TikThi = — TikTik = —(Tix)% < 0. (2.95)

Once again, we have spontaneous symmetry breaking. In the vacuum state
|0}, the field ¢, which is a real n-vector assumes a value on the sphere of
radius |¢| = ¢g = m/v/A. As before, we write

¢ = (¢o + 0, M, T3, ..., Tn, ). (2.96)

We have one scalar field ¢ of mass m, = v/2m and at most n — 1 massless

scalar fields m;, one for each of the n — 1 generators t/ = —ir/ that do not
annihilate the vector
1

(0]¢:]0) = o 9 . (2.97)

Look now at the kinetic action of the fields ¢;

Licy = — 5(Dad)T (D)

1 & n(n—1)/2 n(n—1)/2
= — 5 Z Ok O0iOg + Z 67'2-];145 0;00% + Z eTZ»gZAga Op.
i,k =1 f=1 g=1

(2.98)
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The part of this that involves ¢g quadratically is

1 1 ! Al !0
Licgy = — 3¢ 63 7h AL7h A% = =2 G e 7iie Ayr A7

1 ., 1 (2.99)
= 56’2 OF 616,11 0ci00i Al AT = 5 D AL A
c=2

in which we used our definition of the unscaled generators 7/ = 77¢.
Thus there are n — 1 massive gauge bosons. They have absorbed the n — 1
Goldstone bosons 71, ..., m,.

So in this O(n) gauge theory of n scalar fields, n — 1 of the scalar fields
combine with n — 1 of the gauge bosons to make n — 1 gauge bosons massive.

One scalar field is massive and observable. Of the n(n — 1)/2 gauge bosons
of O(n),

M—(n—l):(n—1)<ﬁ—1>:w (2.100)
2 2 2

remain massless. For O(3) and 3 scalar fields, 2 gauge fields become massive;
one remains massless; and one scalar field is massive and observable. For
O(4) and 4 scalar fields, 3 gauge fields become massive; 3 remain massless;
and one scalar field is massive and observable.



3
Standard model

3.1 SU(2) Higgs Mechanism

Let’s now consider a theory of a 2-component complex scalar field ¢ with
action density

L= —(Dut) D% + - T(Eu ™)+ mlof — Mol (3.1)

in which |¢|?2 = |¢1]? + |¢2|?. Here the antihermitian gauge-field matrix is
1
Ap = ie§a' - Ay (3.2)
in which the o are the Pauli matrices

L (01 s (0 —i s (10
U_<1O’U_i0’anda_0—1' (3.3)

The covariant derivative is

(Dyp@)i = Opi + (Ap)ijpj = Opi + (ieéa - Ap)ijdj = Oy +ie %(Uk)ij A¥ ¢;.

(3.4)
This action density is invariant under SU(2) transformations
¢'(z) = U(x)d(x) = exp(—ib(z) - 0/2)¢(x)
Aj(2) = U(2) Ap(2)U () + i (U () UT(2) (3.5)

= exp(—i0(z) - 0/2)Ap(z) exp(iO(z) - 0/2)
+ i (Op exp(—iO(x) - 0/2)) exp(if(x) - o/2)

that depend upon the space-time point x. The trace relation for the gener-
ators o /2 is

1
Tr(%ai%aj) = 5(51']', (3.6)
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so the constant k = 1/2.
Going again to the unitary gauge, we rotate the field ¢ to

h(L) gl e

in which ¢2 = m?/(2)) and v = m/v/X is real. None of the three generators
o annihilates the vacuum vector, so there is the possibility of three massless
Goldstone bosons and one massive scalar boson.

The kinetic action of the Higgs field ¢ has a term quadratic in ¢
. 1 k k f . 1 m mb
le5(0")ij Ay 65| de5(0™)ie A™ e (3.8)
which is simpler in matrix notation
o2
T PhoFam gy AF AP, (3.9)

Symmetrizing and using the relation

oFo™ = Sl + i€kmeo?, (3.10)

we find at ¢ = ¢y

5 0010 0™ 60 AL AT = - 6] bl G0 AT AT
= EU gk AR =

- M? Al AR,

1
2
So all three gauge bosons get the same mass M = ev/v/2. They absorb all
three Goldstone bosons.

What if we had put ¢ in the adjoint representation of SU(2)7 In this case,
its mean value would have been a real three vector of some length pointing
in some direction. There would be two Goldstone bosons and one massive
scalar boson. So one gauge boson would have remained massless. In fact,
this is a model we already have studied: it is just the SO(3) gauge theory
with the Higgs in the defining representation.

We now skip to section 3.7.

3.2 SU(2) with the Higgs in the adjoint representation

This section may be skipped on a first reading.
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If the Higgs field h is a matrix that transforms in the adjoint representa-
tion, so that h/ = UAUT, then its covariant derivative is

Dyh = Oph + [Ab, h] (3.12)

in which the anti hermitian gauge field is
1
Ap = i€§0' - Ay (3.13)

which is (3.2)). The mass term for the gauge fields arises from the action of
the Higgs field

Tr [(Dbh)fpbh] - Ty [(a,,h 4 [Ap, BT (Bph + [Ay, h])} . (3.14)

If hg is the mean value of the Higgs field in the vacuum, then this kinetic
action makes the mass term

Ty ([A,,, hol [ As, ho]) — _Tr ([h;g, Al][Ap, ho]) — _Tr ([A,,, hi][Ab, ho])
(3.15)

since A is antihermitian. When hg is a multiple of the identity matrix, the
commutator [Ap, ho] vanishes, and all the gauge bosons remain massless.

3.3 Which gauge fields are left massless?

Suppose the Higgs field ¢ has a mean value ¢° in the vacuum. Suppose the
generator cpt? sends ¢ to zero

ey th; ¢ = 0. (3.16)
The mass-squared term is
%A,‘j M2, AP = A% G710 18 gh AP (3.17)
and so the vector (c1, ca, . ..) is an eigenvector of the matrix M? with eigen-
value zero
M = 80, (1) = (318)

Thus the diagonal form of this matrix is

C1 dl
ME =120 co )+ [ |mg(di do ..)+..., (3.19)
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and so coefficient or mass of the (unnormalized) gauge field
A=Al

in the mass-squared term (3.17)) is zero:

a

1 1 1
§AZM2bAb“ = 5(cad}) 0 (cp AP + 5 (daA) ma (dyp A) +

and so a linear combination of gauge fields

4 — chZ

VAR EF

(3.20)

(3.21)

(3.22)

remains massless if the corresponding linear combination of generators sends
the mean value ¢° of the Higgs field to zero (3.16) or equivalently if the

unitary transformation U = exp(icy t?) leaves that mean value invariant

- b
Udo = €' ¢ = ¢o.
The corresponding charge ¢, T? leaves the vacuum invariant

Ulgo) = ™" |go) = |¢bo)

and so generates an unbroken symmetry.

3.4 SU(3) Pure Gauge Theory

The Gell-Mann matrices are

010 0 — 0 1 0
AM=1[1 0 0], X=1¢ 0 0, =110 -1

0 00 0 0 O 0 O

0 01 0 0 —i 0 0
AM=10 0 0], X=({00 0], =100

1 00 ¢t 0 0 01

0 0 O 1 1 0 O
AM=10 0 —¢], and Ag=—=|0 1 0

0 72 0 V3 0 0 -2

(3.23)

(3.24)

(3.25)

The generators t, of the 3 x 3 defining representation of SU(3) are these

Gell-Mann matrices divided by 2
to = Na/2 =1%=)\/2
(Murray Gell-Mann, 1929-).

