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Monte Carlo methods

16.1 The Monte Carlo method

The Monte Carlo method is simple, robust, and useful. It has many ap-
plications. It is used, for instance, in numerical integration, data analysis,
statistical mechanics, lattice gauge theory, chemical physics, biophysics, and
finance.

16.2 Numerical Integration

Suppose one wants to numerically integrate a function f(x) of a vector
x = (x1, . . . , xn) over a region R. One generates a large number N of pseu-
dorandom values for the n coordinates x within a hyperrectangle of length
L that contains the region R, keeps the NR points xk = (x1k, . . . , xnk) that
fall within the region R, computes the average hf(xk)i, and multiplies by
the hypervolume VR of the region

Z

R
f(x) dnx ⇡ VR

NR

NRX

k=1

f(xk). (16.1)

If the hypervolume VR is hard to compute, you can have the Monte Carlo
code compute it for you. The hypervolume VR is the volume Ln of the
enclosing hypercube multiplied by the number NR of times the N points
fall within the region R

VR =
NR
N

Ln. (16.2)

The integral formula (16.1) then becomes

Z

R
f(x) dnx ⇡ Ln

N

NRX

k=1

f(xk). (16.3)
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The error falls like 1/
p
NR. So to get better accuracy, one simply runs

the program again with more points; one does not have to write a new code
with finer n-dimensional grids of points that span the region R.

Example 16.1 (Numerical integration) Suppose one wants to integrate
the function

f(x, y) =
e�2x�3y

p
x2 + y2 + 1

(16.4)

over the quarter of the unit disk in which x and y are positive. In this case,
VR is the area ⇡/4 of the quarter disk.
One may compute this integral by using the Fortran program integrate.f95

or Sean Cahill’s C++ program integrate.cc both of which are in the repository
Monte Carlo methods at github.com/kevinecahill.
To generate fresh random numbers, one must set the seed for the code

that computes them. The program integrate.f95 sets the seed by calling its
subroutine init random seed(). With some compilers, one can just write “call
random seed().”

16.3 Quasirandom numbers

The method of the previous section is easy to use, but one can improve its
accuracy by using quasirandom numbers, which occur with equal density
in every region. Examples on the interval (0, 1) are the Halton sequences
of bases 2 and 3

1/2, 1/4, 3/4, 1/8, 5/8, 7/8, 1/16, 9/16, . . .

1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9, 1/27, . . .
(16.5)

and those invented by Sobol’. If one uses quasirandom numbers instead of
pseudorandom numbers to estimate integrals, then the error falls like 1/N2/3

or 1/N , both of which are faster than the 1/
p
N decrease one gets with

pseudorandom numbers. Codes that generate Halton and Sobol’ sequences
are at people.sc.fsu.edu/~jburkardt/f_src/rnglib/rnglib.html.

16.4 Applications to Experiments

Physicists accumulate vast quantities of data and sometimes must decide
whether a particular signal is due to a defect in the detector, to a random
fluctuation in the real events that they are measuring, or to a new and
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unexpected phenomenon. For simplicity, let us assume that the background
can be ignored and that the real events arrive randomly in time apart from
extraordinary phenomena. One reliable way to evaluate an ambiguous signal
is to run a Monte Carlo program that generates the kinds of real random
events to which one’s detector is sensitive and to use these events to compute
the probability that the unusual signal occurred randomly.
To illustrate the use of random-event generators, we will consider the

work of a graduate student who spent 100 days counting muons produced in
an underground detector by atmospheric GeV neutrinos. Each of the very
large number N of primary cosmic rays that hit the Earth every day can
collide with a nucleus and make a shower of pions which in turn produce
atmospheric neutrinos that can make muons in the detector. The probability
p that a given cosmic ray will make a muon in the detector is very small, but
the number N of primary cosmic rays is very large. In this experiment, their
product pN was hni = 0.1 muons per day. Since N is huge and p tiny, the
probability distribution is Poisson, and so by (15.66) the probability that n
muons would be detected on any particular day is

P (n, hni) = hnin
n!

e�hni (16.6)

in the absence of a failure of the anti-coincidence shield or some other prob-
lem with the detector—or some hard-to-imagine astrophysical event.

