13

Tensors and general relativity

13.1 Points and their coordinates

We use coordinates to label the physical points of a spacetime and the
mathematical points of an abstract object. For example, we may label a
point on a sphere by its latitude and longitude with respect to a polar
axis and meridian. If we use a different axis and meridian, our coordinates
for the point will change, but the point remains as it was. Physical and
mathematical points exist independently of the coordinates we use
to talk about them. When we change our system of coordinates,
we change our labels for the points, but the points remain as they
were.

At each point p, we can set up various coordinate systems that assign
unique coordinates z*(p) and 2'*(p) to p and to points near it. For instance,
polar coordinates (6, ¢) are unique for all points on a sphere—except the
north and south poles which are labeled by § = 0 and § = 7 and all
0 < ¢ < 27. By using a second coordinate system with ¢ = 0 and 6/ = 7
on the equator in the (6, ¢) system, we can assign unique coordinates to the
north and south poles in that system. Embedding simplifies labeling. In a
3-dimensional euclidian space and in the 4-dimensional Minkowski space-
time in which the sphere is a surface, each point of the sphere has unique
coordinates, (z,y,z) and (¢, z,y, 2).

We will use coordinate systems that represent the points of a space or
spacetime uniquely and smoothly at least in local patches, so that the maps
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2t = 2'(p) = 2 (p(a’)) = 2'(a')
o = ot (p) = 2" (plr)) = ()

are well defined, differentiable, and one to one in the patches. We’ll often
group the n coordinates z* together and write them collectively as = without

(13.1)

superscripts. Since the coordinates z(p) label the point p, we sometimes will
call them “the point z.” But p and z are different. The point p is unique
with infinitely many coordinates x, ', z”, ...in infinitely many coordinate
systems.

We begin this chapter by noticing carefully how things change as we
change our coordinates. Our goal is to write physical theories so their equa-
tions look the same in all systems of coordinates as Einstein taught us.

13.2 Scalars

A scalar is a quantity B that is the same in all coordinate systems
B' =B. (13.2)

If it also depends upon the coordinates of the spacetime point p(z) = p(z’),
then it is a scalar field, and

B'(z') = B(z). (13.3)

13.3 Contravariant vectors

By the chain rule, the change in dz’* due to changes in the unprimed coor-
dinates is
ax/i

da = o dz*. (13.4)
k

This transformation defines contravariant vectors: a quantity A’ is a com-
ponent of a contravariant vector if it transforms like dx’

i D"t k
AT=3%" oo AT (13.5)
k

The coordinate differentials da’ form a contravariant vector. A contravariant
vector A’(x) that depends on the coordinates is a contravariant vector
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field and transforms as

YUEIEDY gik Ak (2). (13.6)

13.4 Covariant vectors

The chain rule for partial derivatives

0 ozk o
— = — 13.7
Oz’ — Oalt Oxk (13.7)
defines covariant vectors: a quantity C; that transforms as
oz"
Cl= PR Ck (13.8)
k

is a covariant vector. A covariant vector C;(x) that depends on the coor-
dinates and transforms as

ok

Ci(2') = ) 5 Cr(@) (13.9)
k

is a covariant vector field.

Example 13.1 (Gradient of a scalar) The derivatives of a scalar field
B'(z') = B(x) form a covariant vector field because
oB'(2') 0B(z) _ d0zF 0B(x)

ozt oxt - Ox't Ok’ (13.10)

which shows that the gradient dB(x)/0z"* fits the definition (13.9) of a
covariant vector field. O

13.5 Tensors

Tensors are structures that transform like products of vectors. A rank-zero
tensor is a scalar. A rank-one tensor is a covariant or contravariant vector.
Second-rank tensors are distinguished by how they transform under changes
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of coordinates:
oxF dat
92 9’3~ M
al‘li a.’rlj kl
Ozk ox!
o 0z Ot
. 1 k
mixed Nj = 52k 927 V-
We can define tensors of higher rank by extending these definitions to quan-
tities with more indices. The rank of a tensor also is called its order and its
degree.
If S(z) is a scalar field, then its derivatives with respect to the coordinates
are covariant vectors (13.10) and tensors
oS 9?8 4 U S
—, ik = =——, al i = -
oxt kT 9xioak k= i 0ak Ox
Example 13.2 (Rank-2 tensors) If Ay and By are covariant vectors, and
C™ and D" are contravariant vectors, then the product Ay By is a second-
rank covariant tensor; C™ D™ is a second-rank contravariant tensor; and
A C™, A D™, B, C™, and By D™ are second-rank mixed tensors. O

covariant  Fj; =

contravariant MY =

(13.11)

Vi = (13.12)

Since the transformation laws that define tensors are linear, any linear
combination (with constant coefficients) of tensors of a given rank and kind
is a tensor of that rank and kind. Thus if F;; and G;; are both second-rank
covariant tensors, so is their sum H;; = Fj; + Gj;.

13.6 Summation convention and contractions

An index that appears in the same monomial once as a covariant subscript
and once as a contravariant superscript, is a dummy index that is summed
over

A;B'=)Y A B (13.13)
=1

usually from 0 to 3. Such a sum in which an index is repeated once covari-
antly and once contravariantly is a contraction. The rank of a tensor is
the number of its uncontracted indices.
Although the product A C* is a mixed second-rank tensor, the contrac-
tion Ay C* is a scalar because
ozt dz'* ozt

Al O = o gy AL O™ = oA O = 6L A C™ = A,Ch (13.14)
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Similarly, the doubly contracted product F™* Fy, is a scalar.

Example 13.3 (Kronecker delta) The summation convention and the
chain rule imply that

ox" dz* oz 1 ifi=¢
pra i e { 0 ifi2. (13.15)

The repeated index k has disappeared in this contraction. The Kronecker
delta 6;. is a mixed second-rank tensor; it transforms as

i ox' 92t _ 0x'" 9a* _ ozt _si
I Qxk 9xd Tt T 9ak dati T Qati Y

and is invariant under changes of coordinates. O

(13.16)

13.7 Symmetric and antisymmetric tensors

A covariant tensor is symmetric if it is independent of the order of its
indices. That is, if S;r = Sk;, then S is symmetric. Similarly a contravari-
ant tensor S¥™ is symmetric if permutations of its indices k, ¢, m leave it
unchanged. The metric of spacetime g (x) = gxi(x) is a symmetric rank-2
covariant tensor because it is an inner product of two tangent basis vectors.

A covariant or contravariant tensor is antisymmetric if it changes sign
when any two of its indices are interchanged. The Maxwell field strength
Fye(z) = — Fy(z) is an antisymmetric rank-2 covariant tensor.

If T% ¢;, = 0 where €19 = — €91 = 1 is antisymmetric, then T2 — 72! = 0.
Thus T% ¢;;, = 0 means that the tensor T% is symmetric.

13.8 Quotient theorem

Suppose that the product B A of a quantity B with unknown transformation
properties with all tensors A a given rank and kind is a tensor. Then B must
be a tensor.

The simplest example is when B; A’ is a scalar for all contravariant vectors
AZ

BIA" = BjAY. (13.17)
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Then since A is a contravariant vector

I At /ax/i i moAj
BIA" = Bl AV = B A (13.18)
X
or
/i .
(Bg% - Bj) Al = 0. (13.19)

Since this equation holds for all vectors A, we may promote it to the level
of a vector equation

am/i
{5~ Bi=0. (13.20)
Multiplying both sides by dz7/8z’* and summing over j, we get
oz" Oz’ oz’
/
"oz 0x'k 1 ok (13.21)

which shows that the unknown quantity B; transforms as a covariant vector

,  Oxd

By, = 'k I

(13.22)

The quotient rule works for tensors A and B of arbitrary rank and kind.
The proof in each case is similar to the one given here.

13.9 Tensor equations

Maxwell’s homogeneous equations (12.45) relate the derivatives of the field-
strength tensor to each other as

0= (r“)lek + akFij + 8J‘F]ﬂ-. (13.23)

They are generally covariant tensor equations (sections 13.19 & 13.20).
They follow from the Bianchi identity (12.71)

dF = ddA = 0. (13.24)

Maxwell’s inhomegneous equations (12.46) relate the derivatives of the field-
strength tensor to the current density j* and to the square root of the mod-
ulus g of the determinant of the metric tensor g;; (section 13.12)

A(y/g F™*) ;

I o Ve (13.25)
They are generally covariant tensor equations. We’ll write them as the diver-
gence of a contravariant vector in section 13.29, derive them from an action
principle in section 13.31, and write them as invariant forms in section 14.7.
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If we can write a physical law in one coordinate system as a tensor equation
G7%(x) = 0, then in any other coordinate system the corresponding tensor
equation G"*(z') = 0 is valid because

_ Azt 9’k
T 9zt Oxt

Physical laws also remain the same if expressed in terms of invariant forms.
A theory written in terms of tensors or forms has equations that
are true in all coordinate systems if they are true in any coordinate
system. Only such generally covariant theories have a chance at being right
because we can’t be sure that our particular coordinate system is the chosen
one. One can make a theory the same in all coordinate systems by applying
the principle of stationary action (section 13.31) to an action that is invariant
under all coordinate transformations.

G'* (") G (z) = 0. (13.26)

13.10 Comma notation for derivatives

Commas are used to denote derivatives. If f(6,¢) is a function of § and ¢,
we can write its derivatives with respect to these coordinates as

of of
— O f = 2L d =0y f = —. 13.27
f.o=0sf 20 n fo=0sf 96 ( )
And we can write its double derivatives as
0% f o f o f
_ — d = — 13.28
f.00 502" f.06 200’ and  f 44 902 ( )
If we use indices 7, k, . .. to label the coordinates z*, =¥, then we can write
the derivatives of a scalar f as
of *f
and those of tensors T and Fj; as
% 0P O°F;
ik _ ik
9= puipgt ™Y Tt = g (13.30)

and so forth.
Semicolons are used to denote covariant derivatives (section 13.15).
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13.11 Basis vectors and tangent vectors
A point p(x) in a space or spacetime with coordinates x is a scalar (13.3)
because it is the same point p'(z') = p(z') = p(z) in any other system of
coordinates . Thus its derivatives with respect to the coordinates

Jp(z)
Ozt

=e;(x) (13.31)
form a covariant vector e;(x)

ap'(z")  Op(x) OxFap(x) Ok
/ / — —
ei(a’) Oz’ oz Oz daF  Ox ek ().

Small changes dz’ in the coordinates (in any fixed system of coordinates)
lead to small changes in the point p(x)

(13.32)

dp(z) = e;(x) da'. (13.33)

The covariant vectors e;(x) therefore form a basis (1.49) for the space or
spacetime at the point p(x). These basis vectors e;(z) are tangent to the
curved space or spacetime at the point x and so are called tangent vectors.
Although complex and fermionic manifolds may be of interest, the manifolds,
points, and vectors of this chapter are assumed to be real.

13.12 Metric tensor

A Riemann manifold of dimension d is a space that locally looks like d-
dimensional euclidian space E? and that is smooth enough for the derivatives
(13.31) that define tangent vectors to exist. The surface of the Earth, for
example, looks flat at distances less than a kilometer.

Just as the surface of a sphere can be embedded in flat 3-dimensional
space, so too every Riemann manifold can be embedded without change
of shape (isometrically) in a euclidian space E™ of suitably high dimen-
sion (Nash, 1956). In particular, every Riemann manifold of dimension d = 3
(or 4) can be isometrically embedded in a euclidian space of at most n = 14
(or 19) dimensions, E* or EY (Giinther, 1989).

The euclidian dot products (example 1.15) of the tangent vectors (13.31)
define the metric of the manifold

n
gir(@) = ei(w) - er(x) = Y _ e (z) e (x) = ex(x) - () = gri(z)  (13.34)

a=1

which is symmetric, g;x(z) = ggi(z). Here 1 < i,k < dand 1 < a < n.
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The dot product of this equation is the dot product of the n-dimensional
euclidian embedding space E".

Because the tangent vectors e;(x) are covariant vectors, the metric tensor
transforms as a covariant tensor if we change coordinates from z to z’

a7 Ozt
9i(2") = 555 g 9it()- (13.35)

The squared distance ds? between two nearby points is the dot product
of the small change dp(x) (13.33) with itself

ds® = dp(z) - dp(x) = (e;(x) dz') - (e;(x) dz®)

, , 13.36
= ei(x) - ei(x) deldz® = gy (x) da'dzF. ( )

So by measuring the distances ds between nearby points, one can determine
the metric g;z(x) of a Riemann space.

Example 13.4 (The sphere S? in E3) In polar coordinates, a point p
on the 2-dimensional surface of a sphere of radius R has coordinates p =
R(sin @ cos ¢, sin @ sin ¢, cos @) in an embedding space E3. The tangent space
E? at p is spanned by the tangent vectors
op . .
€ =Py= 55 = R (cos 0 cos ¢, cos 6 sin ¢, — sin )

€ =Py = g—g = R (—sin#sin ¢,sinf cos ¢, 0).

(13.37)

The dot products of these tangent vectors are easy to compute in the em-
bedding space E3. They form the metric tensor of the sphere

2
o _ (900 oo\ _ (€o-€ eg-es) _ (R 0 13.38
gik <9¢9 g¢¢) <6¢ t€g €y e¢) < 0 RZ%sin%60)/° (13.38)
Its determinant is det(g;;) = R*sin®6. Since eg - e, = 0, the squared in-
finitesimal distance (13.36) is

ds*> = ey - egdb® + ey - ey dp* = R*df* + R*sin® 0 d¢”. (13.39)

We change coordinates from the angle 6 to a radius » = Rsinf/a in
which a is a dimensionless scale factor. Then R2d6? = a2dr?/cos?6, and
cos?0 = 1 —sin?0 = 1 — a®>r2/R? = 1 — kr? where k = (a/R)?. In these
coordinates, the squared distance (13.39) is

a2

ds® =
Ry

dr?® + a*r? dg? (13.40)
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and the r, ¢ metric of the sphere and its inverse are

1—kr?)~1 0 ; o (1—kr? 0
gik=a2<( 0) r2> and g““:aQ( 0 T72>. (13.41)

The sphere is a maximally symmetric space (section 13.24). O

Example 13.5 (Graph paper) Imagine a piece of slightly crumpled graph
paper with horizontal and vertical lines. The lines give us a two-dimensional
coordinate system (2!, 22) that labels each point p(x) on the paper. The vec-
tors ej(z) = Oip(z) and ez(x) = Jdop(x) define how a point moves dp(z) =
e;(z) dz® when we change its coordinates by da! and dz?. The vectors ey (z)
and eg(x) span a different tangent space at the intersection of every horizon-
tal line with every vertical line. Each tangent space is like the tiny square of
the graph paper at that intersection. We can think of the two vectors e;(x)
as three-component vectors in the three-dimensional embedding space we
live in. The squared distance between any two nearby points separated by
dp(z) is ds® = dp?(z) = €2(x)(dz")? + 2e1(z) - e2(x) dv'dx? + €3(z)(dz?)?
in which the inner products g;; = e;(x) - ej(x) are defined by the euclidian
metric of the embedding euclidian space R3. O

But our universe has time. A semi-euclidian spacetime E®4-P) of di-
mension d is a flat spacetime with a dot product that has p minus signs
and ¢ = d — p plus signs. A semi-riemannian manifold of dimension d
is a spacetime that locally looks like a semi-euclidian spacetime EPd-p)
and that is smooth enough for the derivatives (13.31) that define its tangent
vectors to exist.

Every semi-riemannian manifold can be embedded without change of
shape (isometrically) in a semi-euclidian spacetime E(*"~%) for sufficiently
large u and n (Greene, 1970; Clarke, 1970). Every physically reasonable
(globally hyperbolic) semi-riemannian manifold with 1 dimension of time
and 3 dimensions of space can be embedded without change of shape (iso-
metrically) in a flat semi-euclidian spacetime of 1 temporal and at most 19
spatial dimensions E(119) (Miiller and Sanchez, 2011; Aké et al., 2018).

The semi-euclidian dot products of the tangent vectors of a semi-riemannian
manifold of d dimensions define its metric as

u n
gir(@) = ei(@) -er(x) = =Y ef(@)ei(a) + Y ef(@)ep(z) (13.42)
a=1

a=u+1

for 0 < 4,k < d — 1. The metric (13.42) is symmetric g;x(z) = gii- In
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an extended summation convention, the dot product (13.42) is gy (x) =
€ia () € (x).

The squared pseudo-distance or line element ds?> between two nearby
points is the inner product of the small change dp(x) (13.33) with itself

ds® = dp(z) - dp(x) = (e;(z) dz?) - (e;(x) da®)

. . 13.43
= ei(x) - ei(x) de'dz’ = gy (2) da'daF. ( )

Thus measurements of line elements ds? determine the metric g;x(x) of the
spacetime.

Some Riemann spaces have natural embeddings in semi-euclidian spaces.
One example is the hyperboloid H?2.