(3.26)
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The eight generators t, are orthogonal with k = 1/2

1
Tr (tety) = §5ab (3.27)
and satisfy the commutation relation
[taa tb] = Z.fabc te. (3.28)

A trace formula gives us the SU(3) structure constants as
fave = (—i/k)Tr([ta, tp)te) = —2iTr ([tq, ty]tc) - (3.29)

They are real and totally antisymmetric with fio3 = 1, fis8 = fors = V/3/2,

and fiar = —fis6 = faa6 = fos7 = faas = —faer = 1/2.
While no two generators of SU(2) commute, two generators of SU(3) do.
In the representation (3.253.26), 3 and tg are diagonal and so commute

[t3,ts] = 0. (3.30)

They generate the Cartan subalgebra of SU(3).
The gauge-field matrix is

8
Au(z) =ig Y Al (x) (3.31)
b=1
in the defining representation. The covariant derivative in that representa-
tion is

8
Dy =10, + Ay(z) = 10, +ig »_t"Al(x). (3.32)

b=1

The Faraday matrix is

Fu =Dy, D) =10, + A,(2),10, + Ay(z)] = 0, AL — 0L A, + [AL, Al
(3.33)
in matrix notation. With more indices exposed, it is

(F,Lw>cd = (a,uAu - 61/A;L + [A,uy Au])cd

8 8 8
—ig >ty (@A’; - a,,Ag) n ([ithbAz,itheA§}> :
b=1 b=1 e=1 c
El3.34)
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To avoid the sum signs, we sum over repeated indices from 1 to 8

(F,Lw)cd = igtﬁd <8 Asz - 8VAZ> - QQAZAS ([tbv t6]>

cd

b b 2 4b ge; f
(a AL B,,Au> — P AL A fye st
— igthy (9u AL = ,AL) — ig? AL AL st
(3.35)
igthy (0,7 — 0,4%) — ig? ALAG franthy
= igt?, (a AL —9,Ab — gASAC ffeb)
gtby (0,48 — 0, AL — gfige ALAL) = igthy FY,
where
= 0,45 — 0,A% — gfyre ALAS (3.36)
is the Faraday tensor.
The action density of this tensor is
1y
Lp= ZFWF“ (3.37)

in which raising and lowering an index of a compact group is of cosmetic,
not cosmic, significance. The trace of the square of the Faraday matrix is

Tr [F,, F") = Tr [z’gtb FY, igt® F*

= — ¢*F}, FI" Te(t"°) = —g*F), FI" kdy. (3.38)
= —kg*F}, F}".
So the Faraday action density is
1 1
Lp= — 1F}jVF,;‘” I k —— Tr [F, F*] = 52 Tr [F F"]. (3.39)

The theory described by this action density, without scalar or spinor fields,
is called pure gauge theory.

3.5 Quantum Chromodynamics

If we add massless quarks in the fundamental or defining representation,
then we get the theory of the strong interactions called Quantum Chro-
modynamics. Thus, let ¥ be a complex 3-vector of Dirac fields

Yr
Y=\ 1y (3.40)
(o



3.6 SU(3) Higgs Mechanism 31

(so 12 fields in all). This complex 12-vector could represent u or “up” quarks.
We use the covariant derivative

8
Dy =10, + Ay(z) = 10, +ig Y " Al (). (3.41)
b=1

The action density then is
1 _
L= 2792 Tr [F/“/F'uy] — 7,[1 (’Y#D# + m) ¢ (342)

Nonperturbative effects are supposed to “confine” the quarks and massless
gluons. There are 6 known “flavors” of quarks—u, d, ¢, s, t, b.

3.6 SU(3) Higgs Mechanism

This section may be skipped on a first reading.
Let’s now add a triplet of complex scalar fields that transform according
to the defining representation

Oy(x) = Upe(x) de(a) = [e—wa(m)ta]bc e(). (3.43)
The SU(3) gauge fields will transform as

Ay () = U()Au(2)U" (2) +i(8,U (2))U' (x)

— e—i@‘l(ac)t“ AH (,:U) eiea(;v)ta + Z(au —iea(l‘)ta)eiea (.I)ta (344)

in which the gauge-field matrix is

8
Au(z) =ig Y Al (x) (3.45)
b=1

in the defining representation.
Suppose the action density is
1 1
L= T Tt [F, F*] — (D,¢) D' +m? |¢]? — 5)\2 . (3.46)
I have fiddled with the coefficients so as to avoid extra factors and roots of
2. Once again, we have spontaneous breaking of the local SU(3) symmetry
as the vacuum arranges itself so as to give the scalar field a mean value

b0 = (0]¢ba(2)]0) = vda3 = % 5.3 (3.47)
so that
3 = L(\@U + 0o +ig3) =v+ i(ff + i) (3.48)

V2 V2
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in which the choice of the third direction was arbitrary. The complex fields
¢1 and ¢9, and the imaginary part of ¢3 remain massless, but the real part
of ¢35 acquires the mass v/2m.

Now instead of , we have

1

2
% O (A A} g Af AT = Z 02 Af AR (3.49)

The gauge fields that don’t move ¢g, that is, the ones that have
A"y = 0 (3.50)

remain massless. So A', A2, and A3 remain massless. The other five gauge
bosons, A% ... A% absorb the five massless scalar fields and acquire masses.
Homework set 3: Find those masses.
Let’s put the scalar fields in the adjoint representation of SU(3). Now
there are 8 real scalar fields, and we can write them as an 8-vector ¢ or as
a 3 X 3 matrix

8
=)t (3.51)
a=1
The covariant derivative now is
D¢ = (8 +igAu) ¢ = (O +ig A} T )¢ (3.52)
where the generators in the adjoint representation are
T, = i fube (3.53)

in which the structure constants fu. are real and totally antisymmetric.
Thus, we have

(Du¢)a = (5ac8u + Z‘gAuac)(Zsc = au¢a - gAZfabc¢c~ (354)
We also can write this as
Dy® = 9,® + g[Ay, ®] = t"Oua + iglt’, t)AL0° = t*0uda + igi frcat“ALo°
= 106 — gt Al faetre = 1 (00 — gAY faretre) = °(Dy)a
(3.55)

Now the gauge-boson mass term inside %(Duqﬁ)“(Dﬂqﬁ)a is the proportional
to the trace

¢*Tr ([t“, o|[t, @]) As AL, (3.56)
So is the vacuum gives ¢ the mean value

®g = (0/®[0), (3.57)
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then the gauge-boson mass term is proportional to the trace
¢*Tr ([t“, Do) [t @ﬂ) AC AL, (3.58)

So those linear combinations of gauge fields times generators that commute
with &y remain massless.
For instance, if

Dg ox A 1 g) (1) 8 (3.59)
0 0CAg = , :
V3
0 0 -2

then the gauge bosons A!, A%, A3 and A® remain massless, while A%, A5,
A% and A7 become massive. Interestingly, the SU(3) symmetry is broken
to SU(2) x U(1).

On the other hand, if

0 0
-1 0], (3.60)
0 0

Py ox A3 =

o O =

then only A% and A® remain massless, and the unbroken symmetry is just
U(1) x U(1).

3.7 GSW Electroweak Model and the Higgs Mechanism

The local gauge group is SU(2), x U(1). It acts on a complex doublet (or
2-vector) of scalar fields H, the Higgs. What’s weird is that it acts only on
the “left-handed” quarks and leptons. So it violates parity maximally.