The graduate student might have used a program like muons.f90 or like
Sean Cahill’s muons.cc to generate 1,000,000 random histories of 100 days
of events distributed according to the Poisson distribution (16.6) with hni =
0.1. Both codes are in Monte Carlo methods at github.com/kevinecahill.

Figure 16.1 plots the results from this simple Monte Carlo of 1,000,000
histories of 100 days each. The boxes show that the maximum number of
muons detected on a single day was n = 1, 2, and 3 on 62.6%, 35.9%, and
1.5% of the runs—and was n = 0, 4, 5, and 6 on only 36, 410, 9, and 1 runs.
Thus if the actual run detected no muons at all, that would be by (15.92)
about a 4� event, while a run with more than 4 muons on a single day
would be an event of more than 4�. Either would be a reason to examine
the apparatus or the heavens; the Monte Carlo can’t tell us which. The curve
shows how many runs had a total of n muons in 100 days; 125,142 histories
had 10 muons.

Of course, one could compute the data of Fig. 16.1 by hand without
running a Monte Carlo. But suppose one’s aging phototubes reduced the
mean number of muons detected per day to hni = 0.1(1 � ↵d/100) on day
d? Or suppose one needed the probability of detecting more than one muon
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A million 100-day runs
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Figure 16.1 The number of histories of 100 days (out of 1,000,000 histories)
in which a maximum of n muons is detected on a single day (boxes) and in
100 days (curve). A Matlab script for this figure is in Monte Carlo methods
at github.com/kevinecahill.

on two days separated by one day of zero muons? In such cases, the analytic
computation would be di�cult and error prone, but the student would need
to change only a few lines in the Monte Carlo program.

16.5 Statistical mechanics

The Metropolis algorithm can generate a sequence of states or configurations
of a system distributed according to the Boltzmann probability distribution
(1.392). Suppose the state of the system is described by a vector x of many
components. For instance, if the system is a protein, the vector x might be
the 3N spatial coordinates of the N atoms of the protein. A protein com-
posed of 200 amino acids has about 4000 atoms, and so the vector x would
have some 12,000 components. Suppose E(x) is the energy of configuration
x of the protein in its cellular environment of salty water crowded with
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macromolecules. How do we generate a sequence of “native states” of the
protein at temperature T?

We start with some random or artificial initial configuration x0 and then
make random changes �x in successive configurations x. One way to do this
is to make a small, random change �xi in coordinate xi and then to test
whether to accept this change by comparing the energies E(x) and E(x0)
of the two configurations x and x0, which di↵er by �xi in coordinate xi.
(Estimating these energies is not trivial; Gromacs and tinker can help.)
It is important that the random changes be symmetric, that is, the proba-

bility of choosing to test whether to go from x to x0 when one is at x should
be equal to the probability of choosing to test whether to go from x0 to x
when one is at x0. A simple way to ensure this symmetry is to define x0i
in terms of xi, a suitable step size �x, and a random number r (uniformly
distributed between 0 and 1) as

x0i = xi +
�
r � 1

2

�
�x. (16.7)

Also, the sequences of configurations should be ergodic; that is, from any
configuration x, one should be able to get to any other configuration x0 by
a suitable sequence of changes �xi = x0i � xi.
How do we decide whether to accept or reject �xi? We use the following

Metropolis step: If the energy E0 = E(x0) of the new configuration x0 is
less than the energy E(x) of the current configuration x, then we accept the
new configuration x0. But if E0 > E, then we accept x0 with probability

P (x ! x0) = e�(E0�E)/kT (16.8)

by generating a random number r 2 [0, 1] and accepting x0 if

r < e�(E0�E)/kT . (16.9)