Example 13.6 (The hyperboloid H?) If we embed a hyperboloid H? of
radius R in a semi-cuclidian spacetime E12)| then a point p = (z,y,2) on
the 2-dimensional surface of H? obeys the equation R? = 2% — y? — 22 and
has polar coordinates p = R(cosh 6, sinh  cos ¢, sinh §sin ¢). The tangent
vectors are

Op

€ =Po= 55 = R (sinh 0, cosh 6 cos ¢, cosh 0 sin ¢)
0 (13.44)
€ =Dy = a—g = R (0, — sinh #sin ¢, sinh 6 cos ¢).
The line element dp? = ds? between nearby points is
ds® = ey - epdh? + ey - ey do>. (13.45)
The metric and line element (13.45) are
2 (1 0 2 p2 02 | p2 i 12g 702
R (0 sinh2 0 and ds” = R*df* 4+ R* sinh” 6 d¢~. (13.46)

We change coordinates from the angle 6 to a radius r = Rsinh 6/a in which
a is a dimensionless scale factor. Then in terms of the parameter k = (a/R)?,
the metric and line element (13.46) are (exercise 13.7)

2 (47271 0 2 o _dr? 2 .2
a ( 0 2 and ds”° =a 1—|—l<:r2+r d¢ (13.47)

which describe one of only three maximally symmetric (section 13.24) two-
dimensional spaces. The other two are the sphere S? (13.40) and the plane.
O
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13.13 Inverse of metric tensor

The metric g;; is a nonsingular matrix (exercise 13.4), and so it has an
inverse ¢%* that satisfies

9% gee =04 = g™ iy (13.48)

in all coordinate systems. The inverse metric g** is a rank-2 contravariant
tensor (13.11) because the metric ggs is a rank-2 covariant tensor (13.35).
To show this, we combine the transformation law (13.35) with the definition
(13.48) of the inverse of the metric tensor

i i i 0" 0x°
0 =" ghe = 9" 55 o7 s (13.49)

and multiply both sides by

74 %
w, 02" Ox

Ozt dxn’
Use of the Kronecker-delta chain rule (13.15) now leads (exercise 13.5) to

(13.50)

) ax/i ox'?
rivg I tu
) = S G g @) (13.51)

which shows that the inverse metric g** transforms as a rank-2 contravariant
tensor.

The contravariant vector A’ associated with any covariant vector Ay is
defined as A* = ¢** A;, which ensures that A’ transforms contravariantly
(exercise 13.6). This is called raising an index. It follows that the covari-
ant vector corresponding to the contravariant vector A* is Ay = gp; A* =
gri g Ap = 5£ Ay = Aj which is called lowering an index. These defini-
tions apply to all tensors, so T = ¢ gkng"ijn, and so forth.

Example 13.7 (Making scalars) Fully contracted products of vectors and
tensors are scalars. Two contravariant vectors A* and B¥ contracted with the
metric tensor form the scalar g;, A*B* = A, B*. Similarly, ¢** A; B, = AFBy,.
Derivatives of scalar fields with respect to the coordinates are covariant
vectors S ; (example 13.1) and covariant tensors S ;; (section 13.5). If S is
a scalar, then S ; is a covariant vector, giijk is a contravariant vector, and
the contraction g“‘ﬂii Sk is a scalar. O

In what follows, I will often use space to mean either space or spacetime.
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13.14 Dual vectors, cotangent vectors

Since the inverse metric ¢’* is a rank-2 contravariant tensor, dual vectors
el = g'ey, (13.52)

are contravariant vectors. They are orthonormal to the tangent vectors ey
because

e -ep=g*er - ep = g gro = 60 (13.53)

Here and throughout these sections, the dot product is that (13.34) of eu-
clidian space E? (or E") or that (13.42) of semi-euclidian space E®?P) (or
E®"~%)_ The dual vectors ¢! are called cotangent vectors or tangent
covectors. The tangent vector e, is the sum ey = gj; e because

e = gri € = gri 9" €0 = 0j,e0 = ex. (13.54)

The definition (13.52) of the dual vectors and their orthonormality (13.53) to
the tangent vectors imply that their inner products are the matrix elements
of the inverse of the metric tensor

et =g*ep-ef = g% ol = gt (13.55)

The outer product of a tangent vector with its cotangent vector P = e;e”
(summed over the dimensions of the space) is both a projection matrix P
from the embedding space onto the tangent space and an identity matrix
for the tangent space because Pe; = e;. Its transpose PT = ¢Fey, is both
a projection matrix P from the embedding space onto the cotangent space
and an identity matrix for the cotangent space because PTe? = ¢. So

P=e¢yef =1 and PT=cke,=1,. (13.56)

Details and examples are in the file tensors.pdf in Tensors_and_general_relativity
at github.com/kevinecahill.

13.15 Covariant derivatives of contravariant vectors

The covariant derivative D,V* of a contravariant vector V* is a derivative
of V* that transforms like a mixed rank-2 tensor. An easy way to make such
a derivative is to note that the invariant description V(z) = V¥(z) e;(x) of a
contravariant vector field V(z) in terms of tangent vectors e;(z) is a scalar.
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Its derivative
ov. V! ; Oe;
3f = 3tV g
ox ox ox*
is therefore a covariant vector. And the inner product of that covariant vector
V¢ with a contravariant tangent vector eF is a mixed rank-2 tensor

(13.57)

DAVE = &k = b (Vies b V) = BV b e

) 13.58
:K§+ek'€i,£Vl- ( )
The inner product e* - €i,¢ is usually written as
Oe; .
Foeip =k =k, (13.59)

and is variously called an affine connection (it relates tangent spaces lack-
ing a common origin), a Christoffel connection, and a Christoffel sym-
bol of the second kind. The covariant derivative itself often is written with
a semicolon, thus

DV — V;k _ Vf} tebe Vis v)’; + Tk, Vi (13.60)

Example 13.8 (Covariant derivatives of cotangent vectors) Using the
identity

0=0F, = (" e)p=efeite ey (13.61)

and the projection matrix (13.56), we find that
Dye* = eﬁz + ek eipe = e{“g - ei; ejel = e{c@ —e
the covariant derivatives of cotangent vectors vanish. [

Under general coordinate transformations, D,V* transforms as a rank-2
mixed tensor

B oz'* o™ "
T Qxp ozt M

Tangent basis vectors e; are derivatives (13.31) of the spacetime point p
with respect to the coordinates z*, and so ei,0 = eg; because partial deriva-
tives commute

(DVF) (2') = (V) () (w) = 2/bay VP (2).  (13.63)

o, Oa_ P _ Op _
T 92t T 9xl0rt | 9ridxt b

Thus the affine connection (13.59) is symmetric in its lower indices

(13.64)

Fkié =eh €ig = e €ri = erzw (13.65)
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Although the covariant derivative V} (13.60) is a rank-2 mixed tensor, the
affine connection I'¥;, transforms inhomogeneously (exercise 13.8)

[ e} _ dx'™ dx™ da™ N ox'k 9P
i ) ozt Oxp 830']4: Ozt M QP Qx'tox’ (13.66)
/ /
= I7p Z{ZI l‘:;/ Fpnm + I7P ZJ:[/Z-/

and so is not a tensor. Its variation 51“]“7;( =TI ]?e - I‘kie is a tensor, however,
because the inhomogeneous terms in the difference cancel.

Since the Levi-Civita connection Fk’w is symmetric in ¢ and ¢, in four-
dimensional spacetime, there are 10 I'’s for each k, or 40 in all. The 10
correspond to 3 rotations, 3 boosts, and 4 translations.

13.16 Covariant derivatives of covariant vectors

The derivative of the scalar V = V}, ¥ is the covariant vector
V= (Vie) y=Vige + Viehy (13.67)

Its inner product with the covariant vector e; transforms as a rank-2 covari-
ant tensor. Thus using again the identity (13.61), we see that the covariant

derivative of a covariant vector is
DyVi=Vig=ei-Vi=ei- (Vige" +Viel) =6 Vig+ei- ey Vi (13.68)
=Vig— e Vi =Vig—T", V.

D,V; transforms as a rank-2 covariant tensor because it is the inner product
of a covariant tangent vector e; with the derivative V; of a scalar. Note that
I‘fé appears with a minus sign in V;, and a plus sign in V.f.

Example 13.9 (Covariant derivatives of tangent vectors) Using again the
projection matrix (13.56), we find that

k
Dzei = €jyp = ei’[ — €0 e e = eu — eu =0 (13.69)

that covariant derivatives of tangent vectors vanish. O

13.17 Covariant derivatives of tensors

Tensors transform like products of vectors. So we can make the derivative of
a tensor transform covariantly by using Leibniz’s rule (5.49) to differentiate
products of vectors and by turning the derivatives of the vectors into their
covariant derivatives (13.60) and/or (13.68).
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Example 13.10 (Covariant derivative of a rank-2 contravariant tensor)
An arbitrary rank-2 contravariant tensor T%* transforms like the product of
two contravariant vectors A* B¥. So its derivative ;T transforms like the
derivative of the product of the vectors A* B

de(A* BF) = (9,A%) B* + A'9,B*. (13.70)

By using twice the formula (13.60) for the covariant derivative of a con-
travariant vector, we can convert these two ordinary derivatives 9;A" and
9y BF into tensors

Dy(A"B*) = (A" B¥) = (A, + T}, A))B" + AY(BY, + T}, B)

ok ) _— i T (13.71)
=(A'B )75 +I”jeAJ B¥+T jZAZB].
Thus the covariant derivative of a rank-2 contravariant tensor is
D™ =T%, =T%, + T, T + T, T%. (13.72)
It transforms as a rank-3 tensor with one covariant index. O

Example 13.11 (Covariant derivative of a rank-2 mixed tensor) A rank-
2 mixed tensor T"]C transforms like the product A’ B, of a contravariant
vector A’ and a covariant vector By. Its derivative agTik transforms like the
derivative of the product of the vectors A’ By,

Di(A By) = (0, A%) By + A' 9, By. (13.73)

We can make these derivatives transform like tensors by using the formulas
(13.60) and (13.68)

Dy(A" By) = (A" By)ye = (A + T A7) By + A" (B — I/, B;)

; i A p ; (13.74)
= (A Bk),l+rj[A B, —T kZA Bj.
Thus the covariant derivative of a mixed rank-2 tensor is
DyT! =Ty =Th ,+T%,T% — 17, T, (13.75)
It transforms as a rank-3 tensor with two covariant indices. |

Example 13.12 (Covariant derivative of a rank-2 covariant tensor) A
rank-2 covariant tensor Tj; transforms like the product A; By of two covari-
ant vectors A; and By. Its derivative 9,7} transforms like the derivative of
the product of the vectors A; By,

6[(141 Bk) = (agAZ) By + A; 0y Bg. (1376)
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We can make these derivatives transform like tensors by twice using the
formula (13.68)
Dy(A; By) = (Ai Br):e = Ag;o B + A; Bie
= (A —T7, A) By + Ai(Byy — 17, Bj) (13.77)
= (A;iBy) o~ 17, A; By —T7,, A; B;.
Thus the covariant derivative of a rank-2 covariant tensor Tj; is

Dy Tig, = Tipye = Tiye — TV Ty — TV, T (13.78)

It transforms as a rank-3 covariant tensor.

Another way to derive the same result is to note that the scalar form of a
rank-2 covariant tensor Ty, is T = €’ ® e Tji.. So its derivative is a covariant
vector

Ty=e @ Tipp+ey@e T+ e @y Ty (13.79)

Using the projector P, = e’e; (13.56), the duality €’ - e, = d} of tangent
and cotangent vectors (13.53), and the relation e; - ef“e = —¢F. €j 0= —F?Z
(13.59 & 13.61), we can project this derivative onto the tangent space and
find after shuffling some indices

(€"en @ lef) Ty=e @ Tp+e" @ (en-el) Ty +¢' @€ (ej- ) Ty
=e e Tige—€"® ek T T — et ®el ].—‘kje Ti
= (' ® ") (TiW — T/, Ty, = T7, Tij)
which again gives us the formula (13.78). O

As in these examples, covariant derivatives are derivations:

The rule for a general tensor is to treat every contravariant index as in
(13.60) and every covariant index as in (13.68). The covariant derivative of
a mixed rank-4 tensor, for instance, is

Toby =T+ T, + T T

bJ b
zyik = T]‘,ly Fjwk - Tgmrmyk' (13'81)

mk
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13.18 The covariant derivative of the metric tensor vanishes
The metric tensor is the inner product (13.42) of tangent basis vectors
ik = € g€y (13.82)
in which « and 8 are summed over the dimensions of the embedding space.
Thus by the product rule (13.77), the covariant derivative of the metric
Dy gir. = Girse = Dy (8 nag €y) = (D e) g € + € 1jas Deey =0 (13.83)

vanishes because covariant derivatives of tangent vectors vanish (13.69),
Dye = e, =0and Dye] = e, =0.
Y

13.19 Covariant curls

Because the connection I‘f{ is symmetric (13.65) in its lower indices, the
covariant curl of a covariant vector V; is simply its ordinary curl

Vvl;i — Vi = ‘/l,i - Vk Fk&' - V;,l + Vk ka = w,i — Vi (1384)

Thus the Faraday field-strength tensor Fyy = Ay ; — A; ¢ being the curl of
the covariant vector field A; is a generally covariant second-rank tensor.

13.20 Covariant derivatives and antisymmetry
The covariant derivative (13.78) Azp is Aigr = Aig ke — Ame ™ — Ain Ty,
If the tensor A is antisymmetric A;y = —Ay;, then by adding together the
three cyclic permutations of the indices ik, we find that the antisymmetry
of the tensor and the symmetry (13.65) of the affine connection I'"™,, =T
conspire to cancel the terms with I's
Ajp + Apize + Avkgi = Asr e — Ame Ty, — Ain Ty,
+ Aki,e — A Ty — A I
+ Afk,i - Amk Fm[i - Alm Pmk}i
= Aitk + Akiye + Ak, (13.85)
an identity named after Luigi Bianchi (1856-1928).

The Maxwell field-strength tensor Fjy is antisymmetric by construction
(Fy = Aygi — A ), and so Maxwell’s homogeneous equations

1 ijkt
2 €7 Fjke = Fjpe + Fiej + Fijoi

(13.86)
= Akje = Ajke + Argj = Akt + Ajoe — A je =0
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are tensor equations valid in all coordinate systems.

13.21 What is the affine connection?

We insert the identity matrix (13.56) of the tangent space in the form e’ e;
into the formula (13.59) for the affine connection I'*;, = € - ¢; ;. In the
resulting combination Fki( =ch.ed ej-ee, 1 we recognize e¥ - ¢7 as the inverse
(13.55) of the metric tensor e - ¢/ = . Repeated use of the relation

€ik = Cki (13.64) then leads to a formula for the affine connection

Fkiz =e" e L= b el €j €= b el €5 €pi = %gkj (6j “€ipt€j 'ee,i)
= 59" ((e;- €0 —ejeeit(ej-er)i—ejier)
= %9 (9jise + Gjesi — €jye - €0 — €0 - €p) (13.87)
= %9 (g]zl+g]lz €05 € — €5 'ez)
= %g (gji,l + gjei — (e; - ez)ﬂ') = %gkj (gji,z + gjei — gil,j)

in terms of the inverse of the metric tensor and a combination of its deriva-
tives. The metric g;;, determines the affine connection I‘kw.
The affine connection with all lower indices is

Tnie = gnkl" i = 3 (9niye + Gneyi — Giem) - (13.88)

13.22 Parallel transport

The movement of a vector along a curve on a manifold so that its length
and direction in successive tangent spaces do not change is called parallel
transport. In parallel transport, a vector V = VFe, = V;, eF may change
av =1V, daz’, but the projection of the change PdV = e'e; dV = e;et dV
into the tangent space must vanish, PdV = 0. In terms of its contravari-
ant components V = V¥e, this condition for parallel transport is just the
vanishing of its covariant derivative (13.60)

0=eldV = eiKgdxz = ei(Vkek),gdxl =¢ (VfZek + Vkek,g) da’
- (13.89)
(51 Vi+e e Vk) dz’ = ( 4+ Ty Vk> dz.
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In terms of its covariant components V = VieF, the condition of parallel
transport is just the vanishing of its covariant derivative (13.68)

0=¢dV = eiVJd:pe = ei(Vkek)dez =¢; (Vk756k + Vkefl) dat
(13.90)
= (5m,[ e ey V’“) ot = (vM _ Tk, vk) dz.

If the curve is 2*(u), then these conditions (13.89 & 13.90) for parallel trans-
port are

v - dat . dxzt dv; dxt dzt

=Vi—— = T, VF=— and —L =V —— =T"%,V} —.

du i ke du an du E &VR
(13.91)

Example 13.13 (Parallel transport on a sphere) We parallel-transport
the vector v = e, = (0, 1,0) up from the equator along the line of longitude
¢ = 0. Along this path, the vector v = (0,1,0) = ey is constant, so Jpv = 0
and so both e? - eg o = 0 and e - eg 9 = 0. Thus Dyv* = v,ke = 0 between
the equator and the north pole. As § — 0 along the meridian ¢ = 0, the
vector v = (0,1,0) approaches the vector eg. We then parallel-transport
v = ey down from the north pole along the line of longitude ¢ = 7/2 to the
equator. Along this path, the vector v = eg/r = (0, cosf, —sinf) obeys the
parallel-transport condition (13.90) because its 6-derivative is

vy = T71879 = (0,cos0,—sinb) g = — (0,sin0,cos0) = —F|,__ /.