Let’s leave out the fermions for the moment and focus just on the Higgs
and the gauge fields. The gauge transformation is

H'(z) = U(x)H(z)

’ (3.61)
Al (x) = U(2)Au(@) U1 (2) + (8,U () U ()
in which the 2 x 2 unitary matrix U(z) is
U(z) = exp ig%aaa(x) +ig’§6(m) . (3.62)

The generators here are the 3 Pauli matrices and the hypercharge Y which
is proportional to the identity matrix and takes on different values for dif-
ferent fields.
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The action density of the theory (without the fermions) is

1
L= —(D,H)'D"H + T 1) + m?|H|? — N\ H|* (3.63)
in which the covariant derivative for the Higgs doublet is
.o .Y
D,H = I@M—Hg?AM—Hg §Bu H. (3.64)
The hypercharge of the Higgs is Y = 1, so this covariant derivative is
A R |
D,H = I@M—Fzg?A#—kzg §Bu H. (3.65)
The minimum of the Higgs potential is where
2%
0= = 2\[H|* — m®. 3.66
So
m v
Hl = — = —. 3.67
== (3.67)
Going to unitary gauge, we transform this mean value to
o= Ol = = () (3.68)
— €T = — . .
0 75 \w
In unitary gauge, the Higgs potential is
1 1
V(v)= — §m2v2 + 1)\214, (3.69)
and its second derivative is
V" (v) = 3\0? —m? = 2m? = m?,. (3.70)

The mass of the Higgs then is
my =V2m = v2\v. (3.71)
Experiments at SLAC and LEP2 (see below) revealed value of v to be
v=246 GeV. (3.72)
In 2012, experiments at the LHC showed the Higgs’s mass to be
mpg =125 GeV. (3.73)

The self coupling A therefore is

m2, 1 /125\2
A= —H -~ (=) =0.129. 3.74
202 2 (246) (3.74)
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In unitary gauge and after spontaneous symmetry breaking, the mass
terms for the gauge bosons that emerge from — (D, H )IDFH are

oo ) (07w g L) (0
(O,U)(g 5 Aty 23u> <9 5 Ait9g 5B,
Y A My o
"\g(A), +iAZ) —gAd 4+ ¢ B,

g(AY +iAL) —gAL +¢B*) \v '

Ly = —

DN =

|

X

N

. g(Al —iAb)
(otah+ i), —oal+5) (1070

©| S o %

9% (AL AY + ALAD) + (—gAy + 9'By) (—9A% + g'B")] .
The normalized complex, charged gauge bosons are
1

Wi =
V2

(4, Fi47) (3.76)
and the normalized neutral one is

1
A3 —g'B,). (3.77)

VT g

The orthogonal, normalized gauge boson

Z, =

'A> + g B,) (3.78)

remains massless. It is the photon.
In terms of these properly normalized fields, the mass terms are

2,2 2 12y,2
v _ + v
Ly = — 794 W W — (g"+ g% 89 ) Z,7". (3.79)
So the W and the W~ get the same mass

My, = g% — 80.385 GeV/c2. (3.80)
while the Z (also called the Z°) has mass

Mz =g+ g2 g = 91.1876 GeV/c?. (3.81)

Measurement of these masses at SLAC and LEP2 determined and the iden-
tification of the charge of the proton as

/

99

VR

0<e= (3.82)
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led to the determination of g, ¢, and v.

Why do three gauge bosons become massive? Because there are three
Goldstone bosons corresponding to three ways of moving (0|H|0) without
changing the Higgs potential. Why does one gauge boson stay massless?
Because one linear combination of the generators of SUL(2) ® U(1) maps
(0|H|0) to zero, and so does not make an eigenstate of the gauge-boson mass
matrix with eigenvalue zero.

In terms of these mass eigenstates, the original gauge bosons are

1 _
A;ZE(WJ"FWM)
1

AIQA = \[ (W W+)
) v / (3.83)
A= 7 ig? (9 Au+9Z,)
1
By = (94u —d'Zy) .

/92 +gl2
Thus, the covariant derivative for a fermion of U(1) hypercharge Y and
coupling g to the SU(2), gauge fields is

a Y
Dﬂzlau+iga—A“+ig'—B

2
— 19, +ig Wrsw)+ 2w —w
2 \[ 2 /2 H I
o3 1 , Y 1
—— (g A, + 9Z } 1 — —F—= (94, —9Z
2 92 +g,2 ( #) 9 /92 +g,2 ( 12 /J«)
1 Y
_ 9 +t 203 2t
=19, +z\f(WT + W, T™) + gz+gl22u<gT g 2)
! Y
+i—2 4, <T3+> .
/92 + g/2 2
(3.84)
So the electric charge operator is
Q=T+ 7 (3.85)
and the absolute value of the charge of the electron is
/
O<e=—-9 (3.86)

/92 + gl2
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in which

1
TF = 5 (o1 £ i0s). (3.87)

The left-handed leptons have Y = —1; the left-handed quarks have Y = 1/3;
the right-handed charged leptons have Y = —2; the right-handed up-quarks
have Y = 4/3; the right-handed down-quarks have Y = —2/3; the Higgs
boson has Y = 1; and the gauge bosons have Y = 0. The electron neutrino

and the electron fit into the doublet

By = <”> . (3.88)

e

So the charge of the electron is

/

S — (3.89)
/92 + gl2
The charge of the neutrino is zero.
The fine-structure constant is
2
a= = 1/137.035 999 074(44) ~ 1/137.036. (3.90)
4rhe

The photon-lepton term then is

/

Y Y
99 A# <T3+2> EgZGAM <T3+2> Eg

2 ]
Vot (3.91)

oo 5) ()= (5)

in which the first e is the absolute value (3.86)) of the charge of the electron
and the second (—e) is the field of the electron.
The weak mixing angle 6,, is defined by

Z cosf, —sinb, A3
<A> - <sin 0, cosb, > <B) ' (3.92)
Our equations (3.77] and [3.78]) identify these trigonometric values as

/

g g
/92 + g/2 /g2 + g/2
Since the charge is Q = T3 + Y/2, we can use Q — T° instead of Y/2, so
that the coupling to the Z is

1 23 12Y _ 1 2 12 3 2
N [QT “9G | T Tl T = gRR) (399

COS Oy = and sinf,, = (3.93)
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and the coupling to the photon is

99’ 3, Y 99’
— A, (T — )= ———A,0. )
/6 + g2 # ( T 2> /%t g7 2 (3.95)
We also have
2 12
g °+g B ) g
g J -7 d 3.96
e+ VY T st (3.96)
12 12
J PR — (3.97)

g2+ g?  cosb,

/92+g/2: 9

So the coupling to the Z is

\/gir_g@zﬂ (> + ¢*)T° — g*Q] = ﬁzu (T —sin? 0, Q) . (3.98)
The charge of the proton is
e = g sinf,,, (3.99)
and the coupling to the photon A is
99’ A, Q=gsinf,A,Q=eA,Q. (3.100)

In these terms, the covariant derivative (3.84)) is

. g o
DM:I(?M—FZE (WJT++WMT )

. 1 Y . gq Y
il g <92T3 —g/2> i g, <T3 ; )

VAT 2) e 2

=10, +i \% (W, T+ + W, T")
+ icoj@ Z, (T* = sin2 0, Q) + ie A, Q

(3.101)

in which the matrices TF and T° are those of the representation to which the
fields they act on belong. When acting on left-handed fermions, they are
half the Pauli matrices, T' = %0'. When acting on right-handed fermions,
they are zero, T = 0. Since g = e/sin#,, the couplings involve one new
parameter 6,,.

Our mass formulas (3.80| and [3.81) for the W and the Z show that their



3.8 Quark and Lepton Interactions 39

masses are related by

MW:ggzig \/gQ—i—g’QE—cosﬁw\/g2+g’2%:cosﬁwMZ.

2 /g% + g2 2
(3.102)
Experiments have determined the masses and shown that
sin?@, =0.231 or 6, =0.233 (3.103)
and that
v = 246.22 GeV. (3.104)

3.8 Quark and Lepton Interactions

The right-handed fermions u,, d,, e,, and v, , are singlets under SUL(2) ®

Uy (1). So they have T2 = 0. The definition (3.85)) of the charge @
Y
Q=T+ 3 (3.105)

then implies that
Y, = 2Q.,. (3.106)

That is, Y}, , =0, Y, = =2,Y,, =4/3,and Yy, = —2/3.
The left-handed fermions are in doublets

L= <§_> and Q= (Z) (3.107)

with T3 = £1/2. So the choices Y7, = —1 and Yy, = 1/3 and the definition
(3.85)) of the charge @ give the right charges:

QL =Q (jﬁ) - <_2_) and  QQr = Q (Z) = (f@@ . (3.108)

Fermion-gauge-boson interactions are due to the covariant derivative (3.101))
acting on either the left- or right-handed fields. On right-handed fermions,
the covariant derivative is just

r . g . .
D# = IBM + Zmz'u (* SII].2 9w Q) + Z6AMQ
. sinf,, .
=10, —ie " » Z,Q+ieA,Q (3.109)

=10, —ie sinf,tanb, 7, Q +ie A, Q.