If one does not accept x0, then the system remains in configuration x.
In fortran90, the Metropolis step might be

if ( newE <= oldE ) then ! accept

x(i) = x(i) + dx

else ! accept conditionally

call random_number(r)

if ( r <= exp(- (newE - oldE)/(k*T)) ) then ! accept

x(i) = x(i) + dx

end if

end if
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The next step is to vary another coordinate, such as xi+1. Once one has
varied all of the coordinates, one has finished a sweep through the sys-
tem. After thousands or millions of such sweeps, the protein is said to be
thermalized. Once the protein has thermalized, one can start measuring
its properties, such as its shape. One computes a physical quantity every
hundred or thousand sweeps and takes the average of these measurements.
That average is the mean value of the physical quantity at temperature T .
Why does this work? Consider two configurations x and x0 which respec-

tively have energies E = E(x) and E0 = E(x0) and are occupied with prob-
abilities Pt(x) and Pt(x0) as the system is thermalizing. If E > E0, then the
rate R(x ! x0) of going from x to x0 is the rate v of choosing to test x0 when
one is at x times the probability Pt(x) of being at x, that is, R(x ! x0) =
v Pt(x). The reverse rate R(x0 ! x) is R(x0 ! x) = v Pt(x0) e�(E�E0)/kT

with the same v since the random walk is symmetric. The net rate from
x ! x0 then is

R(x ! x0)�R(x0 ! x) = v
⇣
Pt(x)� Pt(x

0) e�(E�E0)/kT
⌘
. (16.10)

This net flow of probability from x0 ! x is positive if and only if

Pt(x)/Pt(x
0) > e�(E�E0)/kT . (16.11)

The probability distribution Pt(x) therefore flows with each sweep toward
the Boltzmann distribution exp(�E(x)/kT ). The flow slows and stops when
the two rates are equal R(x0 ! x) = R(x ! x0) a condition called detailed
balance. At this equilibrium, the distribution Pt(x) satisfies

Pt(x) = Pt(x
0) e�(E�E0)/kT (16.12)

in which Pt(x0) eE
0/kT is independent of x. So the thermalizing distribution

Pt(x) approaches the distribution P (x) = c e�E/kT in which c is independent
of x. Since the sum of these probabilities must be unity, we have

X

x

P (x) = c
X

x

e�E(x)/kT = 1 (16.13)

which means that the constant c is the inverse of the partition function

Z(T ) =
X

x

e�E(x)/kT . (16.14)

The thermalizing distribution approaches Boltzmann’s distribution (1.392)

Pt(x) ! PB(x) = e�E(x)/kT /Z(T ). (16.15)
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Hysteresis in 4d Z2 lattice gauge theory
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Figure 16.2 The hysteresis loop is a sign of a first-order phase transition.

Example 16.2 (Z2 lattice gauge theory) To simulate Z2 gauge theory on a
lattice, one represents spacetime as a lattice of points in d dimensions. Two
nearest-neighbor points are separated by the lattice spacing a and joined
by a link. One puts an element U = ± 1 of the group Z2 on each link.
One then assigns an action S2 to each elementary square or plaquette of the
lattice. For the Z2 gauge group (example 11.6), the action S2 of a square
with vertices 1, 2, 3, and 4 is

S2 = 1� U1,2 U2,3 U3,4 U4,1 (16.16)

where each U = ± 1. Then, one replaces E(x)/kT with �S in which the
action S is a sum of all the plaquette actions Sp.

You can study Z2 lattice gauge theory by using the program puregauge.cc
available at Michael Creutz’s website (latticeguy.net/lattice.html). By
running it on a 64 lattice from low temperature � = 1 to high temperature
� = 0 and back again, you can exhibit hysteresis as in Fig. 16.2.

Example 16.3 (SU(3) lattice gauge theory) For each elementary square
of the lattice, the plaquette variable Up is the product of elements U of the
gauge group SU(3) around the square, Up = U1,2 U2,3 U3,4 U4,1. The euclidian
action of the theory is then the sum over all the plaquettes of the lattice of
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the traces

S = �
X

p


1� 1

6
Tr

⇣
Up + U †

p

⌘�
(16.17)

in which � = 6/g2 is inversely proportional to the coupling constant g.