(13.92)
So v g is perpendicular to the tangent vectors ey and ey along the curve
¢ = m/2. Thus e* - vy =0for k =0 and k = ¢ and so v,p = 0, along
the meridian ¢ = 7/2. When ey reaches the equator, it is eg = (0,0, —1).
Finally, we parallel-transport v along the equator back to the starting point
¢ = 0. Along this path, the vector v = (0,0, —1) = ey is constant, so v g =0
and v,y = 0. The change from v = (0,1,0) to v = (0,0, —1) is due to the
curvature of the sphere. O

13.23 Curvature

To find the curvature at a point p(z), we parallel-transport a vector V; along
a curve x‘(u) that runs around a tiny square about the point p(x) = p(xo)
as v runs from 0 to 1. We then measure the change in the vector

AV; = fr’“z, Vi, dat. (13.93)
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On the curve z‘(u), we approximate I'f,(z(u)) and V(u) as

T (x) = T¥(x0) + T¥ip 0 (x0) (2 — 20)"

- . (13.94)
Vie(u) = Vi(0) + T™4, (x0) Vi (0) (z — 20)™.
So keeping only terms linear in (z — )™, we have
AV; = f Tk, Vi da* (13.95)

= [P0 (0) VACO) T3 0) T ) Vi 0)] (o = )"t

[0 (20) V) 7 o) T ) V()] (o )"

after interchanging the dummy indices k£ and m in the second term within
the square brackets. The integral around the square is antisymmetric in n
and ¢ and equal in absolute value to the area a? of the tiny square

f(x —0)"dz’ = £ a? ey (13.96)

The overall sign depends upon whether the integral is clockwise or counter-
clockwise, what n and £ are, and what we mean by positive area. The integral
picks out the part of the term between the brackets in the formula (13.95)
that is antisymmetric in n and ¢. We choose minus signs in (13.96) so that
the change in the vector is

AVZ = a2 [Fkin,é - Fkié,n + Fkém Fmin - Fknm Fmili| V. (1397)

The quantity between the brackets is Riemann’s curvature tensor

Rkiﬁn = Fkni,l - Fk[i,n + Fklm me’ - 1_‘knm Fméi' (1398)
The sign convention is that of (Zee, 2013; Misner et al., 1973; Carroll,
2003; Schutz, 2009; Hartle, 2003; Cheng, 2010; Padmanabhan, 2010). Wein-
berg (Weinberg, 1972) uses the opposite sign. The covariant form R;jze of
Riemann’s tensor is related to kan by

Rijke = ginR"jy  and R’y = g™ Ryje- (13.99)

The Riemann curvature tensor is the commutator of two covariant deriva-
tives. To see why, we first use the formula (13.78) for the covariant derivative
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D, D,V; of the second-rank covariant tensor D,V;
DuDeVi = Dy (Vie =T Vi)
= Visn = D00 Ve = T% Vi (13.100)
~ T (Vi = D7 Vi) = D%, (Vi = T, V4) -

Subtracting DyD,,V;, we find the commutator [D,,, D;|V; to be the contrac-
tion of the curvature tensor R¥,,, (13.98) with the covariant vector Vj

n Vk
(13.101)

[Dn, DeVi = (Fk R R A L Fjez) Vi = R"

nil

Since [Dy,, Dg]V; is a rank-3 covariant tensor and Vj, is an arbitrary covariant
vector, the quotient theorem (section 13.8) implies that the curvature tensor
is a rank-4 tensor with one contravariant index.

If we define the matrix I'y with row index k and column index i as Ff@

(13.102)

then we may write the covariant derivatives appearing in the curvature ten-
sor Rkwn as Dy = 0y + 1Ty and D,, = 0,, + I';,. In these terms, the curvature
tensor is the 7, kK matrix element of their commutator

R¥y = [00+ T4, 0, + )% = [Dy, D),

K3

(13.103)

The curvature tensor is therefore antisymmetric in its last two indexes

Rk, = —RF,,. (13.104)
The curvature tensor with all lower indices shares this symmetry
Rjitn = ginR¥i0n = — 9 R e = — Rjint (13.105)

and has three others. In Riemann normal coordinates the derivatives of the
metric vanish at any particular point z.. In these coordinates, the I's all
vanish, and the curvature tensor in terms of the I'’s with all lower indices
(13.88) is after a cancellation

Riion = Tnise — Treign = 5 (Gknyie — nike — Grtyin + Geiyen) - (13.106)

In these coordinates and therefore in all coordinates, Ry, is antisymmetric
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in its first two indexes and symmetric under the interchange of its first and
second pairs of indexes

Rijee = — Rjie and  Rijke = Ryaij- (13.107)
Cartan’s equations of structure (13.328 & 13.330) imply (13.342) that the
curvature tensor is antisymmetric in its last three indexes
0=Ryy =g (R]M Ry Ry = Ry — Ry, — R]zm') (13.108)
and obeys the cyclic identity
0=R, + R, + R, (13.109)
The vanishing (13.108) of R;jrg implies that the completely antisymmetric
part of the Riemann tensor also vanishes
1
0= Rjjje = 1 (Rijie — Rjive — Rikje — Rijor + Rjrie - +) - (13.110)
The Riemann tensor also satisfies a Bianchi identity
0= Rl - (13.111)

These symmetries reduce 256 different functions Ryjre(z) to 20.
The Ricci tensor is the contraction

Rip = RF,,.. (13.112)
The curvature scalar is the further contraction

R=g¢" R;p. (13.113)

Example 13.14 (Curvature of the sphere S?) While in four-dimensional
spacetime indices run from 0 to 3, on the everyday sphere S? (example 13.4)
they are just 6 and ¢. There are only eight possible affine connections, and
because of the symmetry (13.65) in their lower indices P§¢ = 1“2)9, only six
are independent.

In the euclidian embedding space E2, the point p on a sphere of radius
R has cartesian coordinates p = R (sin 6 cos ¢, sin @ sin ¢, cos ), so the two
tangent 3-vectors are (13.37)

eg=py= R (cost cos ¢, cosf sing, —sinf) = RO

. . s (13.114)
ey =p 4 = Rsinf (—sing, cos¢, 0) = Rsinf ¢.
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Their dot products form the metric (13.38)

. . R? 0
i = (gee 99¢>) _ (ee ey ey e¢) :< 0 ) (13.115)
90 9o €y €9 €y €y 0 R®sin“f
which is diagonal with ggo = R? and 9op = R?sin? 0. Differentiating the
vectors ey and ey, we find

eg,0 = — R(sinf cos ¢, sinfsin ¢, cos) = —R 7
eg,p =R cost (—sing, cos¢, 0) = Rcosf ¢

€¢,0 =C€0,6

ep,p = — Rsinf (cos ¢, sing, 0) .

(13.116)

The metric with upper indices ¢g" is the inverse of the metric 9ij
g R2 0
) = 13.11
6= (" prgnze): (13.117)

so the dual vectors e’ = gi*¢, are

e =Rr! (cos B cos ¢, cos @ sin @, —sinf) = R7'6

1 1 -
¢ — — i = 1
e Rond (—sin ¢, cos ¢, 0) ond ®. (13.118)
The affine connections are given by (13.59) as
Iy =T% =€ e (13.119)

Since both €’ and e? are perpendicular to #, the affine connections Fegg
and F¢90 both vanish. Also, eg ¢ i? orthogonal to (ﬁ, SO I‘¢¢¢ = 0 as well.
Similarly, eg,4 is perpendicular to ¢, so F% 6= e 0 also vanishes.

The two nonzero affine connections are

F¢e¢ —e?. €y, = R 'sin™'0¢ - Rcosf ¢ = cotf (13.120)
and

F6¢¢ =ef. €4, = —sind (cos @ cos ¢, cos b sin ¢, —sind) - (cos ¢, sin ¢, 0)
= —sinfcosb. (13.121)

The nonzero connections are Fg’¢ = cot 6 and qub = —sinfcosf. So the
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matrices I'g and Iy, the derivative I'y g, and the commutator [I'g, T'y] are

0 0 0 —sinf cos
Ty = <0 cot 9> and Iy = (Cot0 0 > (13.122)
0 sin® @ — cos? 6 0 cos? 0
o0 = (f csc2 0 0 ) and - [Fy, T’y = (cot29 0 ) '

Both [I'p,T'p] and [I'y, T'y] vanish. So the commutator formula (13.103) gives
for Riemann’s curvature tensor

R¢9¢>9 =[0y + T, Op + Ff)ﬁe = (F97¢)¢9 +[Ly,To)% =1

0 .
R 405 =[09 + T,05 + Ty)’y = — (To,0) 0T [Dg,Ty)’s = sin® 0
R¢¢¢¢ =[0s +T4,0 + P¢}¢¢ =0. (13.123)
The Ricci tensor (13.112) is the contraction R, = R}, and so
Rog = Rl + Ry = 1
e el (13.124)

Ry =R’y + R? ., = sin®0.

The curvature scalar (13.113) is the contraction R = g*¥™R,,, and so since
" = R=? and ¢%? = R~2sin"24, it is
2
R=¢"Rep+¢*”Rys =R >+ R 2= 2 (13.125)
for a 2-sphere of radius R. The scalar curvature is a constant because the
sphere is a maximally symmetric space (section 13.24).
Gauss invented a formula for the curvature K of a surface; for all two-
dimensional surfaces, his K = R/2. O

Example 13.15 (Curvature of a cylindrical hyperboloid) The points of
a cylindrical hyperboloid in 3-space satisfy R? = — 22 — % + 22 and may
be parameterized as p = r(sinh 6 cos ¢, sinh 6 sin ¢, cosh #). The (orthogonal)
coordinate basis vectors are
ey = = r(cosh 6 cos ¢, cosh 6 sin ¢, sinh 6
0 =0, =7( . .<Z5 . ¢ ) (13.126)
ey = p,¢ = r(—sinh 0sin ¢, sinh d cos ¢, 0).
The squared distance ds? between nearby points is

ds® = ey - epdf? + ey - ey do>. (13.127)
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If the embedding metric is m = diag(1,1, —1), then ds? is
ds* = R?d6? + R? sinh® 0 d¢? (13.128)

and

(9i) =7 (0 sinh29)‘ (13.129)

The Mathematica scripts GREAT.m and cylindrical_hyperboloid.nb com-
pute the scalar curvature as R = —2/r2. The surface is maximally symmetric
with constant negative curvature. This chapter’s programs and scripts are
in Tensors_and_general relativity at github.com/kevinecahill. O

Example 13.16 (Curvature of the sphere S3) The three-dimensional sphere
$3 may be embedded isometrically in four-dimensional flat euclidian space

E* as the set of points p = (z,v, 2, w) that satisfy L? = 2% + ¢ + 22 + w?.

If we label its points as

(X, 0, ¢) = L(sin x sin @ cos ¢, sin x sin § sin @, sin x cos 6, cos x), (13.130)
then its coordinate basis vectors are
ey = P,y = L(cos x sin cos ¢, cos x sin #sin ¢, cos x cos @, —sin x)
eg = p,g = L(sin x cos 6 cos ¢, sin x cos @ sin ¢, — sin x sin 6, 0) (13.131)
ey = p,¢ = L(—sin x sinfsin ¢, sin x sin 6 cos ¢, 0,0).
The inner product of E* is the four-dimensional dot-product. The basis vec-

tors are orthogonal. In terms of the radial variable r = Lsin x, the squared
distance ds® between two nearby points is

ds® = ey - eXdX2 +eg - egdd? + ep e¢d¢2
=17 (dx2 + sin? x d6? + sin? x sin” 0 d¢2)

dr? 9 dr?
= —F do? + r? sin? 0d¢p? = ———
1—sin2x+r 7 sin” fdg 1—(r/L)?

where dQ? = d6? + sin? 0 d¢?. In these coordinates, r, 0, ¢, the metric is

1/(1—(r/1)*) 0 0
ik = 0 r? 0 : (13.133)
0 0 7r2sin6

(13.132)
+ r2d0?

The Mathematica scripts GREAT.m and sphere_S3.nb compute the scalar
curvature as

R=13 (13.134)
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which is a constant because S® is maximally symmetric (section 13.24). O

Example 13.17 (Curvature of the hyperboloid H?) The hyperboloid H3 is
a three-dimensional surface that can be isometrically embedded in the semi-
euclidian spacetime E(13) in which distances are ds? = da?+dy?+dz? — dw?,
and w is a time coordinate. The points of H? satisfy L? = —2?—y? — 22 +w?.
If we label them as
p(x, 0, ¢) = L (sinhy sin 0 cos ¢, sinhy sin 6 sin ¢, sinhy cos 6, coshy)
(13.135)
then the coordinate basis vectors or tangent vectors of H> are
ey = p,x = L(coshy sin 6 cos ¢, coshx sin # sin ¢, coshy cos 8, sinh)
eg = p,p = L(sinhy cos § cos ¢, sinhy cos @ sin ¢, —sinhx sin,0) (13.136)
e = p,p = L(—sinhy sin 0 sin ¢, sinhy sin 6 cos ¢, 0, 0).
The basis vectors are orthogonal. In terms of the radial variable r = Lsinh y/a,
the squared distance ds? between two nearby points is
ds? = ey - ede2 + eg - epdb? + ep e¢d¢2
= L? (dx* + sinh? x d6* + sinh? y sin® 0 d¢?)
_ dr? dr?
1+ sinh? X L+ (r/L)?
The Mathematica scripts GREAT.m and hyperboloid_H3.nb compute the
scalar curvature of H3 as

(13.137)

+72d0% + r?sin® 0 dp? = +r2dQ2.

6
R= — Iz (13.138)
Its curvature is a constant because H?® is maximally symmetric (section 13.24).
The only maximally symmetric 3-dimensional manifolds are $3, H?, and eu-
clidian space E3 whose line element is ds® = dr? + r2dQ?.
They are the spatial parts of Friedmann-Lemaitre-Robinson-Walker cos-
mologies (section 13.42). O

13.24 Maximally symmetric spaces

The spheres S? and S3 (examples 13.4 & 13.16) and the hyperboloids H?
and H? (examples 13.6 & 13.17) are maximally symmetric spaces. A space
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described by a metric g;x(z) is symmetric under a transformation z — z’
if the distances gi;(z')dz"*dz’* and g;;(z)dz'dz® are the same. To see what
this symmetry condition means, we consider the infinitesimal transformation
2" = 2! + ey’ (2) under which to lowest order g (2') = gi(x) + gik7gey£ and
da't = da’ + eyfjdxj . The symmetry condition requires

gir(x)dz'da® = (g (x) + gineey’) (da’ + eyfjdmj)(da:k + ey:“mdmm) (13.139)
or
0= git,e ¥ + Gim Yk + ik yfz (13.140)

The vector field y*(z) must satisfy this condition if 2" = 2 + ey’(z) is to
be a symmetry of the metric g;x(z). By using the vanishing (13.83) of the
covariant derivative of the metric tensor, we may write the condition on the
symmetry vector y(z) as (exercise 13.9)

0= Yisk + Ykyi- (13.141)

The symmetry vector 3¢ is a Killing vector (Wilhelm Killing, 1847-1923).
We may use symmetry condition (13.140) or (13.141) either to find the
symmetries of a space with a known metric or to find the metric with given
symmetries.

Example 13.18 (Killing vectors of the sphere S?) The first Killing vector
is (49, y‘f) = (0,1). Since the components of y; are constants, the symmetry
condition (13.140) says gx,¢ = 0 which tells us that the metric is indepen-
dent of ¢. The other two Killing vectors are (y§ ,yg) ) = (sin @, cot 0 cos ¢)
and (yg,yg) = (cos ¢, — cot fsin ¢). The symmetry condition (13.140) for
1 = k = 6 and Killing vectors y2 and y3 tell us that ggy = 0 and that
geg,e = 0. So ggg is a constant, which we set equal to unity. Finally, the
symmetry condition (13.140) for ¢ = k = ¢ and the Killing vectors y2 and
ys tell us that geg 9 = 2cotfggy which we integrate to ggy = sin?#. The
2-dimensional space with Killing vectors yi,y2, y3 therefore has the metric
(13.115) of the sphere S2. O

Example 13.19 (Killing vectors of the hyperboloid H2) The metric (13.46)
of the hyperboloid H? is diagonal with ggg = R? and oo = R?sinh? 6. The
Killing vector (y%yf) = (0,1) satisfies the symmetry condition (13.140).
Since ggp is independent of # and ¢, the 80 component of (13.140) im-
plies that y?e = 0. Since gg¢ = R? sinh? 6, the ¢¢ component of (13.140)
says that yf; = —coth# y?. The 8¢ and ¢# components of (13.140) give
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Yo = — sinh? ¢ y:z;. The vectors yo = (yg,yg’) = (sin ¢, coth 8 sin ¢) and
y3 = (15, yf) = (cos ¢, — coth @ sin ¢) satisfy both of these equations. O

The Lie derivative L, of a scalar field A is defined in terms of a vector
field y*(z) as L,A = y[A7g. The Lie derivative £, of a contravariant vector
Fiis

L,F' =y'F), - F'y', = y'F, — F%}, (13.142)

in which the second equality follows from yészF k= F Zfékyk. The Lie
derivative £, of a covariant vector V; is

LV = y'Vio + Vay'ls = v Vi + Vi, (13.143)
Similarly, the Lie derivative £, of a rank-2 covariant tensor T is
Ly T =y Tir e + Tot)'s + Tiry'y- (13.144)

We see now that the condition (13.140) that a vector field ¢ be a symmetry
of a metric g, is that its Lie derivative

Lygik = Gike ¥ + gim Y% + gjk v = 0 (13.145)

must vanish.