So the covariant derivative of a neutral right-handed fermion is just the
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ordinary derivative. And the right-handed neutrino does not interact except
with gravity.
On left-handed fermions, the covariant derivative is

Y4 . g e
DM:Ia‘U’_'—ZE (W;T—i——{_WHT )

. g . .
+ ZMZN (T3 — sin® 6, Q) +ieA,Q

e
=IO +i——
K V2 sin6,,

3
Vi 7 (S,T —sin&wQ>—|—ieAMQ.

cosfy, " \sin6,

- (3.110)
(Wrrt+w,T7)

For the first family or generation of quarks and leptons, the kinetic
action density is

L= —L)'Ly— LD L — Qu'Qe — Q, ' Q, (3.111)

in which ) = v#D,. The 4 x 4 matrix 5 = +® plays the role of a fifth
(spatial) gamma matrix v* = 75 in 5-dimensional space-time in the sense
that the anticommutator

(7" 7"} =29 (3.112)

in which 7 is the 5 x 5 diagonal matrix with n°° = —1 and n%* = 1 for a = 1,
2, 3, 4. In Weinberg’s notation, s is

V5 = <(1) _01> . (3.113)
The combinations
P, = % (1+95) and P, = %(1 —7s) (3.114)
are projection operators onto the left- and right-handed fields. That is,
PQ=Q¢ and PQr=Qu (3.115)

with a similar equation for P.. We can write L as
J— Z J—
L= —LD 3(1+~5)L — LD (1 —~5)L
J— g J—
—QD (1 +75)Q - QD 3(1—5)Q
1r— 4 —
= -3 LI (14 5) L+ LD (1 —5)L

s+ QD (1+7)Q+ QP (1— 75)@]-

(3.116)
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Homework set 4, problem 1: Show that
- Al . l = 4L
LD Lo =[50+ 75) L'’ D 5 (1 +5) L = LD 51+ 75)L.  (3.117)

Recall that in Weinberg’s notation
— 1
= plin® =yl g = ¢ (? 0) (3.118)

in which [ is the 2 x 2 identity matrix.

3.9 Quark and Lepton Masses

The Higgs mechanism also gives masses to the fermions, but somewhat ar-
bitrarily. Dirac’s action density (1.26)) has as its mass term

—mynp = —imp' % = —im Ty (Py + Py = —im T (P7 + P2)y.
(3.119)

Since {7°,75} = 0, this mass term is
—mipp = —im I Py Py — im T Py Prap
= —im (P)) 0Py — im (Pp) 70 Prap (3.120)
= —im Iy — im i P = —m e — m P,

Incidentally, because the fields ¥, and 1, are independent, we can redefine
them

Py =€ iy (3.121)
Y = e, (3.122)

at will. Such a redefinition changes the mass term to
—m/ P, 1hy = m Pybe = —m OGP py —m e O Yy, (3.123)

So the phase of a Dirac mass term has no significance.
The definition (3.118) of ¢ shows that the Dirac mass term is

— 0 I\ (v
_ - _ i _ ot ey _ T T
mipp = —m B = —m (vl l) ( . 0) ( %) m (vl +wive)
(3.124)
These mass terms are invariant under the Lorentz transformations
Uy = exp(—z - o)1y
Py = exp(z” - ) Y, (3.125)
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because
Uln = gl exp(—2" o) exp(z" - ) v =
vl = vlexp(z - @) exp(—z - ) e = ] v
They are not invariant under rigid, let alone local, SU(2), transforma-
tions. But we can make them invariant by using the Higgs field H(x). For

instance, the quantity Q;H d, is invariant under local SU(2), transforma-
tions. In unitary gauge, its mean value in the vacuum is

(3.126)

(01Q}Hd;10) = —= v 0l ). (3.127)

So the term
—caQVHd, — ¢ d HTQ, (3.128)

is invariant, and in the vacuum it is
1
(0] - ca Qi Hd, — ¢ dlH'Q|0) = 750 (0l —ea djd, — ¢;dldg|0)  (3.129)

which gives to the d quark the mass

g = 1
V2

Note that we must add one new parameter ¢4 to get one new mass mg. This

(3.130)

parameter cg is complex in general, but the mass m, depends only upon the
absolute value and not upon its phase of ¢y.
Similarly, the term
— Ce LZH@T —celHL, (3.131)

is invariant, and in the vacuum it is

* 1 *
(0] — ce L}Her — ¢ el HTQ|0) = 7 v (0] — ¢ e}e,« —creleg0)  (3.132)

which gives to the electron the mass

|ce|

me = 7 v. (3.133)

Again, we must add one new (complex) parameter c. to get one new mass

Me.
The mass of the up quark requires a new trick. The Higgs field H trans-
forms under SU(2), x U(1) as

a

H'(z) = exp ig%a“(:c)—i—ig'gﬁ(x) H(x). (3.134)
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If for clarity, we leave aside the U(1) part for the moment, then the Higgs
field H transforms under SU(2); as

0_(1

H'(z) = exp [z 9% aa($)} H(z). (3.135)

Let us use H* to be the complex column vector whose components are H 1T
and Hg How does oo H* transform under SU(2),7 Suppressing our explicit
mention of the space-time dependence and using the asterisk to mean hermi-
tian conjugation when applied to operators but complex conjugation when
applied to matrices and vectors, we have, since oy is imaginary with 03 = I
while o; and o3 are real,

(02 H*) = 0y {exp <z’ga2 aa> H] = oy exp (—ig %a a“) a*

2
. g (3.136)
o o
= 09 exp (—ig;aa> 0909 H* = exp <i92aa> o9 H*.
Thus, the term
— CUQEO'QH*UT — CZUI.HTO'QQg (3.137)

is invariant under SU(2),. In the vacuum of the unitary gauge, it is
(0] — CUQEUQH Uy — cul H 02Qq|0) = 7 v(O\zcuu};ur — ictulug|0)
(3.138)

which gives the up quark the mass

_ el

m, =
V2

Analogous terms can give masses to neutrinos. But why are the constants
¢, smaller by 1067

(3.139)

But there are three families of generations of quarks and leptons on which
the gauge fields act simply:

/ / /

U c t
A=l m=|®|. ana B=|?]. (3.140)
Ve Vu Vr
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The quark and lepton flavor families are
Ny e\’ £\’
/o !/ /o .
Ql - <d> ) QQ - <S> ) and QS - <b> 3
ve\' v\ v\
L - <e> I - <:) . and I = <T> .

These are called the flavor eigenstates or more properly flavor eigenfields,
designated here with primes. They are the ones on which the W+ act simply.
The weak interactions use W, T~ to map the flavor up fields u} = ', uy = ¢,
wy = t' into the flavor down fields d) = d', dy = &', d3 = b, and W T™ to
map the flavor down fields d; into the flavor up fields uj.

The action density

(3.141)

3
Z —caij QuHd,; — i dﬁjHTQZi (3.142)
ij=1

gives for the d’, s, and b’ quarks the mixed mass terms

3

v

— Y —caidyidl; — ¢y dildy. (3.143)

V2 ij=1
The 3 x 3 mass matrix M, with entries
v
— Cgii
V2
need have no special properties. It need not be hermitian because for each i

and j, the term ([3.143)) is hermitian. But every 3 x 3 complex matrix has a
singular-value decomposition

[Mgli; = (3.144)

My = LgSqR) (3.145)

in which Lj and Ry are 3 x 3 unitary matrices, and ¥4 is a 3 x 3 diagonal
matrix with nonincreasing positive singular values on its main diagonal.