Although the generation of configurations distributed according to the
Boltzmann probability distribution (1.392) is one of its most useful appli-
cations, the Monte Carlo method is much more general. It can generate
configurations x distributed according to any probability distribution P (x).
To generate configurations distributed according to P (x), we accept any

new configuration x0 if P (x0) > P (x) and also accept x0 with probability

P (x ! x0) = P (x0)/P (x) (16.18)

if P (x) > P (x0).
This works for the same reason that the Boltzmann version works. Con-

sider two configurations x and x0. After the system has thermalized, the
probabilities Pt(x) and Pt(x0) have reached equilibrium, and so the rate
R(x ! x0) from x ! x0 must equal the rate R(x0 ! x) from x0 ! x. If
P (x0) > P (x), then R(x ! x0) is

R(x ! x0) = v Pt(x) (16.19)

in which v is the rate of choosing �x = x0 � x, while the rate R(x0 ! x) is

R(x0 ! x) = v Pt(x
0)P (x)/P (x0) (16.20)

with the same v since the random walk is symmetric. Equating the two rates
R(x ! x0) = R(x0 ! x), we find that after thermalization

Pt(x) = P (x)Pt(x
0)/P (x0) = c P (x) (16.21)

in which c is independent of x. Thus Pt(x) converges to P (x) at equilibrium.
So far we have assumed that the rate of choosing x ! x0 is the same as

the rate of choosing x0 ! x. In Smart Monte Carlo schemes, physicists
arrange the rates vx!x0 and vx0!x so as to steer the flow and speed-up
thermalization. To compensate for this asymmetry, they change the second
part of the Metropolis step from x ! x0 when P (x) > P (x0) to accept
conditionally with probability

P (x ! x0) = P (x0) vx0!x/ [P (x) vx!x0 ] . (16.22)
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Now if P (x) > P (x0), then R(x0 ! x) is

R(x0 ! x) = vx0!x Pt(x
0) (16.23)

while the rate R(x ! x0) is

R(x ! x0) = vx!x0 Pt(x)P (x0) vx0!x/ [P (x) vx!x0 ] . (16.24)

Equating the two rates R(x0 ! x) = R(x ! x0), we find

Pt(x) = P (x)Pt(x
0)/P (x0) (16.25)

which implies that Pt(x) converges to

Pt(x) = P (x)/Z (16.26)

in which Z =
R
P (x) dx.

Example 16.4 (Highly multiple integration) You can use the general
Metropolis method (16.18–16.21) to integrate a function f(x) of many vari-
ables x = (x1, . . . , xn) if you can find a positive function g(x) similar to
f(x) whose integral I[g] you know. You just use the probability distribution
P (x) = g(x)/I[g] to find the mean value of I[g]f(x)/g(x):

Z
f(x) dnx = I[g]

Z
f(x)

g(x)

g(x)

I[g]
dnx = I[g]

Z
f(x)

g(x)
P (x) dnx. (16.27)

16.6 Simulated annealing

One can use the Monte Carlo method to find the absolute minimum (or
maximum) of a function E(x) of many variables x = (x1, x2, . . . , xN ). To
avoid being trapped in a local minimum, one starts with a sequence of
Metropolis steps (16.8–16.9) at a high value of kT and then gradually lowers
the value of kT to zero.

16.7 Solving Arbitrary Problems

If you know how to generate a suitably large space of trial solutions to a
problem, and you also know how to compare the quality of any two of your
solutions, then you can use a Monte Carlo method to solve the problem. The
hard parts of this seemingly magical method are characterizing a big enough
space of solutions s and constructing a quality function or functional that
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assigns a number Q(s) to every solution in such a way that if s is a better
solution than s0, then

Q(s) > Q(s0). (16.28)

But once one has characterized the space of possible solutions s and has
constructed the quality function Q(s), then one simply generates zillions of
random solutions and selects the one that maximizes the function Q(s) over
the space of all solutions.
If one can characterize the solutions as vectors of a certain dimension,

s = (x1, . . . , xn), then one may use the Monte Carlo method of the previous
section (16.5) by setting P (s) = Q(s).

