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Creation and annihilation operators inherit the transformation properties of states

of particles. Spinors, which are the coefficients of the creation and annihilation op-

erators in the Fourier expansions of fields, are defined so that the fields transform

according to representations of the Poincaré group. This note is intended to explain

to students how and why the Dirac spinors v, which are the coefficients of the cre-

ation operators, are so different from the Dirac spinors u, which are the coefficients

of the annihilation operators.

I. SPIN-ONE-HALF PARTICLES

A spin-one-half particle of kind n and 4-momentum p = (p, p0) with p2 = −m2 and spin

s = ±1/2 in the z direction is represented by a state |p, s, n〉. For fixed kind and momentum,

these states form a two-dimensional space spanned by |p, 1/2, n〉 and |p,−1/2, n〉.

If the momentum is in the z direction, then the state |pẑ, s, n〉 is an eigenstate of the z

component Jz of the angular momentum operator J with eigenvalue s

Jz|pẑ, s, n〉 = s|pẑ, s, n〉. (1)

So under a rotation by angle θ about the z axis, the state |pẑ, s, n〉 goes as

e−iθJz |pẑ, s, n〉 = e−isθ|pẑ, s, n〉. (2)

The creation operator a†(p, s, n) adds such a particle to a state. It turns the vacuum state

|0〉 into the state |p, s, n〉

a†(p, s, n)|0〉 = |p, s, n〉. (3)

It turns a state of several particles |p1, s1, n1, . . .〉 into a state

a†(p, s, n)|p1, s1, n1; . . .〉 = |p, s, n;p1, s1, n1; . . .〉 (4)
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that represents those particles plus a particle of 4-momentum p = (p, p0), spin s in the z

direction, and kind n.

The antiparticle of a particle of kind n is of kind nc. For antiparticles, the particle equa-

tions (1–4) apply with n→ nc:

Jz|pẑ, s, nc〉 = s|pẑ, s, nc〉 (5)

e−iθJz |pẑ, s, nc〉 = e−isθ|pẑ, s, nc〉 (6)

a†(p, s, nc)|0〉 = |p, s, nc〉 (7)

a†(p, s, nc)|p1, s1, n1; . . .〉 = |p, s, nc;p1, s1, n1; . . .〉. (8)

Under a rotation by angle θ, the creation operator a†(p, s, n) goes as

U(R(θ))a†(p, s, n)U−1(R(θ)) = e−iθ·Ja†(p, s, n)eiθ·J

= D(R(θ))s′s a
†(R(θ)p, s′, n)

(9)

in which

D(R(θ))ss′ =
[
e−iθ·σ/2

]
ss′

= δss′ cos(θ/2)− iθ · (σ)ss′ sin(θ/2) (10)

is the 2 × 2 representation of the rotation group. The annihilation operator goes as the

adjoint equation (9)

U(R(θ))a(p, s, n)U−1(R(θ)) = e−iθ·Ja(p, s, n)eiθ·J

= D∗(R(θ))s′s a(R(θ)p, s′, n)
(11)

For a rotation by angle θ about the z axis, the matrix D(R(θẑ)) is diagonal, and so the

creation operator a†(p, s, n) goes as

U(R(θẑ))a†(p, s, n)U−1(R(θẑ)) = e−iθJza†(R(θẑ)p, s, n)eiθJz

= e−isθa†(R(θẑ)p, s, n)
(12)

which makes sense since a†(R(θẑ)p, s, n) adds s units of angular momentum to a state.

Taking the adjoint of this equation, we see that under a rotation by angle θ about the z

axis, the annihilation operator a(p, s, n) goes as

U(R(θẑ))a(p, s, n)U−1(R(θẑ)) = e−iθJza(R(θẑ)p, s, n)eiθJz

= eisθa(R(θẑ)p, s, n)
(13)

which makes sense since a(R(θẑ)p, s, n) subtracts s units of angular momentum from a state.