The singular value decomposition works for any N x M (real or) complex
matrix. Every complex M x N rectangular matrix A is the product of an
M x M unitary matrix U, an M x N rectangular matrix X that is zero
except on its main diagonal which consists of its nonnegative singular values
Sy, and an N x N unitary matrix V7

A=UxVH (3.146)

This singular-value decomposition is a key theorem of matrix algebra. One
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can use the Matlab command “[U,S,V] = svd(A)” to perform the svd A =
USvVT.

The singular values of ¥4 are the masses my, mg, and mg:

my 0 0
Sa=(0 ms 0]. (3.147)
0 0 my
So the mass eigenfields of the left and right down-quark fields are
dyi = Rl and df, =df Ly or dy =LY, .dy. (3.148)
The inverse relations are
dy; = Rajjdr; and djf =df L', or dj; = Lajdy; (3.149)

or in matrix notation
d. = Ryd,, di=dlR d=dlLl, and d,=Lsd, (3.150)

in which
b
di=|s (3.151)

/,

are the down-quark fields of definite masses.
Similarly, the up quark action density

3
" —cuiQloa H upy — chul HT 02Q, (3.152)
ij=1
gives for the three known families the mixed mass terms
(& ’ "oy N
% Z Cuij g Upj — Coyi Uy Ugi- (3.153)
ij=1
The 3 x 3 mass matrix M, with entries
w
ﬁ Cuij
need have no special properties. It need not be hermitian because for each

1 and j, the term (3.153)) is hermitian. But every 3 x 3 complex matrix M,
has a singular value decomposition

[My)ij = (3.154)

M, = L% R} (3.155)

in which L, and R, are 3 X 3 unitary matrices, and ¥, is a 3 x 3 diagonal
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matrix with nonincreasing positive singular values on its main diagonal.
These singular values are the masses my, me, and my,:

me 0 0
u=10 m. 0 |. (3.156)
0 0 my
So the mass eigenfields of the left and right up-quark fields are
Upj = Rju-julrj and uzi = u%Luﬁ or Up = LLZ-]"U/KJ'. (3.157)
The inverse relations are
uy; = Ryjjur; and ug = u};jLLji or wy = Lyijuy; (3.158)

or in matrix notation
ul. = Ryu,, ull=ulR] ug = uZLL, and wuy = Lyu;,  (3.159)

in which
t
up= | ¢ (3.160)

u/y

are the up-quark fields of definite masses.

3.10 CKM Matrix

We will use the labels u, ¢, t and d, s, b for the states that are eigenstates of
the quadratic part of the hamiltonian after the Higgs mechanism has given a
mean value to the real part of the neutral Higgs boson in the unitary gauge.
The u, ¢, t quarks have the same charge 2¢/3 > 0 and the same 72 = 1/2, so
they all have the same electroweak interactions. Similarly, the d, s, b quarks
have the same charge —e/3 < 0 and the same 72 = —1/2, so they also all
have the same electroweak interactions.
The right-handed covariant derivative (3.109))

Dj, = 10, —ie sinf, tanby, 7, Q +ie A, Q (3.161)

just sends the fields of these mass eigenstates into themselves multiplied by

their charge and either a Z or a photon. That is,
uﬁD;u; = ulRLDZRuuT = uiDZur (3.162)
d!Dld. = d{R\D!,Rsd, = d|D’,d, '

In these terms, the interactions of the Z and the photon with the right-
handed fields are diagonal both in mass and in flavor.
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But the left-handed covariant derivative (3.110)) is

e
D\ =10, +i——— (WITH+ W, T"
p z Z\/ﬁ sin 0, ( © @ )
. s (3.163)
. P _sing, 4O
—HcosGw u <sin9w sin 0 Q) +ie A, Q
So we have
¢ ’U/ o ¢ Lu Uy
(ug d’}) D! (df) = (u}LL d}LL) D!, (Ld dé). (3.164)

Some of the unitary matrices just give unity, LLLU =1 and LLLd = I like
RLRU = I and RLRd = I in the right-handed covariant derivatives .
Thus the interactions of the Z and the photon with the both the right-
handed fields and with the left-handed fields are diagonal both in mass and
in flavor. The Z and the photon do not mediate top-to-charm or charm-to-
up or - — e~ + v decays. Also, the Higgs mass terms are diagonal, so the
neutral Higgs boson can’t mediate such processes. Thus, in the standard
model, there are no flavor-changing neutral-currents.
The only changes are in the nonzero parts of T which become

0 LiL 0V - 0 0 0 0
+ udd | _ _
Taon = <o 0 ) - (0 0) and - T = (LLLU o) - <VT o>

(3.165)
in which the unitary matrix V' = L} Ly is the CKM matrix (Nicola Cabibbo,
Makoto Kobayashi, and Toshihide Maskawa). The left-handed covariant
derivative on the mass eigenfields then is

. (& I
Dﬁ =10, +i NS (W T + Wi Tog)
. 1}3 | | (3.166)
+ s 0 Z, <sin0w — sin G, Q) +ie A, Q.

It has a second part that acts more or less like the right-handed covariant
derivative, but the first part uses W, T~ to map the up fields u, ¢, ¢ into
linear combinations of the down fields d, s, b and W, T to map the down
fields into linear combinations of the up fields. The Wﬁt terms are sensitive
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to the CKM matrix V = LTuLd. We write them suggestively as

u
c
i 0 VW+> t
(u c t d s b < _ " (3.167)
Viw, 0 d
s
b
u
t c
0 W ¢
- [z
u c t V .Z <Wu_ O> d
Vs
b
(3.168)

By choosing the phases of the six quark fields, that is, u(z) — e®uu(z)
..b(x) — €?b(x), one may make the CKM matrix L} Ly real apart from
a single phase. The existence of that phase probably is the cause of most
of the breakdown of C'P invariance that Fitch and Cronin and others have
observed since 1964. The magnitudes of the elements of the CKM matrix V
are

Vaal [Vas| [Vis| 0.97427 0.22536 0.00355
V=Vl [Ves| [Vw|| = [022522 097343 0.0414 |. (3.169)
Vil [Vis| |Vl 0.00886 0.0405 0.99914

Although there is only one phase exp(id) in the CKM matrix V', the exper-
imental constraints on this phase often are expressed in terms of the angles
a, B, and v defined as

a = arg[=ViaVip/ (VuaVap)]
B = arg[—VeaVay/ (ViaVip)] (3.170)
v = arg[=VuaVip/ (VeaVep)] -

If V is unitary, then a + 8 4+~ = 180°. From B — 7w, pm, and pp decays,
the limits on the angle a are roughly

a = (85.4 + 4)°. (3.171)
From B* — DK™* decays, the limits on the angle v are roughly
v = (68.0+8)°. (3.172)
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So the angle 3 is about 26.6°.
One of the quark-Higgs interactions is

2 2
—cayQEHd,; = — {Qg Myd.H = —{QZTLdEdRLd;H

- \szEddTH N _\sz ((v + 2)/\/5

—dj <1 + i) Sad, = —mg;d), (1 + z> dyi.

A similar term describes the coupling of the up quarks to the Higgs

) Sad, (3.173)

h
— muul, (1 + v) Upi- (3.174)

Thus, the rate of quark-antiquark to Higgs is proportional to the mass of
the quark in the standard model.