A maximally symmetric space (or spacetime) in d dimensions has d trans-
lation symmetries and d(d — 1)/2 rotational symmetries which gives a total
of d(d 4+ 1)/2 symmetries associated with d(d + 1)/2 Killing vectors. Thus
for d = 2, there is one rotation and two translations. For d = 3, there are
three rotations and three translations. For d = 4, there are six rotations and
four translations.

A maximally symmetric space has a curvature tensor (13.99) that is simply
related to its metric tensor

Rijre = c(gingje — giegjk) (13.146)

where ¢ is a constant (Zee, 2013, IX.6). Since g*g;, = g = d is the number
of dimensions of the space(time), the Ricci tensor (13.112) and the curvature
scalar (13.113) of a maximally symmetric space are

Rit=g"Rijie=c(d—1)ge and R=g"“Rj=cd(d—1). (13.147)



520 Tensors and general relativity

13.25 Principle of equivalence

Since the metric tensor g;;(x) is real and symmetric, it can be diagonalized
at any point p(z) by a 4 x 4 orthogonal matrix O(x)

e 0 0 0

b 0 e 0 0
O gw05= |, o 0 (13.148)

0 0 0 es

which arranges the four real eigenvalues e; of the matrix g;;(z) in the order
ep < e1 < eg < ez. Thus the coordinate transformation
dak OTik
Ox't IV |ez‘

takes any spacetime metric gx¢(«) with one negative and three positive eigen-
values into the Minkowski metric n;; of flat spacetime

(13.149)

-1 0 0 0

oz Ozt 0 100
gre() 9 e gz/-j(x/) =MNij = 0 010 (13.150)

0 0 01

at the point p(z) = p(z').

The principle of equivalence says that in these free-fall coordinates z’,
the physical laws of gravity-free special relativity apply in a suitably small
region about the point p(z) = p(z’). It follows from this principle that the
metric g;; of spacetime accounts for all the effects of gravity.

In the 2’ coordinates, the invariant squared separation dp? is

dp? = ggj da'tdx’ = €j(2) - e;- (z') da"*dx"

= e,’ia(:v')nabe;»b(x') da"ldx" = 5?77@6? da'tdz"  (13.151)
= 1ij da'lda’ = (da')? — (da'®)? = ds>.

If dz’ = 0, then dt' = v/—ds2/c is the proper time elapsed between events
p and p+dp. If dt’ = 0, then ds is the proper distance between the events.

The 2’ coordinates are not unique because every Lorentz transformation
(section 12.1) leaves the metric 7 invariant. Coordinate systems in which
gij(2') = n;j are called Lorentz, inertial, or free-fall coordinate systems.

The congruency transformation (1.351 & 13.148-13.150) preserves the
signs of the eigenvalues e; which make up the signature (—1,1,1,1) of
the metric tensor.
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13.26 Tetrads

We defined the metric tensor as the dot product (13.34) or (13.42) of tangent
vectors, gre(x) = ex(x)-ep(x). If instead we invert the equation (13.150) that
relates the metric tensor to the flat metric

o' ax/b
re(®) = 5% Mab 57 (13.152)
then we can express the metric in terms of four 4-vectors
a Jx' a b
ci(z) = ook 88 gre(x) = (@) nap ¢4 () (13.153)

in which 7;; is the 4 x 4 metric (13.150) of flat Minkowski space. Cartan’s
four 4-vectors c¢f(x) are called a moving frame, a tetrad, and a vierbein.

Because L(x) nap L () = nea, every spacetime-dependent Lorentz trans-
formation L(x) maps one set of tetrads cf(r) to another set of tetrads
¢ (z) = L, (x) ¢§(x) that represent the same metric

(@) nay f () = L () (@) nay Lg(2) ()

13.154
= i (2) ea ¢} (x) = gre(). ( )

Cartan’s tetrad is four 4-vectors c¢; that give the metric tensor as g;; =
G CLp = C; - Cp — cgcg. The dual tetrads sz = giknabcz satisfy

et =5 and =00 (13.155)

The metric gge(x) is symmetric, gre(z) = gex(x), so it has 10 indepen-
dent components at each spacetime point x. The four 4-vectors c¢f; have 16
components, but a Lorentz transformation L(z) has 6 components. So the
tetrads have 16 — 6 = 10 independent components at each spacetime point.

The distinction between tetrads and tangent basis vectors is that each
tetrad ¢, has 4 components, a = 0,1,2,3, while each basis vector e (x)
has as many components a« = 0,1,2,3,... as there are dimensions in the
minimal semi-euclidian embedding space EM™ where n < 19 (Aké et al.,
2018). Both represent the metric

3 n

gre(@) = > @) na @) = D e%(@)mlge’(x)  (13.156)

a,b=0 a,=0
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in which 7’ is like  but with n diagonal elements that are unity. (Elie Cartan,
1869-1951)

13.27 Scalar densities and g = | det(g;x)|

Let g be the absolute value of the determinant of the metric tensor g;i

g = g(x) = [det(gir(z))|. (13.157)

Under a coordinate transformation, /g becomes

Ve =V (@) = /| det(g) ()| = \/‘det <% %gﬂ(;p)> ‘ (13.158)

The definition (1.204) of a determinant and the product rule (1.225) for
determinants tell us that

V@) = \/‘det (g;ci) det<§7x/i> det(g;e)

where J(x/z') is the jacobian (section 1.21) of the coordinate transformation

=|J(xz/2')|g(x) (13.159)

J(z/2') = det (g;i) . (13.160)

A quantity s(z) is a scalar density of weight w if it transforms as
§(2') = [J(' /)] s(x). (13.161)

Thus the transformation rule (13.159) says that the determinant det(g;) is
a scalar density of weight minus two

det(giz(2')) = = [J(2/a")g(x) = [J(a'/x)]* det(gse(2)).  (13.162)

We saw in section 1.21 that under a coordinate transformation z — 2’
the d-dimensional element of volume in the new coordinates d%z’ is related
to that in the old coordinates d%z by a jacobian

/i
d’z’ = J(2'/z) d*z = det (ZZJ> dz. (13.163)

Thus the product /g d?z changes at most by the sign of the jacobian J(z'/x)
when x — 2/

Vo dl = (x/a)| T (@ )2) /g(x) da = £+/g(z) dx. (13.164)
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The quantity /g d*z is the invariant scalar /g |d*z| so that if L(z) is a
scalar, then the integral over spacetime

/ L(z) /g d*z (13.165)

is invariant under general coordinate transformations. The Levi-Civita ten-
sor provides a fancier definition.

13.28 Levi-Civita’s symbol and tensor

In 3 dimensions, Levi-Civita’s symbol ¢;;;, = €% is totally antisymmetric
with €193 = 1 in all coordinate systems. In 4 space or spacetime dimensions,
Levi-Civita’s symbol €5, = €Tkl g totally antisymmetric with €934 = 1
or equivalently with egio3 = 1 in all coordinate systems. In n dimensions,
Levi-Civita’s symbol €;,4,. 4, is totally antisymmetric with €23, = 1 or
€012..n—1 = 1.

We can turn his symbol into a pseudotensor by multiplying it by the square
root of the absolute value of the determinant of a rank-2 covariant tensor.
A natural choice is the metric tensor. In a right-handed coordinate system
in which the tangent vector ey points (orthochronously) toward the future,
the Levi-Civita tensor 7, is the totally antisymmetric rank-4 covariant
tensor

Nijee(T) =/ 9() €ijpe (13.166)

in which g(z) = | det gmn(x)] is (13.157) the absolute value of the determi-
nant of the metric tensor g,,. In a different system of coordinates 2, the
Levi-Civita tensor 7;;x¢(2") differs from (13.166) by the sign s of the jaco-
bian J(a'/x) of any coordinate transformation to 2’ from a right-handed,
orthochronous coordinate system x

mijke(z') = s(2") V/g(a') €ijue. (13.167)

The transformation rule (13.159) and the definition (1.204) and product rule
(1.225) of determinants show that 7;;z, transforms as a rank-4 covariant
tensor

nz{jké(x/) = s(z') \/mﬁijké = s(2') \J(x/w’)lx/@eiju
0
= J(z/2")\/ g(@) €ijre = det (87:;) V9 €ijke (13.168)
Oxt Oz Ozv Oz Oxt Oz 0z° Oz

= = 2 = Jfge = = 7 - )
0z 01 Dx'F prt VI T Bt oaii gk Pt M
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Raising the indices of 7, we have using o as the sign of det(g;)
_ git gju gkv géw Nwww = git gju gkv ng \/§€tuvw _ \/aeijké det(gmn)
= V7 €ije/ det(gmn) = 0 €ijre/ /G = 0 €%/ /. (13.169)

In terms of the Hodge star (14.151), the invariant volume element is

ijkt
77]

1 ) )
Vg ldiz] = x1= 1 Migke Azt A da A dz® A da’. (13.170)

13.29 Divergence of a contravariant vector

The contracted covariant derivative of a contravariant vector is a scalar
known as the divergence,

V-V =Vi=Vi+VFrj, (13.171)
Because ¢;; = gk, in the sum over 4 of the connection (13.59)

T = 39" (giek + Gor,i — Ghiye) (13.172)

the last two terms cancel because they differ only by the interchange of the
dummy indices ¢ and /¢

9" geni = 9" gine = 9" Ghie- (13.173)
So the contracted connection collapses to
T = 39" it - (13.174)

There is a nice formula for this last expression. To derive it, let g = g;s be
the 4 x 4 matrix whose elements are those of the covariant metric tensor Gie-
Its determinant, like that of any matrix, is the cofactor sum (1.213) along
any row or column, that is, over ¢ for fixed ¢ or over i for fixed ¢

det(g) = > git Cue (13.175)

iort

in which the cofactor Cy is (—1)"** times the determinant of the reduced
matrix consisting of the matrix g with row i and column ¢ omitted. Thus
the partial derivative of det g with respect to the i/th element g;¢ is

0 det(g)

Ta " Cir (13.176)
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in which we allow g;; and gy; to be independent variables for the purposes
of this differentiation. The inverse g of the metric tensor g, like the inverse
(1.215) of any matrix, is the transpose of the cofactor matrix divided by its
determinant det(g)

g = Cyi _ 1 Odet(g)
det(g) det(g) Oge ’

Using this formula and the chain rule, we may write the derivative of the
determinant det(g) as

(13.177)

ddet(g) P
det(g),x = T[ ie,e = det(g) g™ gie,k (13.178)
and so since gy = gp;, the contracted connection (13.174) is
det(g)e _ |det(@lr g (VO
2det(g)  2|det(g)] 2g NG

in which g= ’det(g)} is the absolute value of the determinant of the metric

(13.179)

i1, _
My = 59 itk =

tensor.
Thus from (13.171 & 13.179), we arrive at our formula for the covariant
divergence of a contravariant vector:

(V3o i (TVH)u
V9 V9
Example 13.20 (Maxwell’s inhomogeneous equations) An important ap-
plication of this divergence formula (13.180) is the generally covariant form
(14.157) of Maxwell’s inhomogeneous equations
1

V9

V.V = V; = sz + T8, vk = V,]Z 4 (13.180)

(@F’“) = g, (13.181)

O

Example 13.21 (Energy-momentum tensor) Another application is to the
divergence of the symmetric energy-momentum tensor 7% = T7¢

lej = T,Zz] + 10, TH 417 T
(VgT™)y,

- v +17 T

(13.182)

O
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13.30 Covariant laplacian

In flat 3-space, we write the laplacian as V - V = V2 or as A. In euclidian
coordinates, both mean 92 + 6’3 + 2. In flat minkowski space, one often
turns the triangle into a square and writes the 4-laplacian as O = A — 83.
The gradient f of a scalar field f is a covariant vector, and f = gtk fk
is its contravariant form. The invariant laplacian Of of a scalar field f
is the covariant divergence f;’ii . We may use our formula (13.180) for the
divergence of a contravariant vector to write it in these equivalent ways

(Va/i _ (Vag™f).i
i T (13.183)

Of = £ = (0" fi)a =

13.31 Principle of stationary action in general relativity

The invariant proper time for a particle to move along a path x%(t)
T2 1 . 3
T = / dr = - / ( - gigdajldaze) (13.184)
Jr c

is extremal and stationary on free-fall paths called geodesics. We can iden-
tify a geodesic by computing the variation ddr

d(gie) dxldw — 2g; pdztsdat
cddr = 6/ —gjedridzt = 13.185
Vo N (15:15)
= gwké kuiuldr — gizuiédxl gl[ké kyiuldr — gieuid&rz
2c c 2c c

in which u’ = da’/dr is the 4-velocity (12.20). The path is extremal if

72 ]. T2 k i ¢ d(;.’L'Z
0=cdT = c/ odr = — f/ (%gie,kém u'u +gigul—) dr (13.186)
- cJn dr

which we integrate by parts keeping in mind that dzf(r) = éz%(11) =0

T2 ot
0= 7/ <29M worFuiut Mdﬁ) dr
- dr

1
=y ki ¢ i) ks du’ o
= _/ <§9iz,k5$ u'u’ — g pu'u"ox ~ i dx ) dr. (13.187)
T
T1

Now interchanging the dummy indices ¢ and k on the second and third
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terms, we have

T2 1 , - dui A
0= _/ 29t KU = Giku'u — ik dxz"dr (13.188)
1 T
or since dz* is arbitrary
. . dui
0= Jgicpu'u’ = g u'u’ — gin——. (13.189)

If we multiply this equation of motion by ¢"* and note that gik7guiue =

gezc,iuiu[, then we find

du” .
0= 2 T L9 (gike + gori — gie ) u'ul. (13.190)
So using the symmetry g;c = g¢; and the formula (13.87) for I'",,, we get
_du” _ %z dat dxt

- v 7
dr T dr2? wdr dr
which is the geodesic equation. In empty space, particles fall along geodesics
independently of their masses.
One gets the same geodesic equation from the simpler action principle
A2 da? da’ d%a” da’ da’

0=0 | gula) =T\ — 0=25 v, 280
Sy, g gy gy = 0= et

0=—+I",u'u®  or 0 (13.191)

(13.192)

The right-hand side of the geodesic equation (13.191) is a contravariant
vector because (Weinberg, 1972) under general coordinate transformations,
the inhomogeneous terms arising from %" cancel those from PTizii:if. Here
and often in what follows we’ll use dots to mean proper-time derivatives.

The action for a particle of mass m and charge ¢ in a gravitational field
I'",, and an electromagnetic field A; is

. 1 2 .
S = — mc/( - g,-gdxzdare) T+ %/ Ai(z)dz' (13.193)
T1
in which the interaction q [ A;dz! is invariant under general coordinate trans-
formations. By (12.59 & 13.188), the first-order change in S is
11 . it du’ | g il s ok
6S =m 59i0, kWU — Gig oUW U — Gig—— + —— (A@k — A;m-) u'| dx"dr
- dr  mc
(13.194)
and so by combining the Lorentz force law (12.60) and the geodesic equation

(13.191) and by writing F™i; as F", i, we have
_ d*ar . dat dfxe - da’
T dr? Cdr dr m tdr

0 (13.195)
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as the equation of motion of a particle of mass m and charge g. It is striking
how nearly perfect the electromagnetism of Faraday and Maxwell is.
The action of the electromagnetic field interacting with an electric current

4* in a gravitational field is

S = / [*%szFk“r/toAkjk} Vgd'z (13.196)

in which \/§d4x is the invariant volume element. After an integration by
parts, the first-order change in the action is

08 = / {—— Fk[ ) + o \/ﬂ SA d*z, (13.197)
and so the inhomogeneous Maxwell equations in a gravitational field are
9 KO\ _ -k
p (\/gF ) = 1o /35" (13.198)

The action of a scalar field ¢ of mass m in a gravitational field is
S = %/ (* @i g““@k - m2¢2) Vediz. (13.199)
After an integration by parts, the first-order change in the action is
5S = / 56 {(\/gg%,k) - mz\/ﬁqﬁ} da (13.200)
which yields the equation of motion
(\/Eg"%k) . m*\/g¢ = 0. (13.201)

The action of the gravitational field itself is a spacetime integral of the
Riemann scalar (13.113) divided by Newton’s constant

63 4
= . 13.202
o [RVa (13.202)

Its variation leads to Einstein’s equations (section 13.35).

13.32 Equivalence principle and geodesic equation

The principle of equivalence (section 13.25) says that in any gravitational
field, one may choose free-fall coordinates in which all physical laws take
the same form as in special relativity without acceleration or gravitation—at
least over a suitably small volume of spacetime. Within this volume and in



13.32 Equivalence principle and geodesic equation 529

these coordinates, things behave as they would at rest deep in empty space
far from any matter or energy. The volume must be small enough so that
the gravitational field is constant throughout it. Such free-fall coordinate
systems are called local Lorentz frames and local inertial frames.

