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The extra non-invariant term in Eq. (7.5.8) is just what we saw in Section
6.2 is needed to cancel a non-invariant term in the propagator of é¢.

Vector Field, Spin One

Similar results are obtained in the canonical quantization of the vector
field V, for a particle of spin one. Let’s here keep an open mind, and
write the Lagrangian density in a fairly general form

P =—1ad,V, V" — BV, 8VE— iV VE— LV, (159)

where «, 8, and m? are so far arbitrary constants, and J, is either a ¢-
number external current, or an operator depending on fields other than
V*, in which case additional terms involving these fields must be added
to #. The Euler-Lagrange field equations for V, read

a0V’ + B30, V) +m*V, = —J, .
Taking the divergence gives
(0 + BYADVE +mPo, V' = —8,J" . (7.5.10)

This is the equation for an ordinary scalar field with mass m?/(a + §)
and source d;J%/(x + ). We want to describe a theory containing only
particles of spin one, not spin zero, so to avoid the appearance of d, V4 as
an independently propagating scalar field, we take o = —§8, in which case
8,V* can be expressed in terms of an external current or other fields, as
—d;J*/m?. The constant & can be absorbed in the definition of V,, so we
can take o = —f§ = 1, and therefore

"g = %Fﬂ"F‘uv - %mz VJJV”_J;LV#: (7511)
where
Fp=0d,V,—V,. (7.5.12)

The derivative of the Lagrangian with respect to the time-derivative of
the vector field is
¥
oV
This is non-vanishing for g a spatial index i, so the V' are canonical fields,
with conjugates

= —F% (7.5.13)

I =F% = 745,17 (7.5.14)

On the other hand F = 0, so ° does not appear in the Lagrangian,
and V9 is therefore an auxiliary field. This causes no serious difficulty: the
fact that 8.%/8V° vanishes means that the field equation for ¥ involves
no second time-derivatives, and can therefore be used as a constraint that
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eliminates a field variable. Specifically, the Euler-Lagrange equation for
v=01s

8 F0 = m? V0 + J° (7.5.15)
or using Eq. (7.5.14)
1
1A =—2(V«H-J°). (7.5.16)

Now let us calculate the Hamiltonian H = [ d*x (I1- V — #) for this
theory. Eq. (7.5.14) allows us to write V in terms of IT and J°:

V=—9V'+II = nwmvw-nwﬂ’),
SO

H= / d’x !IF +m V- TNV -1 - JY)
— 24+ L(V-VP + i V2
—im V- —J%% + 3V —m 2%V - 11 - J°)
Again, we split this up into a free-particle term Hy and interaction V':

H=Hy+V, (7.5.17)

and pass to the interaction picture by replacing the Heisenberg-picture
quantities V and IT with their interaction-picture counterparts v and
n (and, though not shown explicitly, likewise for whatever fields and
conjugates are present in J#):

H —dex L L(V- )2+1(vxv)2+m—2v2 (7.5.18)
0= 2T Ty T

2
V= / dx [J v—m 2 g + 35— (Jo)z] (7.5.19)

The relation between = and v is then

H,
_ ) (7.5.20)
on
and the ‘field equation’ is
H, 2

it = —-‘5—0(% =4+VVv—V(V v)—m’v. (7.5.21)

Since V0 is not an independent field variable, it is not related by a
similarity transformation to any interaction-pictyre object v%. Instead, we
can invent a quantity

N =mV-n. (7.5.22)
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Eq. (7.5.20) then allows us to write # as
n=v+ V. (7.5.23)

Inserting this in Egs. (7.5.22) and (7.5.21) gives our field equations in the
form

VAo +V-v—mi¥ =0,
VY —V(V ) ¥ —Vil —m’v=0.
These can be combined in the covariant form
Oo¥ — 3°3,0" —m™* =0. (7.5.24)
Taking the divergence gives
gt =0 (7:5.25)
and hence
(O—mH)v* =0, (7.5.26)

A real vector field satisfying Egs. (7.5.25) and (7.5.26) can be expressed as
a Fourier transform

) = ny Y [ dppy e polap.o)e

+ e"'(P,a}aT(P, o) e‘*”'x} : (7.5.27)
where p° = Vpi+ mZ: the ¢*(p, o) for ¢ = +1,0,—1 are three independent

vectors satisfying
pue(p, 0} =0 (7.5.28)

and normalized so that

3" (p,o)e’ (p,0) = 9" + plp’/m (7.5.29)

a

and the a(p,o) are operator coefficients. It is straightforward using
Egs. (7.5.23), (7.5.27), and (7.5.29) to calculate that v and = satisty the
correct commutation relations