Creation and annihilation operators transform differently under rotations. That’s why the

spinors u and v must be different.
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II. THE SPINORS OF DIRAC FIELDS

Under a rotation R(θẑ) about the ẑ axis by angle θ, a Dirac field

ψa(x) =
∑
s

∫
d3p

(2π)3/2
ua(p, s, n) eip·x a(p, s, n) + va(p, s, nc) e

−ip·x a†(p, s, nc) (14)

transforms as its creation and annihilation operators transform (12 and 13)

U(R(θẑ))ψa(x)U−1(R(θẑ)) = e−iθJzψa(x)eiθJz

=
∑
s

∫
d3p

(2π)3/2

[
ua(p, s, n)eip·xe−iθJza(p, s, n)eiθJz

+ va(p, s, nc)e
−ip·xe−iθJza†(p, s, nc)e

iθJz
]

=
∑
s

∫
d3p

(2π)3/2

[
ua(p, s, n)eip·xeisθa(R(θẑ)p, s, n)

+ va(p, s, nc)e
−ip·xe−isθa†(R(θẑ)p, s, nc)

]
. (15)

Since Rp ·Rx = p · x, and d3Rp = d3p, we can write this as

U(R(θẑ))ψa(x)U−1(R(θẑ)) =
∑
s

∫
d3p

(2π)3/2

[
ua(R

−1(θẑ)p, s)eip·Rxeisθa(p, s)

+ va(R
−1(θẑ)p, s)e−ip·Rxe−isθa†c(p, s)

]
. (16)

On the other hand, under a rotation R(θẑ) about the ẑ axis by angle θ, a Dirac field

goes as

e−iθJzψa(x)eiθJz = D(R−1(θẑ))abψb(R(θẑ)x) (17)

in which D is the (1
2
, 0)⊕ (0, 1

2
) representation of the Lorentz group. For rotations about the

ẑ axis D(1/2,0)⊕(0,1/2)(R−1) is diagonal

D(R−1) =

eiθσ3/2 0

0 eiθσ3/2

 =


eiθ/2 0 0 0

0 e−iθ/2 0 0

0 0 eiθ/2 0

0 0 0 e−iθ/2

 (18)

because the two 2 × 2 representations of the Lorentz group are the same for rotations,

D(1/2,0)(R) = D(0,1/2)(R). Thus under a rotation R(θẑ) by angle θ about the ẑ axis, a Dirac
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field goes as

U(R(θẑ))ψa(x
0,x)U−1(R(θẑ)) = e−iθJzψa(x

0,x)eiθJz

=

 eiθ/2 ψa(x
0, R(θẑ)x) if a = 1, 3

e−iθ/2 ψa(x
0, R(θẑ)x) if a = 2, 4

.
(19)

If we now compare this equation with (16), then we see that for momentum in the ẑ

direction, the ua(pẑ, s) spinors must satisfy

eisθ ua(pẑ, s) =

 eiθ/2 ua(pẑ, s) if a = 1, 3

e−iθ/2 ua(pẑ, s) if a = 2, 4
(20)

while the va(pẑ, s) spinors must satisfy

e−isθ va(pẑ, s) =

 eiθ/2 va(pẑ, s) if a = 1, 3

e−iθ/2 va(pẑ, s) if a = 2, 4
. (21)

Thus for momentum in the ẑ direction, the ua(pẑ,
1
2
) spinors can have nonzero components

only for a = 1 and 3, while the ua(pẑ,−1
2
) spinors can have nonzero components only for

a = 2 and 4. This is what one expects. But we also see that the va(pẑ,
1
2
) spinors can have

nonzero components only for a = 2 and 4, while the va(pẑ,−1
2
) spinors can have nonzero

components only for a = 1 and 3. This surprises many physicists, but it is stated correctly

in books by Steven Weinberg [1, Chap. 5] and by Peskin and Schroeder [2, pp. 803–804] and

in various articles [3, 4].

Weinberg’s zero-momentum spinors are

u(0, 1
2
) =

1√
2


1

0

1

0

 and u(0,−1
2
) =

1√
2


0

1

0

1

 (22)

and

v(0, 1
2
) =

1√
2


0

1

0

−1

 and v(0,−1
2
) =

1√
2


−1

0

1

0

 . (23)
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The spinors for momentum p then are [3]

u(p, s) =
m− i/p√

2p0(p0 +m)
u(0, s) and v(p, s) =

m+ i/p√
2p0(p0 +m)

v(0, s) (24)

or more explicitly

u(p, 1
2
) =

1

2
√
p0(p0 +m)


m+ p0 − p3
−p1 − ip2
m+ p0 + p3

p1 + ip2

 (25)

u(p,−1
2
) =

1

2
√
p0(p0 +m)


−p1 + ip2

m+ p0 + p3

p1 − ip2
m+ p0 − p3

 (26)

v(p, 1
2
) =

1

2
√
p0(p0 +m)


−p1 + ip2

m+ p0 + p3

−p1 + ip2

−m− p0 + p3

 (27)

v(p,−1
2
) =

1

2
√
p0(p0 +m)