Example 13.22 (Elevators) When a modern elevator starts going down
from a high floor, it accelerates downward at something less than the lo-
cal acceleration of gravity. One feels less pressure on one’s feet; one feels
lighter. After accelerating downward for a few seconds, the elevator assumes
a constant downward speed, and then one feels the normal pressure of one’s
weight on one’s feet. The elevator seems to be slowing down for a stop, but
actually it has just stopped accelerating downward.

What if the cable snapped, and a frightened passenger dropped his laptop?
He could catch it very easily as it would not seem to fall because the elevator,
the passenger, and the laptop would all fall at the same rate. The physics
in the falling elevator would be the same as if the elevator were at rest in
empty space far from any gravitational field. The laptop’s clock would tick
as fast as it would at rest in the absence of gravity, but to an observer on
the ground it would appear slower.

What if a passenger held an electric charge? Observers in the falling el-
evator would see a static electric field around the charge, but observers on
the ground could detect radiation from the accelerating charge. O

Example 13.23 (Proper time) If the events are the ticks of a clock, then
the proper time between ticks d7/c is the time between the ticks of the clock
at rest or at speed zero if the clock is accelerating. The proper lifetime dry/c
of an unstable particle is the average time it takes to decay at speed zero.
In arbitrary coordinates, this proper lifetime is

Fdrf = —ds® = —gi(w) da’da*. (13.203)

O

Example 13.24 (Clock hypothesis) The apparent lifetime of an unstable
particle is independent of the acceleration of the particle even when the
particle is subjected to centripetal accelerations of 10'° m/s?(Bailey et al.,
1977) and to longitudinal accelerations of 10'6m/s?(Roos et al., 1980). O

The transformation from arbitrary coordinates 2% to free-fall coordinates
y' changes the metric gje to the diagonal metric 7;, of flat spacetime n =
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diag(—1,1,1,1), which has two indices and is not a Levi-Civita tensor. Al-

gebraically, this transformation is a congruence (1.353)
0z7 0zt

ik = = Jif = 13.204

Tik i gije Dy ( )

The geodesic equation (13.191) follows from the principle of equiva-

lence (Weinberg, 1972; Hobson et al., 2006). Suppose a particle is moving

under the influence of gravitation alone. Then one may choose free-fall co-

ordinates y(x) so that the particle obeys the force-free equation of motion

d2yi
arz

(13.205)
with dr the proper time d72 = —n;;, dy’dy*. The chain rule applied to 3 (z)
in (13.205) gives
oo d (00 do*
T dr \ 0z dr

B oyt d?a* 0%yt daxk dat

= —_ . 13.206
Ok dr? + Ozkozt dr dr ( )
We multiply by 92™ /0y and use the identity
o™ Oyt
- =4 13.207
ayl axk k ( )
to write the equation of motion (13.205) in the z-coordinates
d*z™ o dak dat
— ——F— =0. 13.20
dr? ko dr dr 0 (13.208)
This is the geodesic equation (13.191) in which the affine connection is
o™ aQyi
M) = ———=—+2—. 13.2
O T (13.209)

13.33 Weak static gravitational fields

Newton’s equations describe slow motion in a weak static gravitational field.
Because the motion is slow, we neglect u’ compared to u® and simplify the
geodesic equation (13.191) to

0= — +T" (u")% (13.210)
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Because the gravitational field is static, we neglect the time derivatives gro,0
and gog,0 in the connection formula (13.87) and find for I'y,

o0 = 59 (90k,0 + Gok,0 — Goo.k) = —3 9™ Goo (13.211)

with FOOO = 0. Because the field is weak, the metric can differ from 7;; by
only a tiny tensor g;; = m; + hy; so that to first order in |hy| < 1 we
have I'"yq = f% hoo,» for r = 1,2, 3. With these simplifications, the geodesic
equation (13.191) reduces to

d2z"
dr?

2a7 1 (da®\?
=3 hooy  or = (F) hoo.  (13.212)

So for slow motion, the ordinary acceleration is described by Newton’s law
d’x 2
— = — Vhgo. 13.213
arz 2 ( )

If ¢ is his potential, then for slow motion in weak static fields

goo=—1+hop=—-1-2p/c> andso  hg= —2¢/c*. (13.214)

Thus, if the particle is at a distance r from a mass M, then ¢ = — GM/r
and hoo = —2¢/c? = 2GM /rc? and so
d’x GM T
— = —-V¢p=V——= —-GM—. 13.215
dt? ¢ r r3 ( )

How weak are the static gravitational fields we know about? The dimen-
sionless ratio ¢/c? is 10732 on the surface of a proton, 10~ on the Earth,
1075 on the surface of the sun, and 10~ on the surface of a white dwarf.

13.34 Gravitational time dilation

The proper time (example 13.23) interval dr of a clock at rest in the weak,
static gravitational field (13.210-13.215) satisfies equation (13.203)

Adr? = —ds® = —gg(x) dz'da® = —goo Pdt* = (1+2¢/c%)2dt?. (13.216)

So if two clocks are at rest at distances r and r + h from the center of the
Earth, then the times dt, and dt,,, between ticks of the clock at r and the
one at r + h are related by the proper time dr of the ticks of the clock

(¢ +2¢(r))dt2 = 2dr® = (* + 2¢(r + h))dt2,,. (13.217)
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Since ¢(r) = — GM/r, the potential at r + h is ¢(r + h) = ¢(r) + gh, and
so the ratio of the tick time dt, of the lower clock at r to the tick time of
the upper clock at r + h is

219 242 2
dt, _ \/EF2 T R) _ \/EF2() + Parr B (3o

dtrin 2+ 20(r) Ve +26(r)

The lower clock is slower.

Example 13.25 (Pound and Rebka) Pound and Rebka in 1960 used the
Mossbauer effect to measure the blue shift of light falling down a 22.6 m
shaft. They found (v — v,)/v = gh/c® = 2.46 x 10713, (Robert Pound
1919-2010, Glen Rebka 1931-2015) media.physics.harvard.edu/video/
?id=LOEB_POUND_092591.f1v

O

Example 13.26 (Redshift of the sun) A photon emitted with frequency vy
at a distance r from a mass M would be observed at spatial infinity to have
frequency v = vo\/—goo = voy/1 — 2MG/c?r for a redshift of Av = vy — v.
Since the Sun’s dimensionless potential ¢ /c? is —MG/c?r = —2.12 x 1076
at its surface, sunlight is shifted to the red by 2 parts per million. O

13.35 Einstein’s equations

If we make an action that is a scalar, invariant under general coordinate
transformations, and then apply to it the principle of stationary action, we
will get tensor field equations that are invariant under general coordinate
transformations. If the metric of spacetime is among the fields of the action,
then the resulting theory will be a possible theory of gravity. If we make the
action as simple as possible, it will be Einstein’s theory.

To make the action of the gravitational field, we need a scalar. Apart from
the scalar /g d*z = /g cdt d®z, where g = |det(gi;)|, the simplest scalar
we can form from the metric tensor and its first and second derivatives is
the scalar curvature R which gives us the Einstein-Hilbert action

c 4 c? ik 4

in which G' = 6.7087 x 10739 lic (GeV/c?) ™2 = 6.6742 x 10" m3 kg~ 1572 is
Newton’s constant.



13.35 Finstein’s equations 533

If 5g%*(x) is a tiny local change in the inverse metric, then the rule
Sdet A = det ATr(A16A) (1.228), valid for any nonsingular, nondefective
matrix A) together with the identity 0 = 6(¢"*gr) = 69 gre + ¢* dgpe and
the notation g for the metric tensor g;, considered as a matrix imply that

det det ¢)2g* 8 g;
5/ = gddetg:( 9)°9" ogix _
29/9 = 29\/9

So the first-order change in the action density is
6 (9™ Rix v/5) = Rix /g 9™ + g™ Rix 0\/5 + g™ /g Ry

1 . .
= (Rik ~3 Rgik) V3 39" + g% /g ORyy,.

1 )
— 5\/5 gir 0g'F. (13.220)

(13.221)

The product ¢g"*dR;; is a scalar, so we can evaluate it in any coordinate
system. In a local inertial frame, where I'*,, = 0 and gg. is constant, this
invariant variation of the Ricci tensor (13.112) is

9% Ry = g™ 6 (T = T k) = 9™ (O 0T, — 0 6T"y)
= ¢ 9, 8T, — g" 9 oT*, =8, (gik g gin 5rkm) .
(13.222)

The transformation law (13.66) for the affine connection shows that the
variations 6I'";, and 6ka are tensors although the connections themselves
aren’t. Thus, we can evaluate this invariant variation of the Ricci tensor
in any coordinate system by replacing the derivatives with covariant ones
getting
g6 Ry, = (gik sT™,, — gin 6Fkin) . (13.223)
which we recognize as the covariant divergence (13.180) of a contravariant
vector. The last term in the first-order change (13.221) in the action density
is therefore a surface term whose variation vanishes for tiny local changes
5™ of the metric
V9 SRy, = [\/§ (gik ST, — g™ 5ka)} . (13.224)

I

Hence the variation of Sgy is simply

c? 1 ik 4
0SpH = T6nC /(Rz‘k — §9ikR) Vg 0g" d . (13.225)

The principle of least action §Sgy = 0 now gives us Einstein’s equations
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for empty space:

R, — %gik R=0. (13.226)
The tensor G = R — %gik R is Einstein’s tensor.

Taking the trace of Einstein’s equations (13.226), we find that the scalar
curvature R and the Ricci tensor R;; are zero in empty space:

R=0 and Ry =0. (13.227)

The energy-momentum tensor Tj; is the source of the gravitational
field. It is defined so that the change in the action of the matter fields due
to a tiny local change 6g**(z) in the metric is

3= — / T3 g™ d'e = o / T /G Sgnd's  (13.228)
C C

in which the identity 6¢g'* = — g% gékégﬂ explains the sign change. Now the
principle of least action 65 = §Sgg + 05, = 0 yields Einstein’s equations
in the presence of matter and energy

1 8rG
Ry — 5 Jik R= CTTik- (13.229)
Taking the trace of both sides, we get
87G 887G T
R= — i T and Ry, = - <Tzk - ggzk) - (13.230)

13.36 Energy-momentum tensor

The action S, of the matter fields is a scalar that is invariant under general
coordinate transformations. In particular, a tiny local general coordinate
transformation 2/ = 2 + €*(x) leaves Sy, invariant

0=0S, = /5 (L(d)i(m)) \/g(T)) di. (13.231)

The vanishing change 05,, = 0S4 + 0Smg has a part 45,4 due to the
changes in the fields d¢;(z) and a part §.S,,, due to the change in the metric
8¢**. The principle of stationary action tells us that the change 0Sm¢ is zero
as long as the fields obey the classical equations of motion. The definition
(13.228) of the energy-momentum tensor now tells us that

1 .
0= 0Sm = 0Smg = - /T““ V9 dgip d'x. (13.232)
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We take the change in S, to be
5Sm — / L(64(a")) Vo @) d'a’ / L(i(x)) v/g(@) dz
- / L(64(x)) g (@) d'z - / L(i(x)) V/a(z) d'z.

So using the identity d¢g% gy = —g™* dgre, the definition (13.68) of the
covariant derivative of a covariant vector, and the formula (13.87) for the

(13.233)

connection in terms of the metric, we find to lowest order in the change €*(x)
in 2% that the change in the metric is
dgik = gir(*) — gir(®) = gir(2') — gin(x) — (gir(2") — gir(2))
= (68 = %) (0} — €%)gab — € Gik,e
= = Gib €% — Gak €% — € Gik,c
— 9in(9" €c) b — 9an(9 )i — € Gk

be ac c
T €k T €ki — €c9ib9 )k — €cYak 9 — € Gikye

(13.234)

b
= — €k~ kit g Gibk+ €9 Gaki — € Gikye
= —€ik— ki + €9 (Giak + Yak,i — Gik,a)

= — €i,k - Ek,i + €c Fcik + €c FCM = — €k — €Ly

Combining this result (13.234) with the vanishing (13.232) of the change
0Smg, we have

0= / T /g (€in + €xi) d*a. (13.235)

Since the energy-momentum tensor is symmetric, we may combine the two
terms, integrate by parts, divide by /g, and so find that the covariant di-
vergence of the energy-momentum tensor is zero

) ) ) ) 1 ) )
0=TF =TF+TF, T +T7, T% = E(@Tﬂk + 1%, T (13.236)

when the fields obey their equations of motion. In a given inertial frame, only
the total energy, momentum, and angular momentum of both the matter and
the gravitational field are conserved.

13.37 Perfect fluids

In many cosmological models, the energy-momentum tensor is assumed to
be that of a perfect fluid, which is isotropic in its rest frame, does not



536 Tensors and general relativity

conduct heat, and has zero viscosity. The energy-momentum tensor T;;
of a perfect fluid moving with 4-velocity u’ (12.20) is

Tij =pgij + (232 + p) uiu; (13.237)

in which p and p are the pressure and mass density of the fluid in its rest
frame and g;; is the spacetime metric. Einstein’s equations (13.229) then
are
1 81G 81G p
R, — §gikR = CTTik: = [Pgij + (E + p) u; Uj] . (13.238)
An important special case is the energy-momentum tensor due to a nonzero
value of the energy density of the vacuum. In this case p = —c?p and the
energy-momentum tensor is

Tij = pgij = —*pgij (13.239)

in which Toy = ¢?p is the (presumably constant) value of the energy den-
sity of the ground state of the theory. This energy density p is a plausible
candidate for the dark-energy density. It is equivalent to a cosmological
constant A = 87Gp.

On small scales, such as that of our solar system, one may neglect mat-
ter and dark energy. So in empty space and on small scales, the energy-
momentum tensor vanishes T;; = 0 along with its trace and the scalar cur-
vature T'= 0 = R, and Einstein’s equations (13.230) are

R;j = 0. (13.240)

13.38 Gravitational waves

The nonlinear properties of Einstein’s equations (13.229— 13.230) are im-
portant on large scales of distance (sections 13.42 & 13.43) and near great
masses (sections 13.39 & 13.40). But throughout most of the mature uni-
verse, it is helpful to linearize them by writing the metric as the metric 7
of empty, flat spacetime (12.3) plus a tiny deviation hg

ik = Nik + Nik- (13.241)
To first order in h;, the affine connection (13.87) is

It = %gkj (951, + gjesi — gie,j) = %nkj (Rjie + hjos — hie;)  (13.242)
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and the Ricci tensor (13.112) is the contraction

Ry = R¥yp = [0 + T, 00 + T,

(2

== Fk[i’k - I‘kki,f' (13.243)
Since F’“M = I‘kﬁ and h;p = hg;, the linearized Ricci tensor is
Rie = 30" (hjie + hjei = hieg) = 317 (hiok + bk = hik)

& &
=5 (B0 hagls = e = W) (13.244)

(2

We can simplify Einstein’s equations (13.230) in empty space Ry = 0 by
using coordinates in which h;; obeys (exercise 13.17) de Donder’s harmonic
gauge condition hikﬂ- = %(nﬂhﬂ)JC = %h7k. In this gauge, the linearized
Einstein equations in empty space are

Ri=—Yhyy=0 or (V2 —03)hiy=0. (13.245)

On 14 September 2015, the LIGO collaboration detected the merger of
two black holes of 29 and 36 solar masses which liberated 3M_c? of energy.
By 2017, LIGO and Virgo had detected gravitational waves from the mergers
of six pairs of black holes and one pair of neutron stars and had set an upper
limit of Cng < 2 x107% ¢V on the mass of the graviton.

13.39 Schwarzschild’s solution

In 1916, Schwarzschild solved Einstein’s field equations (13.240) in empty
space R;; = 0 outside a static mass M and found as the metric

2MG 2MG\
ds? = — (1 _ T) 2di? + (1 — > dr* +r2dQ*  (13.246)
cr cer

in which dQ? = d#? + sin® 6 d¢>.
The Mathematica scripts GREAT.m and Schwarzschild.nb give for the Ricci
tensor and the scalar curvature R;r; = 0 and R = 0, which show that the

metric obeys Einstein’s equations and that the singularity in

2MG\
Gor = <1f 02rG> (13.247)

at the Schwarzschild radius ry = 2MG/c? is an artifact of the coordinates.
Schwarzschild.nb also computes the affine connections.
The Schwarzschild radius of the Sun ry = 2M,G/c? = 2.95 km is far less
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than the Sun’s radius 7, = 6.955 x 10° km, beyond which his metric applies.
(Karl Schwarzschild, 1873-1916)

13.40 Black holes

Suppose an uncharged, spherically symmetric star of mass M has collapsed
within a sphere of radius 7 less than its Schwarzschild radius or horizon
r, =15 = 2MG/c%. Then for r > ry, the Schwarzschild metric (13.246) is
correct. The time dt measured on a clock outside the gravitational field is
related to the proper time dr on a clock fixed at r» > 2MG/c? by (13.216)

2M
dt = dr//—goo = dr/4/1 — 2G. (13.248)
r

The time dt measured away from the star becomes infinite as r approaches
the horizon r, = rs = 2MG/ ¢2. To outside observers, a clock at the horizon
rp, seems frozen in time.