3.11 Lepton Masses

We can treat the leptons just like the quarks. The up leptons are the flavor
neutrinos v, u’ and v., and the down leptons are the flavor charged leptons
e, i/, and 7. The actlon density
3
!/
> —ceij LifHe,; — by el HT L, (3.175)
ij=1

gives for the ¢/, 1/, and 7/ the mixed mass terms

\[ Z Cel] eéz T‘j Cezg er];eéz (3.176)
i,5=1
The 3 x 3 mass matrix M, with entries
v
[Mc]ij = ﬁ Ceij (3.177)
has a singular value decomposition
M, = L.X.R! (3.178)

in which L. and R, are 3 x 3 unitary matrices, and X, is a 3 x 3 diagonal
matrix with nonincreasing positive singular values m,, m,, and m, on its
main diagonal.
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3.12 Neutrino Masses

Before spontaneous symmetry breaking, all the fields of the standard model
are massless, and the local symmetry under SU(2), ® U(1) is exact. Under
these gauge transformations, the left-handed electron and neutrino fields are
rotated among themselves. If €} is a linear combination of itself and of v/,
then these two fields, e, and v/, must be of the same kind. The left-handed
electron field is a Dirac field. Thus, the left-handed neutrino field also must
be a Dirac field. This makes sense because before symmetry breaking, all
the fields are massless, and so there is no problem combining two Majorana
fields of the same mass, namely zero, into one Dirac field. Thus, there are
three Dirac neutrino fields, one for each family v/, V;w, and v, ,.

A massless left-handed neutrino field v, satisfies the two-component Dirac
equation

(0ol =V -o)vp(z) =0 (3.179)
which in momentum space is
(E+p-o)v(p) =0. (3.180)
Since the angular momentum is J = /2, and E = |p|, we have
R 1
p-Jvilp) = —5 velp). (3.181)

The left-handed neutrino field v, annihilates neutrinos of negative helicity
and creates antineutrinos of positive helicity.
Since the neutrinos are massive, there may be right-handed neutrino fields.
As for the up quarks, we can use them to make an action density
3

" —cvi Lo H )y — v/ H o5 L, (3.182)
ij=1

that is invariant under SU(2), ® U(1) and that gives for the neutrinos the
mixed mass terms

3
v
Z:: 7 C,/Z]V& T] cjjljugyéz) (3.183)

The 3 x 3 mass matrix M, with entries
w

[MV]ij =

has a singular value decomposition

M, = L,S, R}, (3.185)
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in which L, and R, are 3 X 3 unitary matrices, and ¥, is a 3 x 3 diagonal
matrix with nonincreasing positive singular values m,,_, m,,, and m,, on its
main diagonal (here, I have assumed that the neutrino masses mimic those
of the charged leptons and quarks, rising with family number). The neutrino
CKM matrix then would be LZT, L., but since we are accustomed to treating
the charged leptons as flavor and mass eigenfields, we apply the neutrino
CKM matrix to the neutrinos rather than to the charged leptons. Thus the
neutrino CKM matrix is

V,=LIL,. (3.186)

By choosing the phases of the six lepton fields, we can make the neutrino
CKM matrix real except for C'P-breaking phases. If the neutrinos are Dirac
fields, then there is one such phase; if not, there are three.

3.13 Other Mass Terms

Under a Lorentz transformation z, a left-handed field £ goes as

(' =e %Y (3.187)
and a right-handed field r goes as

' =e* . (3.188)

A Dirac mass term looks like this

L = —mipp = —m(0F,r) <(1) (1)> <£> = —m(lr4r70).  (3.189)

r
It is Lorentz invariant because
Uiyl = pTe %9 20 p = (T, (3.190)

If ¢ is left handed, then p = 09f* is right handed because
' — o ZI* = go(e 2N = o e—z*ﬂ* 0*
P 2 )= (3.191)

IPOE * *
=09 % T gg09l* =€® Toxlt =€ Tp

which is how right-handed fields go. Similarly if r is right handed, then
A\ = oor* is left handed. So since ¢! r and rf ¢ are Lorentz invariant, so too

T

are \N'r = rTo9r and pw ={Toyt.

So if we split a complex Dirac field

W(z) = <£> (3.192)
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into its components
1
V2

then its Dirac mass term is

14 (61 +ily) and r (r1 4 irg), (3.193)

_ L
V2
L= — % (6 —il})(r1 + irs) + (P — irb) (&4 +¢52)]. (3.194)
If the field is Majorana, then its Dirac mass term is
L= =5 ((r+110). (3.195)
A Majorana field

W(z) = <£> (3.196)

describes a particle that is its own antiparticle and so has an expansion in
which the creation operators are the adjoints of the annihilation operators

3 . .
Y(z) = Z / (2??)12/2 [u(ﬁ, s) e a(p, s) +v(p,s) e P al(p,s)|. (3.197)

Dirac spinors obey the Majorana conditions

u(p,s) =¥’ v*(p,s) and ov(p,s) =~ u*(p,s) (3.198)
and so a Majorana field obeys the Majorana conditions
v =~%) and o =2 (3.199)

Since

=i <_0 ‘62>, (3.200)

02

these conditions (3.199)) say that

(O DO () o

So a Majorana field can be written entirely in terms of its left- or right-

handed components
o Y4 _ / . —iUQT*
. (T) - <i02€*> N ( r ) ' (3202

We can form many Lorentz-invariant terms

Gry, rley, 6Tost;, and rToor;. (3.203)
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We can form a seesaw mass term like

(¢ 4) (:;)z A”;) <2> (3.204)

which has mass eigenvalues that are approximately M and m?/M. This is
one form of the seesaw mechanism. Other seesaw mass terms are

(£1T0'2 £2T0'2) (7(31 E) <§;> and (TlTO'Q TQTO'Q) <T(T)l ]ﬂ\}) <:;>

(3.205)

3.14 Effective Field Theories

Another possibility is to say that new a field of very high mass M plays a
role, and that when one path-integrates over this heavy field, one is left with
a term in the action

2
QMZ@H*HT@L (3.206)

that gives a tiny mass to vp. Here’s how this can work: take as part of the
action density of the high-energy theory

Ly =@+ M)+ gbH 0oL + g Loy H (3.207)

where M is huge. Drop @ and complete the square:

2
Lyo= M (@ _ %Z@ H) <¢ _ %HT@L) n QMZO'QH*HTO‘QL. (3.208)

The path integral over the field ¢ of mass M yields a field-independent
constant and leaves in the action the term
2

L, = QMZ@H*HT@L. (3.209)
Replacing the Higgs field by its mean value in the vacuum, we have
2,2
L, = 92]\”4 . (3.210)

If the neutrino field v is a Dirac field, then this is a Dirac mass term
w= -2 [(4 —ilh) (1 +ira) + (] — i) (e + zez)]. (3.211)
If the neutrino field v is a Majorana field, then this is a Majorana mass term

v= — m(ﬁ*r + rW) = —im(rToor — (Toyl). (3.212)
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In both cases, the mass is intrinsically tiny
9202
2M -

m, ~ (3.213)

3.15 Neutrino Oscillations

The phase of a particle of energy E' and momentum p going a distance L
in a time ¢ is exp(i(pL — Et)/h). Neutrinos are nearly massless and go at
nearly the speed of light, hence em/p ~ 0 and ¢ ~ L/c. These excellent
approximations give

2,2
L
pL — Et = pL — \/2p? + ¢*m?2 L/c = pL — pL\/1 + 2m?2/p? =~ _eme

2p
(3.214)
Since E =~ cp, the phase difference A¢ between two such neutrinos varies

with their masses m1 and mso as

A(m? —m3)L S Am?L

3.16 Experimental Results

Models with both right-handed and left-handed neutrinos are easier to think
about, but only experiments can tell us whether right-handed neutrinos
exist.

What is known experimentally is that there are at least three masses that
satisfy

|Am3,| = |m3 —mi| = (7.53£0.18) x 10~ °eV? (3.216)
’Am%Q‘ = }m% - m%‘ = (2.44 4 0.06) x 1073 eV? normal mass hierarchy
|Am3,| = |m3 — m3| = (2.52£0.07) x 107?eV?  inverted mass hierarchy.