−m− p0 + p3

p1 + ip2

m+ p0 + p3

p1 + ip2

 . (28)

III. CROSSCHECKS

If we compare the two transformation laws (16) and (19) for how a Dirac field goes under

a rotation R(θẑ) about the z axis, then we see that for momentum p the spinors must obey

the rules

eisθ ua(R
−1(θẑ)p, s) =

 eiθ/2 ua(p, s) if a = 1, 3

e−iθ/2 ua(p, s) if a = 2, 4
(29)

and

e−isθ va(R
−1(θẑ)p, s) =

 eiθ/2 va(pẑ, s) if a = 1, 3

e−iθ/2 va(pẑ, s) if a = 2, 4
. (30)
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As a check, we set s = 1
2

and a = 2 in (29) and find

−p′1 − ip′2 = e−iθ(−p1 − ip2)

where the primes mean p′ = R−1(θẑ)p. That is,

p′1 = cos θp1 + sin θp2 and p′2 = cos θp2 − sin θp1

which is a left-handed rotation, R−1(θẑ), about the z axis.

As a final crosscheck, let’s examine a state of one antiparticle at rest. The state

a†(0, s, nc)|0〉 is (summed over a and s′)

1

(2π)3/2

∫
d3x v̄a(0, s)ψa(x)|0〉 = v̄a(0, s)

∫
d3xd3p

(2π)3
v(p, s′) e−ip·x a†(p, s′, nc)|0〉

= v̄a(0, s)

∫
d3p δ3(p)v(p, s′) a†(p, s′, nc)|0〉

= v̄a(0, s)v(0, s′) a†(0, s′, nc)|0〉 (31)

= δss′ a
†(0, s′, nc)|0〉 = a†(0, s, nc)|0〉.

So

|0, s, nc〉 =
1

(2π)3/2

∑
a

∫
d3x v̄a(0, s)ψa(x)|0〉. (32)

To determine its spin, we act on it with the operator e−iθJ3 that rotates states about the z

axis by angle θ in a right-handed way.

e−iθJ3|0, s, nc〉 = e−iθJ3
1

(2π)3/2

∑
a

∫
d3x v̄a(0, s)ψa(x)|0〉 (33)

=
1

(2π)3/2

∑
a

∫
d3x v̄a(0, s)e

−iθJ3ψa(x)eiθJ3e−iθJ3|0〉.

Since the vacuum is invariant, this is

e−iθJ3 |0, s, nc〉 =
1

(2π)3/2

∑
a

∫
d3x v̄a(0, s)e

−iθJ3ψa(x)eiθJ3|0〉

=
1

(2π)3/2

∑
a

∫
d3x v̄a(0, s)D(R−1)abψb(Rx)|0〉. (34)

Since the jacobian of a rotation is unity, we have

e−iθJ3|0, s, nc〉 =
1

(2π)3/2

∑
a

∫
d3x v̄a(0, s)D(R−1)abψb(x)|0〉 (35)
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in which

D(R−1)ab =


eiθ/2 0 0 0

0 e−iθ/2 0 0

0 0 eiθ/2 0

0 0 0 e−iθ/2

 . (36)

So this is

e−iθJ3|0, s, nc〉 =
1

(2π)3/2

∑
a

∫
d3x v̄a(0, s)e

iσ(a)θ/2ψa(x)|0〉 (37)

in which σ(a) = 1 for a = 1 & 3, and σ(a) = −1 for a = 2 & 4. For s = ±1/2, the spinors

v(0, s) are

v(0, 1
2
) =

1√
2


0

1

0

−1

 and v(0,−1
2
) =

1√
2


−1

0

1

0

 . (38)

For s = 1/2, slots a = 2 & 4 of the spinor v(0, s) are nonzero, while slots a = 1 & 3 are zero.

Thus

e−iθJ3|0, 1/2, nc〉 = e−iθ/2
1

(2π)3/2

∑
a

∫
d3x v̄a(0, s)ψa(x)|0〉 (39)

which means that the state has spin 1/2 in the z direction. For s = −1/2, slots a = 1 & 3

of the spinor v(0, s) are nonzero, while slots a = 2 & 4 are zero. Thus

e−iθJ3 |0, 1/2, nc〉 = eiθ/2
1

(2π)3/2

∑
a

∫
d3x v̄a(0, s)ψa(x)|0〉 (40)

which means that the state has spin −1/2 in the z direction.
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