[vi(x, 1), wi(y, 0] =16, 8(x—y),
[vi(x, t), od(x, r)] = [nf(x, t), ol (x, t)] =0, (7.5.30)
provided that a(p, ) and aT(p, o) satisfy the commutation relations

la(p.0). a(p',0")] = 3°(p — P)oorc » (7.5.31)
la(p, o), a(p’,0")| = 0. (7.5.32)
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We already know that the vector field for a spin one particle must
take the form (7.5.27), so our derivation of these results serves to verify
that Eq. (7.5.18) gives the correct free-particle Hamiltonian for a massive
particle of spin one. It is easy to check also that Eq. (7.5.18) may be written
(up to a constant term) in the standard form of a free-particle energy, as
> f &p P’ al(p,o)a(p, o). Finally, using Eq. (7.5.22) in Eq. (7.5.19) vields
the interaction in the interaction picture

Vit) = / x [Jyv" + ﬁ(ﬂ)z : (7.5.33)

The extra non-invariant term in Eq. (7.5.33) is just what we found in
Chapter 6 is needed to cancel a non-invariant term in the propagator of
the vector field.

Dirac field, Spin One Half

For the Dirac field of a particle of spin 1/2, we tentatively take the
Lagrangian as

L =Y, + m¥ — #(P,¥P) (7.5.34)

with # a real function of ¥ and W. This is not real, but the action is,
because

PO Y — (P o) = By 0, + (6,9 = 8,(¥"Y).

Hence the field equations obtained by requiring the action to be stationary
with respect to P are the adjoints of those obtained by requiring the action
to be stationary with respect to ‘¥, as necessary if we are to avoid having
too many field equations. The canonical conjugate to ¥ is

0F =
M= """ = ¢y 7.5.35
lib ¢ v ( )

so we should not regard ¥ as a field like ¥, but rather as proportional to
the canonical conjugate of ¥, The Hamiltonian is

H:/d%[n\i'—.ff] :fd3x[n~,»°[y-v+m]\11+%].
We write this as

H=Hy+V, : (7.5.36)

where

Ho = / PxTply -V +ml¥, (7.537)

V= / Px # (P, ). (7.5.38)
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We now pass to the interaction picture. Since Eq. (7.5.35) does not
involve the time, the similarity transformation (7.1.28), (7.1.29) yields
immediately

n=—py°. (7.5.39)
Likewise, Hy and V(¢t) can be calculated by replacing ¥ and IT with p
and 7 in Eqs. (7.5.37) and (7.5.38). This gives the equation of motion
oH
p= 5—1:) = yoly - V+mhyp (7.5.40)

or more neatly
(PO, +myp =0. (7.5.41}

(The other equation of motion, 7 = —dHy / dy, yields just the adjoint of

this one.) Any field satisfying Eq. (7.5.41) can be written as a Fourier
transform

v = 02 [ @3 {ulp.o)e? alp.0) + oip.0)e™" b .0}

(7.5.42)
where p° = /p2 + m?; a(p,0) and bi(p, o) are operator coefficients; and
u(p, + }) are the two independent solutions of

(iy"py + myu(p,6) =0 (7.5.43)
and likewise
(=iy*pp + m)v(p, ) =0 (7.5.44)
normalized so that®
_ (—iy¥py + m)
; u(p, 6)a(p, o) = —2;10-— : (7.5.45)
- (iy*pu + m)
> o(p,o)o(p,0) = ——2‘;)0-—— : (7.5.46)

a

In order to obtain the desired anticommutators
[walx0), B0 0)] | = [0 (3 0)], 0%)p
= i(N)sd(x—y), (7.5.47)
(walx,0) wpty.0)] | =0, (7.5.48)

" The matrix iy*p, has eigenvalues +m, so Zufi and Zvi must be proportional to the projection
matrices (—iy#py + m)/2m and (i7#p, + m)/2m, respectively. The proportionality factor may be
adjusted up to a sign by absorbing it in the definition of u and v. The overall sign is determined
by positivity: Tr Zuizff = Zute and Tr Zebf = Zo'v must be positive.
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we must adopt the anticommutation relations
a(p.0). a'(p", )] = [b(p.0), "0, 0], = 5 ~P)ows . (75:49)

alp.a), ap',")] | = [bip.), b(p'. 0], =
[atp.0), b0',0")] | = [alp,), b'p",0")], =0, (7.5.50)

and their adjoints. These agree with the results obtained in Chapter 5,
thus verifying that (7.5.37) is the correct free-particle Hamiltonian for spin
1. In terms of the as and bs, this Hamiltonian is

Ho=)_ ] @p ' (! (p, 0)alp,0) — b(p, 0)b'(p, ) (7.551)

We can rewrite this as a more conventional free-particle Hamiltonian, plus
another infinite c-number*”

Ho=3}_ / &*pp°[a'(p, 0)alp, o) + b (p, )b, 0) — 6*(p —p)] . (7.5.52)

The c-number term in Eq. (7.5.52) is only important if we worry about
gravitational phenomena; otherwise here, as for the scalar field, we can
throw it away, since it only affects the zero of energy with respect to
which all energies are measured. With this understanding, Hy is a positive
operator, just as for bosons.