16.8 Evolution

The reader may think that the use of Monte Carlo methods to solve ar-
bitrary problems is quite a stretch. Yet nature has applied them to the
problem of evolving species that survive. As a measure of the quality Q(s)
of a given solution s, nature used the time derivative of the logarithm of its
population Ṗ (t)/P (t). The space of solutions is the set of possible genomes.
Leaving aside dna methylation, histone acetylation, and other epigenetic
changes, we may idealize each solution or genome as a sequence of nucleotides
s = b1b2 . . . bN some thousands or billions of bases long, each base bk being
adenine, cytosine, guanine, or thymine (A, C, G, or T). Since there are four
choices for each base, the set of solutions is huge. The genome for homo
sapiens has some 3 billion bases (or base pairs, dna being double stranded),
and so the solution space is a set with

N = 43⇥109 = 101.8⇥109 (16.29)

elements. By comparison, a googol is only 10100.
In evolution, a Metropolis step begins with a random change in the se-

quence of bases; changes in a germ-line cell can change a new individual.
Some of these changes are due to errors in the normal mechanisms by which
genomes are copied and repaired; the holoenzyme dna polymerase copies
dna with remarkable fidelity, but it makes one error per billion base pairs.
Sexual reproduction makes bigger random changes in genomes. In meiosis,
the paternal and maternal versions of each of our 23 chromosomes are dupli-
cated, and the four versions swap segments of dna in a process called genetic
recombination or crossing-over. The cell then divides twice producing four
haploid germ cells each with a single paternal, maternal, or mixed version
of each chromosome. Two haploid cells, one from each parent, join to start
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a new individual. Sexual reproduction makes evolution more ergodic, which
is why most complex modern organisms use it.

The second part of the evolutionary Metropolis step is done by the newly
born individual: if he or she survives and multiplies, the change is accepted;
if he or she dies without progeny, it is rejected. In 4 billion years, evolution
has turned simple molecules into human beings.

John Holland and others have used analogs of these Metropolis steps to
write genetic algorithms that can solve wide classes of problems (Holland,
1975; Vose, 1999; Schmitt, 2001).

Further reading

The classic Quarks, Gluons, and Lattices (Creutz, 1983) is a marvelous in-
troduction to the subject; his website (latticeguy.net/lattice.html) is an ex-
traordinary resource, as is Rubinstein’s Simulation and the Monte Carlo
Method (Rubinstein and Kroese, 2007). Molecular Biology of the Cell (Al-
berts et al., 2014) is one of the best textbooks ever written.

Exercises

16.1 Go to Michael Creutz’s website latticeguy.net/lattice.html and
get his C-code for Z2 lattice gauge theory. Compile and run it, and
make a graph like Fig. 16.2 which exhibits hysteresis.

16.2 Modify his code and produce a graph showing the coexistence of two
phases at the critical coupling �t = 0.5 ln(1 +

p
2). Hint: Do a cold

start and then 100 updates at �t, then do a random start and do 100
updates at �t. Plot the values of the action against the update number
1, 2, 3, . . . 100.

16.3 Modify Creutz’s C code for Z2 lattice gauge theory so as to be able
to vary the dimension d of spacetime. Show that for d = 2, there’s no
hysteresis loop (there’s no phase transition). For d = 3, show that any
hysteresis loop is minimal (there’s a second-order phase transition).

16.4 What happens when d = 5?
16.5 Use example 16.4 to compute the ten-dimensional integral

I =

Z
exp

⇥
�
�
x2 + (x2)2

�⇤
d10x (16.30)

over R10 where x2 = x21 + . . .+ x210.