Due to the gravitational redshift (13.248), light of frequency v, emitted
at r > 2M G /c? will have frequency v

2MG
c2r

v=vpv—goo =vpy/1l—

when observed at great distances. Light coming from the surface at rs =
2MG/c? is redshifted to zero frequency v = 0. The star is black. It is a
black hole with a horizon at its Schwarzschild radius r, = r, = 2MG/c?,
although there is no singularity there. If the radius of the Sun were less than
its Schwarzschild radius of 2.95 km, then the Sun would be a black hole.
The radius of the Sun is 6.955 x 105 km.

Black holes are not black. Stephen Hawking (1942-2018) showed (Hawk-
ing, 1975) that the intense gravitational field of a black hole of mass M
radiates at a temperature

(13.249)

hel he hg

= STkGM drkry, = orke (13.250)
in which k£ = 8.617 x 107°eV K~! is Boltzmann’s constant, % is Planck’s
constant h = 6.626 x 10734 Js divided by 27, h = h/(27), and g = GM/r?
is the gravitational acceleration at r = 7. More generally, a detector in
vacuum subject to a uniform acceleration a (in its instantaneous rest frame)

sees a temperature T' = ha/(27wkc) (Alsing and Milonni, 2004).
In a region of empty space where the pressure p and the chemical poten-
tials p1; all vanish, the change (7.111) in the internal energy U = c?M of a
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black hole of mass M is c2dM = T'dS where S is its entropy. So the change
dS in the entropy of a black hole of mass M = c?r;,/(2G) and temperature
T = he/(4mkry) (13.250) is

_ dmckry, é ik

A ckry,
dM = dry, = —=— 2rpdry,. 13.251
(he) noagth = g Zndre (13.251)

2
dS = —dM =
o T

Integrating, we get a formula for the entropy of a black hole in terms of its
area (Bekenstein, 1973; Hawking, 1975)

ak , kA

- == 13.252
Gh T G 4 (13.252)
where A = 4777 is the area of the horizon of the black hole.
A black hole is entirely converted into radiation after a time
1207 G?
p o ST s (13.253)

hct

proportional to the cube of its mass M.

13.41 Rotating black holes

A half-century after Einstein invented general relativity, Roy Kerr invented
the metric for a mass M rotating with angular momentum J = GMa/ec.
Two years later, Newman and others generalized the Kerr metric to one of
charge Q. In Boyer-Lindquist coordinates, its line element is

ds® = — % (dt — a sin® 9d¢)2

wo. . (13.254)
e (r* + a*)d¢ — adt)” + -

A + pdo”

where p? = 72 + a?cos?f and A = r? 4+ a® — 2GMr/c* + Q2. The Math-
ematica script Kerr_black_hole.nb shows that the Kerr-Newman metric for
the uncharged case, @ = 0, has R;z = 0 and R = 0 and so is a solution of
Einstein’s equations in empty space (13.230) with zero scalar curvature.

A rotating mass drags nearby masses along with it. The daily rotation
of the Earth moves satellites to the East by tens of meters per year. The
frame dragging of extremal black holes with J < GM?/c approaches the
speed of light (Ghosh et al., 2018). (Roy Kerr, 1934-)
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13.42 Spatially symmetric spacetimes

Einstein’s equations (13.230) are second-order, nonlinear partial differential
equations for 10 unknown functions g;x(z) in terms of the energy-momentum
tensor Ty (z) throughout the universe, which of course we don’t know. The
problem is not quite hopeless, however. The ability to choose arbitrary co-
ordinates, the appeal to symmetry, and the choice of a reasonable form for
T;i all help.

Astrophysical observations tell us that the universe extends at least 46
billion light years in all directions; that it is flat or very nearly flat; and
that the cosmic microwave background (CMB) radiation is isotropic to one
part in 10° apart from a Doppler shift due the motion of the Sun at 370
km/s towards the constellation Leo. These microwave photons have been
moving freely since the universe became cool enough for hydrogen atoms to
be stable. Observations of clusters of galaxies reveal an expanding universe
that is homogeneous on suitably large scales of distance. Thus as far as we
know, the universe is homogeneous and isotropic in space, but not in
time.

There are only three maximally symmetric 3-dimensional spaces: eu-
clidian space E3, the sphere S% (example 13.16), and the hyperboloid H?
(example 13.17). Their line elements may be written in terms of a distance
L as

a5t = — 720 (13.255)
T 1 —kr2/L2 '
in which £ = 1 for the sphere, kK = 0 for euclidian space, and k = — 1 for

the hyperboloid. The Friedmann-Lemaitre-Robinson-Walker (FLRW)
cosmologies add to these spatially symmetric line elements a dimensionless
scale factor a(t) that describes the expansion (or contraction) of space

ds? = — Adt* + a?(t) <71 - Z’; T +72d6% + 12 sin® 0 d¢2> . (13.256)
The FLRW metric is
- 0 0 0
gin(t,7,0.0) = 8 @/(1 70k /) aQOTQ 8 (13.257)
0 0 0 a’r?sin®6
The constant k determines whether the spatial universe is open k = — 1,

flat k = 0, or closed k = 1. The coordinates z°, 2!, 22, 2% = ¢,r,6, ¢ are

comoving in that a detector at rest at r, 0, ¢ records the CMB as isotropic
with no Doppler shift.
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The metric (13.257) is diagonal; its inverse g%/ also is diagonal

—c? 0 0 0
; 0 (1 —kr?/L%) /a? 0 0
ik
=1 . (ar)-2 . (13.258)
0 0 0 (ar sinf)~?2

One may use the formula (13.87) to compute the affine connection in
terms of the metric and its inverse as ka = %gkj (gji,e + gjei — Geij)- 1t
usually is easier, however, to use the action principle (13.192) to derive the
geodesic equation directly and then to read its expressions for the Pijk’s. So
we require that the integral

2.2
0= 5/ <_c 2 4 : “k’;/LQ +a?120” 4 a*r? sin® 9¢’2> d\, (13.259)
— RT

in which a prime means derivative with respect to A, be stationary with
respect to the tiny variations 6t(X), 0r(\), d6(N), and d¢(N). By varying ¢()),
we get the equation

ad r'2 . ;
0=t"+ 2 (71 Yy +720"% + 12 sin% 0 ¢/2) =¢"+T! 0t it (13.260)

which tells us that the nonzero thk’s are

. . 2 . 2 . 2
¢ aa ¢ _aar ¢ aar-sin®f
U= aa—meyry Tw="a =od Te="—"g—
(13.261)
By varying r(\) we get (with more effort)
rr'2k /L2 atr! kr? .
0=r"+ = kré/Lz) +2— - r(1- ﬁ)(e’Z +sin?0¢?).  (13.262)

So we find that I'",,. = a/a,

- kr - Ekr3
I = —F"F>% F‘Qe:—r+ﬁ,

ST k? and T7, = sin® 017y, (13.263)

Varying 6()) gives

; 2
0=0"+ 2%y + 201" —sinfcos ¢ and
a " (13.264)

1
rl, = rf, = - and F9¢¢ = —sinf cosd.

Q| e
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Finally, varying ¢(\) gives

a r'¢
0=¢" +2-t'¢ +2—— +2cot08'¢’ and
. a 1 r (13.265)
F¢t¢:g’ F¢T¢:;, and F¢9¢: cot 6.

Other I'’s are either zero or related by the symmetry Fki[ = I‘k&-.
Our formulas for the Ricci (13.112) and curvature (13.103) tensors give

Roo = R¥o10 = [Dr, Do)*s = [0k + Tk, Do + To)*. (13.266)

Because [Dg, Do] = 0, we need only compute [Dy, D]y, [D2, Do]?,, and
[D3, Do]3,. Using the formulas (13.261-13.265) for the I's and keeping in
mind (13.102) that the element of row r and column c¢ of the fth gamma
matrix is I'",, we find

[D1, Dol = Fl00,1 — T+ T T =TT g = = (a/a) 0 — (a/a)®
[Ds, Do)?y = F200,2 —T?0+ F22]'11]-00 - I120]‘1”20 = —(a/a),0 — (a/a)?
[Ds, Dol = T0,5 = T30 + T?3;T7 g = T%,TV 50 = — (4/a) 0 — (a/a)?
Ry = Roo = [Dy, Dol"y = —3(a/a) 0 — 3(a/a)’ = - 3ii/a. (13.267)

Thus for R,, = Ri1 = R¥;; = [Dy, D1]%, = [0k + Tk, 01 + T1]%,, we get

ai +2a® + 2kc?/L?
(1 — kr2/L?)
exercise 13.21), and for Ros = Rgg and R33 = Ry we find
o]

Ry = [Dy, DiJ*, = (13.268)

Rop = [(ad + 24> + 2kc® /L*)r?]/c®* and Ry = sin®ORgy  (13.269)
(exercises 13.22 & 13.23). And so the scalar curvature R = g% Ry, is

_BRoo  (A=kr?/L)Ru  Rm Ry
c? 2 a?r?  a2r2sin26

(13.270)

R = gabRba =

ai + a® + kc?/L?
=6———5
ca

It is, of course, quicker to use the Mathematica script FLRW.nb.

13.43 Friedmann-Lemaitre-Robinson-Walker cosmologies

The energy-momentum tensor (13.237) of a perfect fluid moving at 4-velocity
ui is Tix = pgix + (p/c% + p)u;ug, where p and p are the pressure and mass
density of the fluid in its rest frame. In the comoving coordinates of the
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FLRW metric (13.257), the 4-velocity (12.20) is u’ = (1,0,0,0), and the
energy-momentum tensor (13.237) is

—pgy 0 0 0
0 pgu O 0

Ty = . 13.271
v 0 0 pge 0 (13.271)
0 0 0 pyss
Its trace is
T =g"T; =—c*p+3p. (13.272)
Thus successively using our formulas (13.257) for ggg = — c?, (13.267) for
Rop = — 3d/a, (13.271) for T;;, and (13.272) for T, we can write the 00
Einstein equation (13.230) as the second-order equation
a 4G 3p
—= = . 13.273
i @+§) (13.273)

It is nonlinear because p and 3p depend upon a. The sum ¢2p+3p determines
the acceleration @ of the scale factor a(t); when it is negative, it accelerates
the expansion. If we combine Einstein’s formula for the scalar curvature
R= —87GT/c* (13.230) with the FLRW formulas for R (13.270) and for
the trace T (13.272) of the energy-momentum tensor, we get

. . 2 2
a a c’k A7 G 3p
2 el — = p= ). 13.274
s’ (a) 7P 3 (p 02) ( )
Using the 00-equation (13.273) to eliminate the second derivative d, we find
a\?> 8rG Ak
-] =—p- 13.2
(a) 3 P I (13.275)

which is a first-order nonlinear equation. It and the second-order equation
(13.273) are known as the Friedmann equations.
The left-hand side of the first-order Friedmann equation (13.275) is the
square of the Hubble rate
H="2 (13.276)
a

which is an inverse time or a frequency. Its present value Hy is the Hubble
constant.
In terms of H, the first-order Friedmann equation (13.275) is
887G Ak

2 _
== o

(13.277)
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An absolutely flat universe has k = 0, and therefore its density must be

3H?
= 13.278
Pe e ( )
which is the critical mass density.
13.44 Density and pressure
The 0-th energy-momentum conservation law (13.236) is
0="T9 =0, +1°,T% +1°,T°. (13.279)

For a perfect fluid of 4-velocity u®, the energy-momentum tensor (13.271)
is T% = (p + p/)u'u* 4 pg’* in which p and p are the mass density and
pressure of the fluid in its rest frame. The comoving frame of the Friedmann-
Lemaitre-Robinson-Walker metric (13.257) is the rest frame of the fluid. In
these coordinates, the 4-velocity u® is (1,0,0,0), and the energy-momentum
tensor is diagonal with 7% = p and 79 = pg#/ for j = 1,2, 3. Our connection
formulas (13.261) tell us that T'%, = 0, that I‘Ojj = ag;j/(c*a), and that

I’joj = 3a/a. Thus the conservation law (13.279) becomes for spatial j

0= 0T + IV, 7% + 1°,, 1%

. 3. .

L agy . .4 » (13.280)

=p+3-p+) %pg”:p—&-?r(p—i——z).

a’ = cfa a c
Thus

. 3a P dp 3 p)
_ P @ _ 0 Py, 13.281
p a(p+¢:2)’ and so = . (p—|—62 (13.281)

The energy density p is composed of fractions p; each contributing its own
partial pressure p; according to its own equation of state

pi = Cwip; (13.282)

in which w; is a constant. The rate of change (13.282) of the density p; is
then

dp; 3

% =~ S (1+w)pi (13.283)
In terms of the present density p;o and scale factor ag, the solution is
a0>3(1+wi)

pi = pio (; (13.284)
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There are three important kinds of density. The dark-energy density pa
is assumed to be like a cosmological constant A or like the energy density of
the vacuum, so it is independent of the scale factor a and has wpy = —1.

A universe composed only of dust or non-relativistic collisionless
matter has no pressure. Thus p = wp = 0 with p # 0, and so w = 0.
So the matter density falls inversely with the volume

Om = o (%)3 (13.285)

The density of radiation p, has w, = 1/3 because wavelengths scale with
the scale factor, and so there’s an extra factor of a

an\ 4
pr=pro (). (13.286)
The total density p varies with a as
ap\3 ap\4
p=rpatom (2) +p0 () (13.287)

This mass density p, the Friedmann equations (13.273 & 13.275), and the
physics of the standard model have caused our universe to evolve as in
Fig. 13.1 over the past 14 billion years.

13.45 How the scale factor evolves with time

The first-order Friedmann equation (13.275) expresses the square of the
instantaneous Hubble rate H = a/a in terms of the density p and the scale
factor a(t)

. 2 2
o [(a\"  8nG ck
H* = <7) =3 P T2z (13.288)

a

in which & = £1 or 0. The critical density p. = 3H?2/(87G) (13.278) is the
one that satisfies this equation for a flat (k = 0) universe. Its present value is
peo = 3HZ/(87G) = 8.599 x 10727 kg m~3. Dividing Friedmann’s equation
by the square of the present Hubble rate Hg, we get

H2 1 (a\? 1 /87G 2 2k
72:72@) :ﬁ(Lp_ ‘ Z)ZL_% (13.289)
H;y Hi\a Hg 3 a’L poc  a*HgL
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Figure 13.1 NASA/WMAP Science Team’s timeline of the known universe.

in which p is the total density (13.287)

H: pa o pr K
H?2 - 2H2712
0 Pco Pco 3peO a 40 , , (13290)
_ PA | Pmo Gy | Pro Qg c°k ag

Pco Pco a? Pc0 at G%HgLQ a?

The Planck collaboration use a model in which the energy density of
the universe is due to radiation, matter, and a cosmological constant A.
Only about 18.79% of the matter in their model is composed of baryons,
Qp = 0.05845 £ 0.0003. Most of the matter is transparent and is called dark
matter. They assume the dark matter is composed of particles that have
masses in excess of a keV so that they are heavy enough to have been nonrela-
tivistic or “cold” when the universe was about a year old (Peebles, 1982). The
energy density of the cosmological constant A is known as dark energy. The
Planck collaboration use this A-cold-dark-matter (ACDM) model and their
CMB data to estimate the Hubble constant as Hy = 67.66km/(s Mpc) =
2.1927 x 1078571 and the density ratios Qx = pa/pe0, Qm = pPmo/peo, and
Qr = —c%k/(apHoL)? as listed in the table (13.1) (Aghanim et al., 2018).
The Riess group use the Gaia observatory to calibrate Cepheid stars and
type Ia supernovas as standard candles for measuring distances to remote
galaxies. The distances and redshifts of these galaxies give the Hubble con-
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stant as Hy = 73.48 = 1.66 (Riess et al., 2018). As this book goes to press,
the 9% discrepancy between the Planck and Riess Hy’s is unexplained.

Table 13.1 Cosmological parameters of the Planck collaboration

Hy (km/(s Mpc) Qa Qm Q.
67.66 £ 0.42 0.6889 £ 0.0056  0.3111 4 0.0056  0.0007 £ 0.0037

To estimate the ratio Q, = pyo/pco of radiation densities, one may use
the present temperature Ty = 2.7255 £0.0006 K (Fixsen, 2009) of the CMB
radiation and the formula (5.110) for the energy density of photons

87’1’5 (kBT0)4 _31 _3
Adding in three kinds of neutrinos and antineutrinos at Ty, = (4/11)1/3 Ty,
we get for the present density of massless and nearly massless particles (Wein-
berg, 2010, section 2.1)

Pro = 3 11

7 4 4/3
1+3 ( ) ( > Py =T7.8099 x 1073 kg m™.  (13.292)

The fraction €2, the present energy density that is due to radiation is then

Q, =20 = 9.0824 x 1077 (13.293)

Pc0
In terms of Q, and of the Q’s in the table (13.1), the formula (13.290) for
H?/H? is

2

Hy

:QA+Qki§+Qm§+QrcL§. (13.294)
a a a

Since H = a/a, one has dt = da/(aH) = Hy'(da/a)(Hy/H), and so with

x = a/ap, the time interval dt is

1 de 1

B HO? \/QA+Qk1372+Qm5E73+Qr$74.

dt (13.295)

Integrating and setting the origin of time ¢(0) = 0 and the scale factor at
the present time equal to unity ap = 1, we find that the time ¢(a) that a(t)
took to grow from 0 to a(t) is

) = 1 / @ dz

Ho Jo /Op 22+ Qp + Qa '+ Qa2

t(a (13.296)
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This integral gives the age of the universe as t(1) = 13.789 Gyr; the Planck-
collaboration value is 13.787+0.020 Gyr (Aghanim et al., 2018). Figure 13.2
plots the scale factor a(t) and the redshift z(¢) = 1/a — 1 as functions of
the time ¢ (13.296) for the first 14 billion years after the time ¢ = 0 of
infinite redshift. A photon emitted with wavelength A at time t(a) now has

wavelength A\g = A/a(t). The change in its wavelength is AX = A z(¢)
A1l/a—1)=Xo— A\

Evolution of scalefactor over 14 Gyr
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Figure 13.2 The scale factor a(t) (solid, left axis) and redshift z(t)
(dotdash, right axis) are plotted against the time (13.296) in Gyr.
This chapter’s Fortran, Matlab, and Mathematica scripts are in Ten-
sors_and_general relativity at github.com/kevinecahill.