7.6 Constraints and Dirac Brackets

The chief obstacle to deriving the Hamiltonian from the Lagrangian is
the occurrence of constraints. The standard analysis of this problem is
that of Dirac,” whose terminology we will follow here. Dirac’s analysis is
not really needed for the simple theories discussed in this chapter, where
it i3 easy to identify the unconstrained canonical variables. We shall use
the theory of a real massive vector field for illustration here, returning to
Dirac’s approach in the next chapter, where it will be actually useful.
Primary constraints are either imposed on the system (as when in the
next chapter we choose a gauge for the electromagnetic field) or arise from
the structure of the Lagrangian itself. For an example of the latter type,
consider the Lagrangian (7.5.11) of a massive vector field V# interacting

** Note the negative sign of the c-number term. The conjectured symmetry known as supersymmetry*
connects the numbers of boson and fermion fields, in such a way that the c-numbers in Hy all
cancel.
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with a current J,,:
L= — LF F — iV, V#— V¥ (7.6.1)
where
Fup =04V, — &V, (7.6.2)

Suppose we try to treat all four components of ¥/ on the same basis. We
should then define the conjugates

L
v = s =T (7.6.3)

We immediately find the primary constraint:
o =0. (7.64)

More generally, we encounter primary constraints whenever the equations
I, = 5L/88y¥’ cannot be solved to give all the dp'¥ (at least locally)
in terms of IT, and ¥’. This will be the case if and only if the matrix
82L/8(20F’) 8(86¥™) has vanishing determinant. Such Lagrangians are
called irregular.

Then there are secondary constraints, which arise from the requirement
that the primary constraints be consistent with the equations of motion.
For the massive vector field, this is just the Euler—Lagrange equation
(7.5.16) for V°:

oI =m’ VO + J0, (7.6.5)

Here we are finished, but in other theories we might encounter further
constraints by requiring consistency of the secondary constraints with the
field equations, and so on. The distinction between primary, secondary,
etc. constraints is not important; we will treat them all together here.

There is another distinction between certain types of constraint that is
more important. The constraints we have found for the massive vector
field are of a type known as second class, for which there is a universal
prescription for the commutation relations. To explain the distinction
between first and second class constraints, and the prescription used to
deal with second class constraints, it is useful first to recall the definition
of the Poisson brackets of classical mechanics.

Consider any Lagrangian L(*¥,'¥) that depends on a set of variables
Wa(t) and their time-derivatives ¥4(¢). (The Lagrangians of quantum field
theory are a special case, with the index a running over all pairs of £ and
x.) We can define canonical conjugates for all of these variables by

JéL

I, = —.
i

(7.6.6)
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The ITs and Ws will in general not be independent variables, but may
instead be related by various constraint equations, both primary and
secondary. The Poisson bracket is then defined by

dA ¢B 0B ¢4
ove ¢TI,  odve éll,

with the constraints ignored in calculating the derivatives with respect
to ¥ and TIl,. In particular, we always have [W%Ily]p = 2. (Here
and below all fields are taken at the same time, and time arguments are
everywhere dropped.) These brackets have the same algebraic properties
as commutators:

[4,Blp =

(7.6.7)

[4, Blp = —[B, Alp, (7.6.8)

[4, BC]p = [4, B]eC + B[A, C]p, (7.6.9)
including the Jacobi identity
(4,[8,Clple + [B,[C,Alplp + [C, A, Blplp =0. (7.6.10)

if we could adopt the wsual commutation relations [W<II] = idf,
[, W] = [[1,II;] = 0, then the commutator of any two functions
of the Ws and ITs would be just [4, B] = i[4, B]p. But the constraints do
not always allow this.

The constraints may in general be expressed in the form yn = 0, where
the yx are a set of functions of the ¥s and Tls. Because we are including
secondary constraints along with the primary constraints, the set of all
the constraints is necessarily consistent with the equations of motion
A = [A, H]p, and therefore

[zn, H]p = 0 (7.6.11)

when the constraint equations yn = 0 are satisfied.