If the neutrinos are Dirac particles, then they have a CKM matrix like
that of the quarks with one C P-violating phase. But whereas one chooses
to make the mass and flavor eigenfields the same for the up quarks u,c,t,
for the leptons one makes the mass and flavor eigenfields the same for the
down or charged leptons e, pu, 7. So the neutrino CKM matrix actually is
V= L:EL,,. If they are three Majorana particles, then their CKM matrix has
two extra CP-violating phases a2 and ag;. A common convention for the
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neutrino CKM matrix is

1 0 0 cos 613 0 sin (9136_i(S
V=10 cosfy; sinfss 0 1 0
0 —sinfy3 cosbog —sinf3e®® 0 cos 013
cosbis sinfip O 1 0 0
X | —sinf1y cosfiz 0 0 eloz/2 0 . (3.217)
0 0 1/ \0 0 eon/?

This convention without the last 3 x 3 matrix also is used for the quark
CKM matrix. The current estimates are

sin?(2012) = 0.846 & 0.021 (3.218)
0.001

sin®(26093) = 0'9991_0 018 normal mass hierarchy (3.219)
0.000

sin?(20y3) = 1,000J_r0 017 inverted mass hierarchy (3.220)

sin?(20;13) = 0.093 & 0.008. (3.221)

Two of these are big angles: 2019 ~ 2033 = m/2+nm. In the normal hierarchy,
the lightest neutrino is about 2/3 electron, 1/6 muon, and 1/6 tau; the very
slightly heavier neutrino is about 1/3 electron, 1/3 muon, and 1/3 tau; and
the much heavier heavier neutrino is about 1/6 electron, 5/12 muon, and
5/12 tau.

3.17 Some theoretical considerations

Readers may wish to skip the rest of this chapter.

So far, I have assumed that the mass terms for the neutrinos are the usual
Dirac mass terms. However, the right-handed Majorana neutrino fields v/,
are not affected by the SU(2), ® U(1).

Note that a gauge transformation between ¢ and v, rotates the
operators a(p, s, e) and a(p, s, V) into each other. This rotation makes
sense only when the two particles have the same mass. In the stan-
dard model, such a gauge transformation makes sense only before
symmetry breaking when all the particles are massless. Moreover,
only when the particles are massless can one say that they are
left- or right-handed. While the particles are massless, the oper-
ator a(p,—) annihilates a particle of negative helicity and occurs
only in a left-handed field, while the operator a(p,+) annihilates
a particle of positive helicity and occurs only in a right-handed
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field. But when the particles are massive, the operator a(p, %) an-
nihilates a particle that is spin up and occurs in both left-handed
and right-handed fields. So a symmetry transformation that acted
on the operator a(p, %) would change both left-handed and right-
handed fields.

The left-handed fields of the neutrino and electron are

Veu(z) = /u(n_)al(p, —,I/e)\-i/-ﬁi@(p, —,ue)eim

ai(]% +7 Ve) + Z(I;(p, +7 Ve) e—ipm ddp

+v(p, +) 7% 2n)i/2 (3.222)
and
eo(r) = /u(p,_)cu(p,—,e) \';gaz(p,—,e)eipx
T - ‘ 3
+olp, +>a1(p7 +,e) tiay(p,+,€) e d°p (3.223)

V2 © e

where (p, —, V) means momentum p, spin down, and electron flavor,
and (p,+,v.) means momentum p, spin up, and electron flavor.
These fields satisfy equations like (3.179H3.181)) apart from their
interactions with other fields. Since a gauge transformation maps
the fields v, ¢(z) and e(z) into each other, we know that when all
the fields are massless, before symmetry breaking, there are (for
each momentum) at least two neutrino and antineutrino states

7 Lol =) = ialp.—.00)] 0 (3.224)
\}i [a}(p, +,ve) + ial(p, +, ue)] 10) (3.225)

for each of the three flavors, f = e, u, 7. So there are at least six
neutrino (and antineutrino) states.

The right-handed electron field exists and interacts with gauge
bosons and other fields. So there are 12 electron states a;f (p,£,e5)|0)
for i =1 and 2 and for the three flavors, f = e, 4, 7. We don’t know
yet whether a right-handed neutrino field exists or interacts with
other fields. So there may be only 6 neutrino states or as many as
12.

Neutrino oscillations tell us that neutrinos have masses. If there are 12
neutrino states, then there can be three massive Dirac neutrinos analagous

to the e, p, and 7 or six massive Majorana neutrinos or some intermediate
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combination. If there are only 6, then there can be 3 massive Majorana
neutrinos.
The Majorana mass terms for the right-handed neutrino fields are

6
Z [zm” i 09 I/ + (imyjv "Moo I/T,])T] . (3.226)

They are Lorentz invariant because under the Lorentz transformations (3.125))

VT oo =T exp(z* - o Nosexp(z* - o) V.
r02V r p( ) 2 p( ) T ) (3227)

=T, ogexp(—2z*-a)exp(z* o). =T, 091

The Majorana mass terms are unrelated to the scale v of the Higgs
field’s mean value. One can show that the complex matrix m;; is symmetric.
One then must combine the mass matrix in with the mass matrix
M, in . The resulting mass matrix will have a singular-value decom-
position with six singular values that would be the masses of the “physical”
neutrinos. If these six masses are equal in pairs, then the three pairs would
form three Dirac neutrinos.

Whether or not there are right-handed neutrinos, we can make Majorana
mass terms like v, " ooy, which are Lorentz invariant but not invariant under
SUg( ) or Uy(1). We can make them gauge invariant by using a triplet
qﬁ = 0;¢; of Higgs fields that transforms as qﬁ’ o= g(¢ #)g' for g € SUy(2)
and that carries a value of Y = —1. Then if oy has Lorentz indices and o}
has SU,(2) indices, the term

LT o305(¢ - &)Ly (3.228)

is both Lorentz invariant and gauge invariant. If the potential V((E) has min-
ima at ¢ # 0, then this term violates lepton number and gives a Majorana
mass to the neutrino.

3.17.1 Seesaw Mechanism

Why are the neutrino masses so light? Suppose we wish to find the eigen-
values of the real, symmetric mass matrix

M = <7?1 A”}) (3.229)

in which m is an ordinary mass and M is a huge mass. The eigenvalues p of
this hermitian mass matrix satisfy det (M — ul) = p(u— M) —m? = 0 with
solutions py = (M +VM?+ 4m2) /2. The larger mass jy ~ M +m?/M is
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approximately the huge mass M and the smaller mass pu_ ~ —m?/M is tiny.
The physical mass of a fermion is the absolute value of its mass parameter,
here m?/M.

The product of the two eigenvalues is the constant pypu_ = det M = —m?
so as p— goes down, p4 must go up. In 1975, Gell-Mann, Ramond, Slansky,
and Jerry Stephenson invented this “seesaw” mechanism as an explanation
of why neutrinos have such small masses, less than 1 eV/c?. If mc? = 10
MeV, and p_c? ~ 0.01 eV, which is a plausible light-neutrino mass, then
the rest energy of the huge mass would be Mc? = 107 GeV. This huge mass
would be one of the six neutrino masses and would point at new physics,
beyond the standard model. Yet the small masses of the neutrinos may be
related to the weakness of their interactions.