13.46 The first hundred thousand years

Figure 13.3 plots the scale factor a(t) as given by the integral (13.296) and
the densities of radiation p,(t) and matter p,,(t) for the first 100,000 years
after the time of infinite redshift. Because wavelengths grow with the scale
factor, the radiation density (13.286) is proportional to the inverse fourth
power of the scale factor p,(t) = pro/a*(t). The density of radiation therefore
was dominant at early times when the scale factor was small. Keeping only
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Q, = 0.6889 in the integral (13.296), we get

2

a
t=——— and a(t) =QY*\/2 Hyt. 13.297
STV a(t) = Q, 0 ( )

Since the radiation density p.(t) = pro/a’(t) also is proportional to the
fourth power of the temperature p,(t) ~ T#, the temperature varied as the
inverse of the scale factor T ~ 1/a(t) ~ t~'/2 during the era of radiation.

Evolution of scalefactor and densities over first 100 kyr
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Figure 13.3 The Planck-collaboration scale factor a (solid), radiation den-
sity p, (dotdash), and matter density p,, (dashed) are plotted as functions
of the time (13.296) in kyr. The era of radiation ends at ¢t = 50,506 years
when the two densities are equal to 1.0751 x 10710 kg/m?, a = 2.919x 1074,
and z = 3425.

In cold-dark-matter models, when the temperature was in the range 1012 >
T > 109K or muc2 > kT > mec?, where my, is the mass of the muon
and m, that of the electron, the radiation was mostly electrons, positrons,
photons, and neutrinos, and the relation between the time ¢ and the tem-
perature T was t ~ 0.994 sec x (10'°°K/T)? (Weinberg, 2010, ch. 3). By
10° K, the positrons had annihilated with electrons, and the neutrinos fallen
out of equilibrium. Between 10° K and 10K, when the energy density of
nonrelativistic particles became relevant, the time-temperature relation was
t ~ 1.78 sec x (1019K/T)? (Weinberg, 2010, ch. 3). During the first three
minutes (Weinberg, 1988) of the era of radiation, quarks and gluons formed
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hadrons, which decayed into protons and neutrons. As the neutrons decayed
(1 = 877.7 s), they and the protons formed the light elements—principally
hydrogen, deuterium, and helium in a process called big-bang nucleosyn-
thesis.

The density of nonrelativistic matter (13.285) falls as the third power
of the scale factor p,(t) = pmo/a®(t). The more rapidly falling density of
radiation p,(t) crosses it 50,506 years after the Big Bang as indicated by
the vertical line in the figure (13.3). This time ¢ = 50,506 yr and redshift
z = 3425 mark the end of the era of radiation.

13.47 The next ten billion years

The era of matter began about 50,506 years after the time of infinite
redshift when the matter density p,, first exceeded the radiation density p,.
Some 330,000 years later at ¢ ~ 380,000 yr, the universe had cooled to about
T = 3000 K or k¥T' = 0.26 eV—a temperature at which less than 1% of the
hydrogen was ionized. At this redshift of z = 1090, the plasma of ions and
electrons became a transparent gas of neutral hydrogen and helium with
trace amounts of deuterium, helium-3, and lithium-7. The photons emitted
or scattered at that time as 0.26 eV or 3000 K photons have redshifted
down to become the 2.7255 K photons of the cosmic microwave background
(CMB) radiation. This time of last scattering and first transparency often
and inexplicably is called recombination.

If we approximate time periods t —t,, during the era of matter by keeping
only Q,, in the integral (13.296), then we get

24%/3 3Hov/ D (t — t) \

tm=——— and a(t)= | ————=
3Hov 2

in which ¢,, is a time well inside the era of matter.

Between 10 and 17 million years after the Big Bang, the temperature of
the known universe fell from 373 to 273 K. If by then the supernovas of

‘ (13.298)

very early, very heavy stars had produced carbon, nitrogen, and oxygen,
biochemistry may have started during this period of 7 million years. Stars
did form at least as early as 180 million years after the Big Bang (Bowman
et al., 2018).

The era of matter lasted until the energy density of matter p,,(t), falling
as pm(t) = pmo/a’(t) had dropped to the energy density of dark energy
pA = 5.9238 x 10*27kg/m3. This happened at t = 10.228 Gyr as indicated
by the first vertical line in the figure (13.4).
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Evolution of scalefactor and densities over 50 Gyr
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Figure 13.4 The scale factor a (solid), the vacuum density pa (dotdash),
and the matter density p,, (dashed) are plotted as functions of the time
(13.296) in Gyr. The era of matter ends at ¢t = 10.228 Gyr (first vertical line)
when the two densities are equal to 5.9238 x 1072"kg m—> and a = 0.7672.
The present time o is 13.787 Gyr (second vertical line) at which a(t) = 1.

13.48 Era of dark energy

The era of dark energy began 3.6 billion years ago at a redshift of z = 0.3034
when the energy density of the universe p,, + pao was twice that of empty
space, p = 2 pp = 1.185 x 10726 kg/m3. The energy density of matter now
is only 31.11% of the energy density of the universe, and it is falling as the
cube of the scale factor pp,(t) = pmo/a3(t). In another 20 billion years, the
energy density of the universe will have declined almost all the way to the
dark-energy density py = 5.9238 x 10727 kg/m? or (1.5864 meV)*/(h3c5).
At that time t5 and in the indefinite future, the only significant term in
the integral (13.296) will be the vacuum energy. Neglecting the others and

replacing ap = 1 with ap = a(tp), we find

Ha/an) — tx = log(a/an) or a(t) = eHovA(t=ta) a(ta)

Hov/Qp

(13.299)
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in which tp 2 35 Gyr.

13.49 Before the Big Bang

The ACDM model is remarkably successful (Aghanim et al., 2018). But it
does not explain why the CMB is so isotropic, apart from a Doppler shift, and
why the universe is so flat (Guth, 1981). A brief period of rapid exponential
growth like that of the era of dark energy may explain the isotropy and the
flatness.

Inflation occurs when the potential energy p dwarfs the energy of matter
and radiation. The internal energy of the universe then is proportional to
its volume U = ¢?>pV, and its pressure p as given by the thermodynamic
relation

ou
— oy =
is negative. The second-order Friedmann equation (13.273)
a ArG ( 3p> 8rGp

=" [+ —

) =3 (13.301)

p= —&p (13.300)

a 3

then implies exponential growth like that of the era of dark energy (13.299)

a(t) = eVSmGP/3t 4(0). (13.302)

The origin of the potential-energy density p is unknown.

In chaotic inflation (Linde, 1983), a scalar field ¢ fluctuates to a mean
value (¢); that makes its potential-energy density p huge. The field remains
at or close to the value {¢);, and the scale factor inflates rapidly and expo-
nentially (13.302) until time ¢ at which the potential energy of the universe
is

E = ZpeV?mCrty (o) (13.303)

where V(0) is the spatial volume in which the field ¢ held the value (¢);.
After time ¢, the field returns to its mean value (0|¢|0) in the ground state |0)
of the theory, and the huge energy F is released as radiation in a Big Bang.
The energy E, of the gravitational field caused by inflation is negative,
E, = — E, and energy is conserved. Chaotic inflation plausibly explains
why there is a universe: a quantum fluctuation made it. If the universe did
arise from a quantum fluctuation, other quantum fluctuations would occur
elsewhere inflating new universes and making a multiverse.
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If a quantum fluctuation gives a field ¢ a spatially constant mean value
(¢)i = ¢ in an initial volume V(0), then the equations for the scale factor
(13.301) and for the scalar field (13.201) simplify to

1/2 . . 2 .4
HE:G§%> and §= —3H¢— °

= 10) (13.304)
in which p is the mass density of the potential energy of the field ¢. The
term —3H (;5 is a kind of gravitational friction. It may explain why a field
¢ sticks at the value (¢); long enough to resolve the isotropy and flatness
puzzles.

The anti-de Sitter (k = —1) spacetime a(t) = ¢/(L A) sin(\t) of exam-
ple 7.63 and bouncing cosmologies (Steinhardt et al., 2002; Ijjas and Stein-
hardt, 2018) explain the flatness and isotropy of the universe as due to
repeated collapses and rebirths. Experiments will tell us whether inflation
or bouncing or something else actually occurred (Akrami et al., 2018).

13.50 Yang-Mills theory

The gauge transformation of an abelian gauge theory like electrodynam-
ics multiplies a single charged field by a spacetime-dependent phase factor
¢'(x) = exp(iqf(x)) ¢(x). Yang and Mills generalized this gauge transfor-
mation to one that multiplies a vector ¢ of matter fields by a spacetime
dependent unitary matrix U(x)

$ulz) =Y Un(w) dy(z) or ¢(x) =U(z)d(x) (13.305)
b=1

and showed how to make the action of the theory invariant under such non-
abelian gauge transformations. (The fields ¢ are scalars for simplicity.)

Since the matrix U is unitary, inner products like ¢f(x) ¢(z) are automat-
ically invariant

(61@)6@)) = 61 @U@V ()é(x) = 6l (2)o(x).  (13.306)

But inner products of derivatives 8%¢! 9;¢ are not invariant because the
derivative acts on the matrix U(z) as well as on the field ¢(z).
Yang and Mills made derivatives D;¢ that transform like the fields ¢

(Di¢)' = U Dio. (13.307)
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To do so, they introduced gauge-field matrices A; that play the role of
the connections I'; in general relativity and set

D;=0; + 4 (13.308)

in which A; like 0; is antihermitian. They required that under the gauge
transformation (13.305), the gauge-field matrix A; transform to A} in such
a way as to make the derivatives transform as in (13.307)

(Dig) = (8 + A) & = (8 + A)) Up = U Dip = U (9; + Ai) 6. (13.309)
So they set
(i +A)Ud=U(0; + )¢ or (U)o + AjUsp=UA;¢ (13.310)
and made the gauge-field matrix A; transform as
Al =UAU — (U UL (13.311)

Thus under the gauge transformation (13.305), the derivative D;¢ trans-
forms as in (13.307), like the vector ¢ in (13.305), and the inner product of
covariant derivatives

[(D%)T D,-(b]/ = (Di¢) UTUDip = (D'¢)' Dy (13.312)

remains invariant.

To make an invariant action density for the gauge-field matrices A;, they
used the transformation law (13.309) which implies that D} U¢ = UD; ¢ or
D, =UD;U ~1. So they defined their generalized Faraday tensor as

Fy. = [Di, Dk] = 0; A — OLA; + [Ai, Ak] (13.313)
so that it transforms covariantly
F,=UFU". (13.314)

They then generalized the action density Fj, F'* of electrodynamics to the
trace Tr (FZkF ik) of the square of the Faraday matrices which is invariant
under gauge transformations since

Tr (UFikU‘lUFikU‘l) _ (UFikF““U‘l) = Tr (Fka) . (13.315)

As an action density for fermionic matter fields, they replaced the ordi-
nary derivative in Dirac’s formula ¢(y'0; +m)v by the covariant derivative
(13.308) to get ¢(y'D; + m)y (Chen-Ning Yang 1922-, Robert L. Mills
1927-1999).

In an abelian gauge theory, the square of the 1-form A = A; dz® vanishes
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A% = A; Ay dx' Adz® = 0, but in a nonabelian gauge theory the gauge fields
are matrices, and A% # 0. The sum dA + A2 is the Faraday 2-form

F=dA+ A% = (0; Ay + A; Ay) da A da® (13.316)
= % ((9Z Ap — O A; + [Az‘, AkD dz' A dzF = %sz da’ A daF.

The scalar matter fields ¢ may have self-interactions described by a po-
tential V(¢) such as V(¢) = A(¢'¢ — m?/X)? which is positive unless ¢'¢ =
m? /. The kinetic action of these fields is (D*¢)TD;¢. At low temperatures,
these scalar fields assume mean values (0|¢|0) = ¢o in the vacuum with
q%qbo = m?/) so as to minimize their potential energy density V(¢) and
their kinetic action (D) D;¢ = (8¢ + A'¢)T(8;¢ + A;¢) is approximately
¢ A A; ¢o. The gauge-field matrix Al, = it% A% is a linear combination
of the generators t* of the gauge group. So the action of the scalar fields
contains the term qbg A A = — Mgﬁ Al A; in which the mass-squared
matrix for the gauge fields is M 2ﬁ = Q5 te, tfc ¢§- This Higgs mechanism
gives masses to those linear combinations bg; Ag of the gauge fields for which
MZ2gbgi = mibai # 0 .

The Higgs mechanism also gives masses to the fermions. The mass term m
in the Yang-Mills-Dirac action is replaced by something like ¢ ¢ in which cis a
constant, different for each fermion. In the vacuum and at low temperatures,
each fermion acquires as its mass c ¢g . On 4 July 2012, physicists at CERN’s
Large Hadron Collider announced the discovery of a Higgs-like particle with
a mass near 12 5 GeV/c? (Peter Higgs 1929 -).

13.51 Cartan’s spin connection and structure equations

Cartan’s tetrads (13.153) ¢ (x) are the rows and columns of the orthogo-
nal matrix that turns the flat-space metric 745 into the curved-space metric
Gik = ¢§ T]abcz. Early-alphabet letters a,b,c,d,--- = 0,1,2,3 are Lorentz in-
dexes, and middle-to-late letters i,j,k,¢,--- = 0,1,2,3 are spacetime in-
dexes. Under a combined local Lorentz (13.154) and general coordinate
transformation the tetrads transform as

ozt

d%.(2") = L%(") P (). (13.317)

The covariant derivative of a tetrad Dyc must transform as

a a Ozt 027
(Dg %) (2') = LY (z") o0t g D (). (13.318)
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We can use the affine connection I/ w¢ and the formula (13.68) for the co-
variant derivative of a covariant vector to cope with the index j. And we
can treat the Lorentz index b like an index of a nonabelian group as in
section 13.50 by introducing a gauge field w®,,

Dycy ="y =TV, c% +wy . (13.319)

The affine connection is defined so as to make the covariant derivative of
the tangent basis vectors vanish

Dye = et —T7 e =0 (13.320)

in which the Greek letter o labels the coordinates 0,1,2,...,n of the em-
bedding space. We may verify this relation by taking the inner product in
the embedding space with the dual tangent vector e,

el s =001 =T =eled =€ ery (13.321)

which is the definition (13.59) of the affine connection, Fike =ét- €k,¢- S0 too
the spin connection w% , is defined so as to make the covariant derivative
of the tetrad vanish

Dg Cak = Cak;é = Cak’e — ij[ C? -+ Wad[ Cz = 0 (13322)
The dual tetrads c’lf are doubly orthonormal:
Fd=06F and &b =ab. (13.323)

Thus using their orthonormality, we have w®; Zcz c’,f = w%, 51? = w%,, and
so the spin connection is
why= — c]lf (C%J — Fie c;’) = c‘} c,]f I’jm — ch c,]f. (13.324)
In terms of the differential forms (section 12.6)
A =clda® and W =w?,dz’ (13.325)

we may use the exterior derivative to express the vanishing (13.322) of the
covariant derivative c%;., as

de* =c dzt A dzk = (I‘jkz ¢ —why CZ) dzt A dat. (13.326)

But the affine connection IV we 18 symmetric in k and ¢ while the wedge

product dz’ A dz* is antisymmetric in k and £. Thus we have

de = ¢ dzt Ndat = —w, dat A da® (13.327)
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or with ¢ = chmk and w = wabzdxe
de=—-wAc (13.328)
which is Cartan’s first equation of structure. Cartan’s curvature 2-form

is

R, = % cj ¢, Rjiké da® A dzt
1 a i|pd J J n J n k 0 (13329)
=3¢ Cb[r ik~ Ugie 000 0 — 17, T ki]d«f Ndz”.
His second equation of structure expresses R, as
Rab = dwab + (JJaC N OJCb (13330)
or more simply as
R=dv+wAw. (13.331)

A more compact notation, similar to that of Yang-Mills theory, uses Cartan’s
covariant exterior derivative

D=d+wA (13.332)
to express his two structure equations as
Dc=0 and R=Duw. (13.333)

To derive Cartan’s second structure equation (13.330), we let the exterior
derivative act on the 1-form w?,

dw®, = d(w% , dz’) = whek dz® A dat (13.334)
and add the 2-form w®, A w9
W A wS = W Wby da® A dat (13.335)
to get
S% = (W g + W W) da® A dat (13.336)
which we want to show is Cartan’s curvature 2-form R?, (13.329). First we
replace w”, with its equivalent (13.324) ¢4 ¢} IV, — oy ch
8% = [( e Ty = coch) o+ (¢ Ty — e (e T = e )]
x da® A da’. (13.337)

The terms proportional to I/ ;0.5 are equal to those in the definition (13.329)



558 Tensors and general relativity

of Cartan’s curvature 2-form. Among the remaining terms in S, those
independent of I" are after explicit antisymmetrization

So=clpche—clocyptclpcech iy —clocecy ey (13.338)
which vanishes (exercise 13.36) because céy P = —Cb ok ¢y The terms in 5%
that are linear in I'’s also vanish (exercise 13.37). Finally, the terms in S%
that are quadratic in I'’s are
i j k ¢ ' j k ¢
cfepcn g, T da® Nda® = ¢ 6, ) 17, T da® A dx

=T T, da" A dat (13.339)

and these match those of Cartan’s curvature 2-form R% (13.329). Since
S% = R%, Cartan’s second equation of structure (13.330) follows.