We call a constraint first class if its Poisson bracket with all the other
constraints vanishes when (after calculating the Poisson brackets) we im-
pose the constraints. We shall see a simple example of such a constraint in
the quantization of the electromagnetic field in the next chapter, where the
first class constraint arises {from a symmetry of the action, electromagnetic
gauge nvariance. In fact, the set of first class constraints yy = 0 is always
associated with a group of symmetries, under which an arbitrary quantity
A undergoes the infinitesimal transformation

SNA = en[yn, Alp. (7.6.12)
N

(In field theory these are local transformations, because the index N con-
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tains a spacetime coordinate.) Eq. (7.6.11) shows that this transformation
ieaves the Hamiltonian invariant, and for first class constraints it also re-
spects all other constraints. Such first class constraints can be eliminated
by a choice of gauge, or treated by gauge-invariant methods described in
Volume II.

After all of the first class constraints have been eliminated, the re-
matning constraint equations yy = 0 are such that no linear combination
Sonun[xn, xale of the Poisson brackets of these constraints with each
other vanishes. It follows that the matrix of the Poisson brackets of the
remaining constraints is non-singular:

DetC 0, (7.6.13)

where

Cnm = [xn,xmlp (7.6.14)

Constraints of this sort are called second class. Note that there must always
be an even number of second class constraints, because an antisymmetric
matrix of odd dimensionality necessarily has vanishing determinant.

As we have seen, in the case of the massive real vector field the
constraints are

ix=xx=0, (7.6.15)
where
tix =To(x) , xox = 00L(x) —m’Vo(x) —J°(x) . (7.6.16)
The Poisson bracket of these constraints is
Cixzy = —Cay,ix = [Xixs x29lp = m?3*(x — y) (7.6.17)
and, of course,
Cixiy = Cax2y =0. (7.6.18)

This ‘matrix’ is obviously non-singular, so the constraints (7.6.15) are
second class.

Dirac suggested that when all constraints are second class, the commu-
tation relations will be given by

[4, B} = i[A, Blp , (7.6.19)

where [A4, Blp is a generalization of the Poisson bracket known as the
Dirac bracket:

[4, Blp = [A, Blp — [4, xn]1p (C™H™ [yar, Blp . (7.6.20)

(Here N and M are compound indices including the position in space,
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taking values like 1,x and 2,x in the vector field example.) He noted
that the Dirac bracket like the Poisson bracket satisfies the same algebraic
relations as the commutators

[As B]D = _[B’A]D s (7621)
[A,BC]p = [4,B]pC + B[A,Clp, (7.6.22)
[4, [B,Clplp + [B,[C,Alp]p + [C,[4,Blplp =0, (7.6.23)
and also the relations
[x~,Blp =0 (7.6.24)

which make the commutation relations (7.6.19) consistent with the con-
straints yy = 0. Also, the Dirac brackets are unchanged if we replace the
xy with any functions y), for which the equations yj = 0 and yy = 0
define the same submanifold of phase space. But all these agreeable prop-
erties do not prove that the commutators are actually given by Eq. (7.6.19)
in terms of the Dirac brackets.

This issue is illuminated if not settled by a powerful theorem proved
by Maskawa and Nakajima.® They showed that for any set of canonical
variables W*, 1, governed by second class constraints, it is always possible
by a canonical transformation® to construct two sets of variables 0", 2
and their respective conjugates P,, 2,, such that the constraints read
2" = #, = 0. Using these coordinates to calculate Poisson brackets, and
redefining the constraint functions as yy, = 2, y5, = #,, we have

Cl?‘.zs = ["@rsgs]f’ = 5; s

Clr,ls = [Qr, QS]P =0, C27,2s = [9’9’_, gﬂs]P =0,
and for any functions 4, B

0A ¢A
— A, = —,
o Male = 5o

This C-matrix has inverse C~! = —C, so the Dirac brackets (7.6.20) are

[4, x17]p = —

" Recall that by a canonical transformation, we mean a transformation from a set of phase space

coordinates 9, I, to some other phase space coordinates ‘¥4, IT,, such that [¥4 [1,], = op
and [¥2, 9%, = [[1,,T1,}p = 0, the Poisson brackets heing calculated in terms of the W2 and
I1,. It follows that the Poisson brackets for any {unctions A, 8 are the same whether calculated
in terms of W2 and I1, or in terms of ¥4 and [1,. It also follows that if ¥9 and M, satisfy
the Hamiltonian equations of motion, then so do ¥ and 1, with the same Hamiltonian. The
Lagrangian is changed by a canonical transformation, but only by a time-derivative, which does
not affect the action.
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here