Before leaving the subject of fermion masses, let’s look more closely at
Dirac and Majorana mass terms. A Dirac field is a linear combination of
two Majorana fields of the same mass

1 [Ltit
V=7 (RHT) (3.230)

in which L and ¢ are two-component left-handed spinors, and R and r are
two-component right-handed spinors. The Dirac mass term

migw =imvty?=mot (7 (Yo

1 . . 0 I L+l
—m= (LT — et T gt
m2 (L ', R wr ) <I 0) <R ir>

1 ) ) R+ ir
—m= (LT — st T gt
m5 (L 0", R zr)<L i€>

- m% [(LT - m) (R+ir) + (RT - m) (L+ w)} (3.231)
- mé (RT - iﬂ) (L +i6) + h.c.,

in which h.c. means hermitian conjugate, gives mass m to the particle and
antiparticle of the Dirac field .
We may set

R = 109 LY < L[ = —1i09 R* (3.232)
r=1i0l* <= (= —iogr” (3.233)
(3.234)
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(72) - (%) = (1)~ (‘é?) (3.239)
<2> - (f%;) = (Z) = (;@ (3.236)

or equivalently

(3.237)
which are the Majorana conditions. Since Rf = —iLToy, we can write the
Dirac mass term (|3.231]) in terms of left-handed fields as

— 1
my = 5m (=i LT — ") o3 (L4 if) + h.c. (3.238)
1
=5m (LT —il") (—io2) (L+il) +h.c. (3.239)
1 , . 0 —1\ [Li+il
=3 m (Ll ily, Lo 262) <1 0 > <L2 —I—ifz) + h.c. (3.240)
1 ) ) —Lo — ity
=3 m (L1 ily, Lo 252) < Ly + ity ) + h.c. (3.241)
1

=5m (Ly —ily) (—Lo — ily) + (Lo — ily) (L1 + if1) + h.c. (3.242)
The fermion fields anticommute, so the Dirac mass term is
— 1
m¢¢ = 5 m (—2L1L2 — 26162) +h.c.=-m (LlLQ + £1£2> + h.c., (3243)

and it says that the fields L and ¢ have the same mass m, as they must if
they are to form a Dirac field.

Since LT = iRT 09, we also can write the Dirac mass term in terms of the
right-handed fields as

— 1
myp = 5m (RT —ir")ioay (R +ir) + h.c. (3.244)
. 1 . . 0 1 Ry + 11
= B m (R1 —1ry, RQ — ’LTQ) (_1 0> <R2 + iT2> + h.c. (3245)
=m (RlRQ + 7“17“2) + h.c. (3.246)

So the fields R and r have the same mass m, as they must if they are to
form a Dirac field.

The Majorana mass term for a right-handed field r of mass m evidently
is

mry 72 + h.c. (3.247)
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Beyond the standard model

4.1 Grand Unification

The success of the electroweak unification of the standard model led physi-
cists in the 1970s to propose what they called grand unification. Their goal
was to unify the electroweak and the strong interactions.

Howard Georgi and Sheldon Glashow made the first attempt in 1974.
They chose the group SU(5) which with 24 generators is big enough to
house SU.(3) ® SU(2) ® Uy (1) and its 12 generators.

Compact internal-symmetry groups can’t rotate left-handed fields into
right-handed fields. So the first problem they overcame was how to combine
transformations SU,(2) that act only on left-handed fields with ones SU.(3)
that act on both left- and right-handed fields. They solved that problem
by writing all fields as left-handed fields. Recall for instance that if u, is a
right-handed up-quark field, that is if it transforms like

u,. = exp(Z- &) u, (4.1)

then

uy = o u, (4.2)

is left-handed, that is, it transforms as

(up)' = 03 (u,)" = 02 [exp(Z- &) ur]” (4.3)
=09 exp(Z* - &) uy = exp(—Z2" - &) o2 u; (
= exp(—Z" - d)ujg 4.5
because
092" FF = =20 o. (4.6)

So they wrote all the fields as left-handed fields. They had 15 left-handed
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Fermi fields in each generation; at that time, only two generations were
known. Since all 15 fields are left handed, we may drop the subscript £.
They had wu,, u,, uy, d., d,, dy, €, v = Ve, u%, 1,° wpS, d,€, d,°, dp¢, and e°.
They left out v¢ which is a right-handed neutrino and took the neutrinos
to be massless. (The physics community had not yet accepted Ray Davis’s
late-1960s discovery of neutrino oscillations.)

Georgi and Glashow put the 15 left-handed quark and lepton fields into
the 5*

d,°©
C
5% = | dy° (4.7)
e
v
and a 10
0 up® —u,S —u, —d,
—ubc 0 u,,c — —
10 = ¢ —urC 0 —Up —db (4.8)
. s 0 —e
d, Up e 0

and introduced 13 new gauge bosons Y,.*, Y # Yy, Y. YV H Y X B
ro Xty X, X and X and AF.
All the generators of SU(5) are traceless matrices. Thus the diagonalized
charge operator @ is traceless. In the 5* representation, the sum of its its
diagonal elements must vanish:

q(d,©) + q(d,%) + q(dp®) + q(e) + q(v) = 0. (4.9)

The neutrino is neutral, and the charges of the antidown quarks are color
independent. Thus

34(d) = — qle) (4.10)

or q(d°) = [e|/3.

But gauge theories with quarks and antiquarks, leptons and antileptons
in the same multiplet have gauge bosons that mediate changes of quark
and lepton number. Putting quarks and antiquarks into the same multiplet
means that nucleons are unstable. The proton is a colorless s-state of wu,.,

, and up. The processes v, + dy, — Y,.¢ and Y,.¢ — u,.€ + €€ lead to proton
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decay:
p=ur+u,+d, = u. +Y° (4.11)
uy + Y — w, +u,f 4 e (4.12)
Uy 4 u,¢ + ¢ — 70 4 et (4.13)

Other processes lead to other modes of proton decay and to the decay of neu-

trons in otherwise stable nuclei. The lifetime 7, of the proton is proportional

to the fourth power of the mass of the Y
My

2,115
ozmp

Tp X (4.14)
in which « is the fine structure constant of SU(5). The lower bound on the
lifetime of the proton due to this decay mode is 8.3 x 1033 years. Putting
charge-conjugated right-handed fields into the same multiplet as left-handed
fields changes the focus of physics from accessible energies to the GUT scale
or My > 10'6 GeV. This seems premature.

Harald Fritzsch, Peter Minkowski, Howard Georgi, and Edward Witten
put the left-handed fields of a single family into a 16-dimensional multiplet
of SO(10), which to save paper I represent as a row vector

VC
eC
Uy

d,

16 = (4.15)

This theory of grand unification is more symmetrical and has room for a
right-handed neutrino, which appears as v°. This theory also produces pro-
ton decay unless the masses of the gauge bosons exceed about 10'6 GeV.
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Unfortunately, SO(10) does not seem to explain the charges as directly as
SU(5) because the sum of the charges of the particles of the 16 vanishes no
matter what they are as long as ¢ + ¢° = 0. This may be why Georgi and
Glashow opted for SU(5), which Georgi discovered only a few hours after
figuring out SO(10). But if one fits the 16 particles of the 16 into SU(5)
multiplets, then one recovers the SU(5) version of charge quantization.

The gauge group of the standard model is SU.(3) ® SUy(2) ® Uy (1) with
three coupling constants gs, g, and ¢’ which have nothing to do with each
other. Grand unification puts these three groups into a simple group with a
single coupling constant and traceless generators T'* that are related to one
another by the structure constants fup.

[T T = i fopeT¢ (4.16)

which are real and totally antisymmteric, and the same for every represen-
tation whether reducible or irreducible. A simple group G is one that has
no nontrivial invariant subgroup S; that is, if

g lsg=5 e Sforallse Sandallg e G (4.17)

then either S = G or S consists of the identity element of G. The group of
the standard model SU.(3) ® SU;(2) ® Uy (1) is not simple (or semi-simple).
Its structure constants don’t relate the SU.(3) generators to the SU;(2)
generators or to the Uy (1) generator.

The generators of any representation whether reducible or irreducible of a
group may be taken to be orthogonal with a normalization Np that depends
upon the representation D

Te 7T = Np bap. (4.18)
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