Example 13.27 (Cyclic identity for the curvature tensor) We can use
Cartan’s structure equations to derive the cyclic identity (13.109) of the
curvature tensor. We apply the exterior derivative (whose square dd = 0) to
Cartan’s first equation of structure (13.328) and then use it and his second
equation of structure (13.330) to write the result as

0=d(dc+wAc)=(dw)Nc—wAhde=(dw+wAw)Ac=RAc. (13.340)
The definition (13.329) of Cartan’s curvature 2-form R and of his 1-form
(13.325) now give

0=RAc :%c? ch Rji,d dzk A dat A da™

= L AR, dab A dat A da

(13.341)

=
2

which implies that

0=Ruy =5 (R]ikl + R+ Ry — Ry — R — ij) - (13.342)

But since Riemann’s tensor is antisymmetric in its last two indices (13.104),
we can write this result more simply as the cyclic identity (13.109) for the
curvature tensor

0=Rl,, + R, + R, (13.343)
O
The vanishing of the covariant derivative of the flat-space metric
0 = Nabjk = Nab,k — WakMeb — WhgTac = —Woak — Wabk (13.344)
shows that the spin connection is antisymmetric in its Lorentz indexes

wabk = —wpak  and W = — Wb (13.345)
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Under a general coordinate transformation and a local Lorentz transfor-
mation, the spin connection (13.324) transforms as

i
1 ox

Wy = g [Lhawes = (L) L7, (13.346)

13.52 Spin-one-half fields in general relativity

The action density (11.329) of a free Dirac field is L = — (y20, +m) ¢
in which ¢ = 0,1,2,3; v is a 4-component Dirac field; ¢ = T8 = i1i~0;
and m is a mass. Tetrads cf(x) turn the flat-space indices a into curved-
space indices 7, so one first replaces v*9, by v cﬁ@g. The next step is to use
the spin connection (13.324) to correct for the effect of the derivative 9y on
the field 1. The fully covariant derivative is Dy = 9y — %w“bg [Va, 7] where
w“bl =w, n®, and the action density is L = — 1(y%ct Dy + m)ab.

13.53 Gauge theory and vectors

This section is optional on a first reading.

We can formulate Yang-Mills theory in terms of vectors as we did relativ-
ity. To accomodate noncompact groups, we generalize the unitary matrices
U(z) of the Yang-Mills gauge group to nonsingular matrices V' (z) that act on
n matter fields ¢%(z) as 1'?(z) = V% (x) ¢°(x). The field ¥ (z) = e, (z) 1%(z)
will be gauge invariant ¥'(x) = ¥(z) if the vectors e,(x) transform as
el (x) = ey(x) V1, (). We are summing over repeated indices from 1 to

n and often will suppress explicit mention of the spacetime coordinates. In
this compressed notation, the field ¥ is gauge invariant because

U =l " =, VI VO ¢ =, 0% 0 = epp® = W (13.347)

which is ¢/T¢/ = "V ~1V4 = ¢T4) in matrix notation.
The inner product of two basis vectors is an internal “metric tensor”

N N N
er-ep = Z Z eq” Nagey = Z eq” ey = Jab (13.348)
a=1p=1 a=1

in which for simplicity I used the the N-dimensional identity matrix for the
metric 7. As in relativity, we’ll assume the matrix g4, to be nonsingular. We
then can use its inverse to construct dual vectors e® = ¢g®e, that satisfy
et . ey = op.
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The free Dirac action density of the invariant field ¥

U(v'0; + m)¥ = e (v'0; + m)ey)’ =, [Vi(‘sabaz‘ +e'epy) + m5ab} b
(13.349)
is the full action of the component fields ®

(705 +m)¥ =, (v Dy +m )" = Py [v/ (%0 + Afy) +m %) ¢
(13.350)
if we identify the gauge-field matrix as Af, = et €p,; in harmony with the
definition (13.59) of the affine connection I'f, = e* - e, ;.
Under the gauge transformation e/, = e, V™1 ,, the metric matrix trans-
forms as

Gy =V gV, oras ¢ =Vlgy! (13.351)

in matrix notation. Its inverse goes as ¢’ ' = V g~ V1.

The gauge-field matrix A?, = eaf . €pi = gacez - ep,; transforms as

Ay =gl ey, = VLAY M L VAV (13.352)
or as A; = VA,'V71 + V(‘?,-V” e VAiV71 - (an) V-1
By using the identity e - i = — e?,j - e., we may write (exercise 13.39)

the Faraday tensor as

af

i = [Di, Dj]% = e?-ew—e?-ec eCT-eM—e ] -eb7i+e?}-ec eCT-ebﬂ;. (13.353)

If n = N, then

Ze(c’ P = 6% and Fiy = 0. (13.354)
c=1

The Faraday tensor vanishes when n = N because the dimension of the

embedding space is too small to allow the tangent space to have different

orientations at different points x of spacetime. The Faraday tensor, which

represents internal curvature, therefore must vanish. One needs at least three

dimensions in which to bend a sheet of paper. The embedding space must

have N > 2 dimensions for SU(2), N > 3 for SU(3), and N > 5 for SU(5).
The covariant derivative of the internal metric matrix

gi =9, —gAi — Alg (13.355)

does not vanish and transforms as (g,;)" = Vfngﬂ‘V*l. A suitable action
density for it is the trace Tr(g.g 'g’g!). If the metric matrix assumes a
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(constant, hermitian) mean value g in the vacuum at low temperatures,
then its action is

m?Tr [(goAi + AIgo)gal(goAi + Aﬁgo)gal] (13.356)
which is a mass term for the matrix of gauge bosons

Wi =g/” Aigy " + 9 Al gy (13.357)

i
This mass mechanism also gives masses to the fermions. To see how, we
write the Dirac action density (13.350) as

o V(6905 + Afy) +m 6% 4° =" [ (gabi + gacAy) + m ga) .
(13.358)
Fach fermion now gets a mass m ¢; proportional to an eigenvalue ¢; of the
hermitian matrix go.
This mass mechanism does not leave behind scalar bosons. Whether na-
ture ever uses it is unclear.

Further reading

FEinstein Gravity in a Nutshell (Zee, 2013), Gravitation (Misner et al., 1973),
Gravitation and Cosmology (Weinberg, 1972), Cosmology (Weinberg, 2010),
General Theory of Relativity (Dirac, 1996), Spacetime and Geometry (Car-
roll, 2003), Ezact Space-Times in Einstein’s General Relativity (Griffiths
and Podolsky, 2009), Gravitation: Foundations and Frontiers (Padmanab-
han, 2010), Modern Cosmology (Dodelson, 2003), The primordial density
perturbation: Cosmology, inflation and the origin of structure (Lyth and
Liddle, 2009), A First Course in General Relativity (Schutz, 2009), Gravity:
An Introduction to Einstein’s General Relativity (Hartle, 2003), and Rela-
tiwvity, Gravitation and Cosmology: A Basic Introduction (Cheng, 2010).

Exercises

13.1 Use the flat-space formula dp = &dz + gdy + £dz to compute the
change dp due to dp, d¢, and dz, and so derive expressions for the
orthonormal basis vectors p, q§, and £ in terms of &, g, and 2.

13.2 Similarly, compute the change dp due to dr, df, and d¢, and so derive
expressions for the orthonormal basis vectors #, 97 and qg in terms of
&, g, and 2.

13.3 (a) Using the formulas you found in exercise 13.2 for the basis vectors
of spherical coordinates, compute the derivatives of the unit vectors 7,
é, and q?) with respect to the variables r, 8, and ¢ and express them



562 Tensors and general relativity

in terms of the basis vectors #, 8, and ¢. (b) Using the formulas of
(a) and our expression (2.16) for the gradient in spherical coordinates,
derive the formula (2.33) for the laplacian V - V.

13.4 Show that for any set of basis vectors vy, ..., v, and an inner product
that is either positive definite (1.78-1.81) or indefinite (1.78-1.79 &
1.81 & 1.84), the inner products g;; = (v;, vg) define a matrix g, that
is nonsingular and that therefore has an inverse. Hint: Show that the
matrix g;r cannot have a zero eigenvalue without violating either the
condition (1.80) that it be positive definite or the condition (1.84) that
it be nondegenerate.

13.5 Show that the inverse metric (13.48) transforms as a rank-2 contravari-
ant tensor.

13.6 Show that if Ay is a covariant vector, then ¢** Ay is a contravariant
vector.

13.7 Show that in terms of the parameter k = (a/R)?, the metric and line
element (13.46) are given by (13.47).

13.8 Show that the connection ng transforms as (13.66) and so is not a
tensor.

13.9 Use the vanishing (13.83) of the covariant derivative of the metric ten-
sor, to write the condition (13.140) in terms of the covariant derivatives
of the symmetry vector (13.141).

13.10 Embed the points p = R(cosh 6, sinh 6 cos ¢, sinh 6 sin ¢) with tangent
vectors (13.44) and line element (13.45) in the euclidian space E3. Show
that the line element of this embedding is

ds® = R? (cosh2 0 + sinh? 0) d6? + R? sinh? 0 d¢p?
1 2 2 2
— 2 (( + 2kr®)dr g d¢2)

1+ kr2
which describes a hyperboloid that is not maximally symmetric.

13.11 If you have Mathematica, imitate example 13.15 and find the scalar
curvature R (13.113) of the line element (13.359) of the cylindrical
hyperboloid embedded in euclidian 3-space E3.

13.12 Consider the torus with coordinates 6, ¢ labeling the arbitrary point

(13.359)

p = (cos (R + rsinb),sin ¢(R + rsinf), r cosd) (13.360)

in which R > r. Both # and ¢ run from 0 to 27. (a) Find the basis
vectors eg and ey. (b) Find the metric tensor and its inverse.

13.13 For the same torus, (a) find the dual vectors ¢’ and e and (b) find
the nonzero connections F;k where i, j, k take the values 6 and ¢.
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13.14 For the same torus, (a) find the two Christoffel matrices I'y and I'y,
(b) find their commutator [I'p,T'y], and (c) find the elements Rzee, ng,

RZH o and Ri " of the curvature tensor.

13.15 Find the curvature scalar R of the torus with points (13.360). Hint:
In these four problems, you may imitate the corresponding calculation
for the sphere in Sec. 13.23.

13.16 Show that dg™* = —g**g*dgss or equivalently that dg* = — g*g**dgs;
by differentiating the identity ¢** gp, = 5}.

13.17 Let gir = nix + hix, and 2™ = 2™ + €™. To lowest order in € and h, (a)
show that in the @' coordinates hj; = h;, — €; — €;,; and (b) find an
equation for € that puts A’ in de Donder’s gauge h”}w = %(nﬂhfﬂ),k.

13.18 Just to get an idea of the sizes involved in black holes, imagine an
isolated sphere of matter of uniform density p that as an initial con-
dition is all at rest within a radius r,. Its radius will be less than its
Schwarzschild radius if

2MG 4 .\ G
Ty < 2 =2 <§7rrbp) o (13.361)

If the density p is that of water under standard conditions (1 gram per
cc), for what range of radii r, might the sphere be or become a black
hole? Same question if p is the density of dark energy.

13.19 Embed the points

p = (ct, aLsin x sin 0 cos ¢, aL sin x sin 0 sin ¢, a L sin x cos 8, aL cos x)
(13.362)
in the flat semi-euclidian space E*) with metric (—1,1,1,1,1) and
derive the metric (13.257) with k = 1.
13.20 For the points p = (ct,asinf cos @, asinfsin @, acosh), derive the
metric (13.257) with k£ = 0.
13.21 Show that the 11 component of Ricci’s tensor Riq is

ad + 24° + 2kc?/L*

Ry1 = [Dy, Di]F, = 13.363
11 = [Dg, D1] 20— k2/L2) ( )
13.22 Show that the 22 component of Ricci’s tensor Roo is
. 2'2 2k 2 L2 2
Rap = [Dy. Doty = (28T 207+ 2k /107 (13.364)
c
13.23 Show that the 33 component of Ricci’s tensor Rss is
i + 2a* + 2ke* /L?)r? sin® 0
Ras = [Dy, Daffy = (COT 20 F2RE/LOTsin"0 -y g5

C
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13.24 Embed the points

p = (ct,aL sinh x sin 6 cos ¢, aL sinh y sin 0 sin ¢, aL sinh x cos 6§, aL cosh x)
(13.366)

in the flat semi-euclidian space E??) with metric (—1,1,1,1,—1) and

derive the line element (13.256) and the metric (13.257) with k£ = —1.

13.25 Derive the second-order FLRW equation (13.273) from the formulas
(13.257) for goo = — 2, (13.267) for Rog = — 3i/a, (13.271) for T},
and (13.272) for T

13.26 Derive the second-order FLRW equation (13.274) from Einstein’s for-
mula for the scalar curvature R = — 871G T/c* (13.230), the FLRW
formulas for R (13.270) and for the trace T' (13.272) of the energy-
momentum tensor.

13.27 Assume there had been no inflation, no era of radiation, and no dark
energy. In this case, the magnitude of the difference |2 — 1| would have
increased as t2/3 over the past 13.8 billion years. Show explicitly how
close to unity €2 would have had to have been at ¢t = 1s so as to satisfy
the observational constraint | — 1| < 0.036 on the present value of .

13.28 Derive the relation (13.284) between the energy density p and the
scale factor a(t) from the conservation law (13.281) and the equation
of state p; = w;p;.

13.29 For constant p = —p/c? and k = 1, set g> = 87Gp/3 and use the
Friedmann equations (13.273 & 13.275) and the boundary condition
that the minimum of a(¢) > 0 is at t = 0 to derive the formula a(t) =
ccosh(gt)/(Lg).

13.30 Use the Friedmann equations (13.273 & 13.288) with w = —1, p con-
stant, k = —1, and the boundary conditions a(0) = 0 and a(0) > 0 to
derive the formula a(t) = csinh(gt)/(Lg) where again g?> = 87Gp/3.

13.31 Use the Friedmann equations (13.273 & 13.288) with w = —1, p con-
stant, and k = 0 to derive the formula a(t) = a(0) e*9*.

13.32 Use the constancy of 87Gpa*/3 = f? for radiation (w = 1/3 ) and the
Friedmann equations (13.273 & 13.288) to show that if £ = 0, a(0) = 0,
and a(t) > 0, then a(t) = /2ft where f > 0.

13.33 Show that if the matrix U(z) is nonsingular, then

U)U = —U UL (13.367)

13.34 The gauge-field matrix is a linear combination Ay = —igt® A% of the
generators t¥ of a representation of the gauge group. The generators
obey the commutation relations

[t9,"] = i fanet® (13.368)
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in which the fgup. are the structure constants of the gauge group. Show
that under a gauge transformation (13.311)

Al =UAU - (QU)U! (13.369)

by the unitary matrix U = exp(—igA®t®) in which A* is infinitesimal,
the gauge-field matrix A; transforms as

—ig ALttt = —ig A% — ig® fape N ALEE + igO AU, (13.370)
Show further that the gauge field transforms as
Al = A% — N — gfapc AL (13.371)
13.35 Show that if the vectors e, (z) are orthonormal, then eaf ‘€ = fe‘j .
€c-
13.36 Use the equation 0 = &, = (cf ¢}) 1. to show that ¢} , = —clcf ;.

Then use this result to show that the I'-free terms Sp (13.338) vanish.

13.37 Show that terms in S, (13.337) linear in the I'’s vanish.

13.38 Derive the formula (13.346) for how the spin connection (13.324)
changes under a Lorentz transformation and a general change of co-
ordinates.

13.39 Use the identity of exercise 13.35 to derive the formula (13.353) for
the nonabelian Faraday tensor.

13.40 Show that the dual tetrads ci, = g™*n4,c? are dual (13.155).

13.41 Write Dirac’s action density in the explicitly hermitian form Lp =
— LPviap — L [9yi0]" in which the field ¢ has the invariant form
1 = eqthy and ¥ = ipT40. Use the identity WaWi?/)b]T = — 1y, to
show that the gauge-field matrix A; defined as the coefficient of 1,7y
as in 9,7 (9; + i Ajqp)p is hermitian A%, = Ajpq.