(4, Blp = [A, Blp + [A, y1r]p 12 Blp — [4, y2r] p X1, Blp
édAd ¢B éB A
=Bl =55 tar 0P,
A ¢B 0B o4
20" oP, 00"éP,’
In other words, the Dirac bracket is equal to the Poisson bracket calculated
in terms of the reduced set of unconstrained canonical variables Q", P,.
If we assume that these unconstrained variables satisfy the canonical
commutation relations, then the commutators of general operators 4, B
are given by Eq. (7.6.19} in terms of the Dirac brackets.*

We now return to the massive vector field, to see how it can be quantized
using Dirac brackets. This is a case where it is easy to express the
constrained variables 7% and Ty in terms of the unconstrained ones! Vi
and IT;; we have simply ITp = 0, and V? is given by Eq. (7.6.5). From
Eqs. (7.6.17) and (7.6.18), we see that Cyas here has the inverse

(C—l)lx,Zy _ _(C_l)zyzlx = _m_253(x — y), (7.6‘26)

(7.6.25)

(C—])]x?ly — (C—I)Zx.2y =1(. (7627)

Therefore the Dirac prescription (7.6.19), (7.6.20) yields the equal-time
commutators

[4, B] = i[A, B]p
+im2 / &z (14, Tlo(zlp [1T(2) — m?V°(z) — J%(z), Blp — A ~B).
(7.6.28)
By definition, we have

VA, TL()le = 8 (x —y)ok . [VF(x), V¥ (y)]p = [TT,(x), I, (y)]p = O .
(7.6.29)
Hence

[Vix), V(yN = [V(x), V%) =0,

** 1t is still an open question whether we should adopl canonical commutation relations for the
unconstrained variables Q”. P, constructed by the Maskawa-Nakajima canonical transformation.
Ultimately, the test of such canonical commutation relations is their consistency with the free-tield
commutation relations derived in Chapter 5, but to apply this tes( we need to know what the
Q" and P, are. In the Appendix to this chapter we display two large classes of theories in which
we can identify a set of unconstrained Qs and Ps, such that the Dirac commutation relations
(7.6,19) follow from Ihe ordinary canonical commutation relations of the Qs and Ps. We shall
also show Lhat in thesc cases, the Hamillonian defined in terms of the unconstrained Ws and I1s
may be written just as well in lerms of the constrained variables.

T This is a special case of the theories discussed in Part A of the Appendix.



7.7 Field Redefinitions and Redundant Couplings 331

[Vix), V“(y}] = —im 2063 (x—y),
[Vi(x), [Tiy)] = :(5}5 (x —y), (7.6.30)

[VOx) I = [VH(x), Mo(y)] =
[IT%{x), I1"(y] = 0

These are indeed just the commutation relations that we would find
by assuming that the unconstrained variables satisfy the usual canoni-
cal commutation relations [V'(x), IT;(y)] = i6}6*(x —y), [V(x), V/(y)] =
(ILi{(x), IT{{(y}] = 0, and using the constrdmts to evaluate the commutators
involving Il and po.

7.7 Field Redefinitions and Redundant Couplings’

Observables like masses and S-matrix elements are independent of some
of the coupling parameters in any action, known as the redundant pa-
rameters. This is because changes in these parameters can be un-
done by simply redefining the field variables. A continuous redefini-
tion of the fields, such as an infinitesimal local transformation W (x) —
W (x) + eF/(¥(x),8,¥(x), - ), clearly cannot affect any observable of the
theory,™ though, of course, it would change the values of matrix elements
of the fields themselves.

How can we tell whether some variation in the parameters of a the-
ory can be cancelled by a field redefinition? A continuous local field
redefinition will produce a change in the action of the form

51 [
81 W] =e§/: ] d*x ;P[{ {33) F/(¥(x), 0¥ (x), ") . (7.7.1)

So any change dg; in the coupling parameters g;, for which the change in
the action is of the form

of[¥] _, -
2 S P >y [ spr FOHEL.¥EL )L (112)

may be compensated by a field redefinition
W (x) = W (x) + eF (¥(x),6,¥(x), ),

" This section lies somewhat out of the book’s main linc of development, and may be omitted in
a first reading.

** For instance, the theorem of Section 10.2 shows that as long as we multiply by the correct field
renormalization constants, S-matrix elements can be obtained from the vacuum expectation value
of a time-ordered product of any operalors that have non-vanishing matrix elements between the
vacuum and the one-particle states of the particles participating in the reaction.



