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and a1, a1, . . . an are the eigenvalues of the matrix A. This definition makes
sense if f(A) is a series in powers of A because then
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S�1 = Sf(A(d))S�1 (1.306)

which is (1.303).

Example 1.44 (Momentum operators generate spatial translations) The
position operator x and the momentum operator p obey the commutation
relation [x, p] = xp � px = i~. Thus the a-derivative ẋ(a) of the operator
x(a) = eiap/~ x e�iap/~ is unity

ẋ(a) = eiap/~ (�i[x, p]) e�iap/~ = eiap/~ ~ e�iap/~ = 1. (1.307)

Since x(0) = x, we see that the unitary transformation U(a) = eiap/~ moves
x to x+ a

eiap/~ x e�iap/~ = x(a) = x(0) +

Z
a

0
ẋ(a0) da0 = x+ a. (1.308)

Example 1.45 (Glauber’s identity) The commutator of the annihilation
operator a and the creation operator a† for a given mode is the number 1

[a, a†] = a a† � a† a = 1. (1.309)

Thus a and a† commute with their commutator [a, a†] = 1 just as x and p
commute with their commutator [x, p] = i~.
Suppose that A and B are any two operators that commute with their

commutator [A,B] = AB �BA

[A, [A,B]] = [B, [A,B]] = 0. (1.310)

As in the [x, p] example (1.44), we define AB(t) = e�tB AetB and note
that because [B, [A,B]] = 0, its t-derivative is simply

ȦB(t) = e�tB [A,B] etB = [A,B]. (1.311)

Since AB(0) = A, an integration gives

AB(t) = A+

Z
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[A,B] dt = A+ t [A,B]. (1.312)
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Multiplication from the left by etB now gives etB AB(t) as

etB AB(t) = AetB = etB (A+ t [A,B]) . (1.313)

Now we define

G(t) = etA etB e�t(A+B) (1.314)

and use our formula (1.313) to compute its t-derivative as

Ġ(t) = etA
�
AetB + etB B � etB(A+B)

�
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�
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= etA etB t [A,B] et(A+B) = t [A,B]G(t) = tG(t) [A,B].

(1.315)

Since Ġ(t), G(t), and [A,B] all commute with each other, we can integrate
this operator equation
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from 0 to 1 and get since G(0) = 1

logG(1)� logG(0) = logG(1) =
1

2
[A,B]. (1.317)

Thus G(1) = e[A,B]/2 and so

eA eB e�(A+B) = e
1
2 [A,B] or eA eB = eA+B+ 1

2 [A,B] (1.318)

which is Glauber’s identity.

Example 1.46 (Chemical reactions) The chemical reactions [A]
a��! [B],

[B]
b��! [A], and [B]

c��! [C] make the concentrations [A] ⌘ A, [B] ⌘ B,
and [C] ⌘ C of three kinds of molecules vary with time as

Ȧ = � aA+ bB, Ḃ = aA� (b+ c)B and Ċ = cB. (1.319)

We can group these concentrations into a 3-vector V = (A,B,C) and write
the three equations (1.319) as V̇ = K V in which K is the matrix

K =

0

@
�a b 0
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0 c 0

1

A . (1.320)

The solution to the di↵erential equation V̇ = K V is V (t) = eKt V (0).
The eigenvalues of the matrix K are the roots of the cubic equation

det(K � �I) = 0. One root vanishes, and the other two are the roots of
the quadratic equation �2 + (a + b + c)� + ac = 0. Their sum is the trace


