15

Functional Derivatives

15.1 Functionals

A functional G|[f] is a map from a space of functions to a set of numbers.
For instance, the action functional S[q] for a particle in one dimension maps
the coordinate ¢(t), which is a function of the time ¢, into a number—the
action of the process. If the particle has mass m and is moving slowly and
freely, then for the interval (¢1,2) its action is

Sold] :/:dt % (leg)f. (15.1)

If the particle is moving in a potential V' (¢(t)), then its action is

to m 2
Slql =/t1 di [2 <dng)> —V(q(t))] - (15.2)

15.2 Functional Derivatives

A functional derivative is a functional

ST = LGlf + eh]

(15.3)
e=0

of a functional. For instance, if G, [f] is the functional

Golf] = /da: () (15.4)
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then its functional derivative is the functional that maps the pair of functions
f, h to the number

SGulfl[H] = 5 Gulf + e

_ 4 dx (f(x) + eh(x))"

e=0

e=0

de
_ /d;E nf" (z)h(z). (15.5)

Physicists often use the less elaborate notation

0Gf]

—— = 0G[f][o 15.6
in which the function h(z) is dy(x) = 6(x — y). Thus in the preceding
example

6G[f] / -1 -1
——= = [dxnf" (x)é(x —y) =nf""(y). 15.7
S ()3~ y) v) (15.7)
Functional derivatives of functionals that involve powers of derivatives
also are easily dealt with. Suppose that the functional involves the square

of the derivative f’(x)

GIf] = /d:r (F/(2))>. (15.8)

Then its functional derivative is

SGITH] = S GIf + eh]

e=0
_ je/dx (f'(z) + el ()’

e=0

- /da:Qf’(a:)h’(x) =2 /dx F(2)h(z) (15.9)

in which we have integrated by parts and used suitable boundary conditions
on h(x) to drop the surface terms. In physics notation, we have

SGlfl _ NS — ) — g
5iy) 2/d f(2)8(z —y) = =2f"(y). (15.10)
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Let’s now compute the functional derivative of the action (15.2), which in-

volves the square of the time-derivative ¢(¢) and the potential energy V' (¢(t))

551alln) = 5 Sla + b

e=0
- ci/dt [7; (q(t) + eh(t))2 = V(g(t) + 6h(f))}

e=0

= fat [mattihte) = v ta®)h(o)]

- /dt [—mi(t) — V'(q(t))] h(t) (15.11)
where we once again have integrated by parts and used suitable boundary

conditions to drop the surface terms. In physics notation, this is

0Slal _ [t o ;o /
O /dt [—mi(t') = V'(q(t")] (' —t) = —mi(t) — V'(q(t)). (15.12)

In these terms, the stationarity of the action S[q] is the vanishing of its
functional derivative either in the form

5S[gl[h] = 0 (15.13)

for arbitrary functions h(t) (that vanish at the end points of the interval) or
equivalently in the form

65[q]
=0 15.14
dq(t) (1514
which is Lagrange’s equation of motion
mdi(t) = —V'(q(t)). (15.15)

Physicists also use the compact notation

AN O?Z[j + €6y + €8]

6j(y)07(2) e de!

(15.16)

e=e'=0

in which 0, (z) = 0(z — y) and 0.(z) = d(x — 2).

Example 15.1 (Shortest Path is a Straight Line) On a plane, the length
of the path (z,y(x)) from (zg,yo) to (z1,y1) is

x1 x1
L[y]:/ \/m:/ V1+y?d. (15.17)
xo Zo



628 Functional Derivatives

The shortest path y(z) minimizes this length L[y], so

S = < Lly + eh]

d [
V1+ (Y +eh)2dx

e=0 de o

/

Y

e=0
Tl y/h/ /xl d
= ———dx = — h———=dz =0 15.18
zo 1+ y? o dx v1+ y'? ( )

since h(zg) = h(z1) = 0. This can vanish for arbitrary h(z) only if

d Y
— =10 15.19
dz (/1 4 y2 ( )
which implies ¢/ = 0. Thus y(z) is a straight line, y = max + b. O
15.3 Higher-Order Functional Derivatives
The second functional derivative is
d2
SN = 5 GIf + hll <. (15.20)
So if Gn|f] is the functional
Gylf] = /fN(:Jc)dm (15.21)
then
2 d
"GN [f][h] = Z GNIf +ehll—y
d? N
=5 | (f(z) +eh(x))” dx
de e=0
d NY 2,9 N-2
=2 (Q)Eh(.%')f (x)dxezo
= N(N —1) / N72(2)h? (z)d. (15.22)
Example 15.2 (625)) The second functional derivative of the action Sp[q]
(15.1) is

2 [2om (de(t)  dh(t)\?
2 - _ A 7
Solallh] = /t dt 7 ( T2 1 2 > .

- /:dt m (C”Z;))? >0 (15.23)
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and is positive for all functions h(t). The stationary classical trajectory

t—1 to —1
q(t) = q(t2) + q(t1) (15.24)
to —t1 to — 11
is a minimum of the action Sp[q]. O

The second functional derivative of the action S[q] (15.2) is

2 2 [, 2
5%S[q][h] = % /t dt [2 <(1€cll(tt) + edlzlgf)> —Vi(q(t)+ eh(t))]
_ " dh(t)\*  9*V(q(t))
‘[ﬁﬂm(dt>‘ o) "

and it can be positive, zero, or negative. Chaos sometimes arises in systems
of several particles when the second variation of S[q] about a stationary path
is negative, 625[q][h] < 0 while 6.S[q][h] = 0.

The nth functional derivative is defined as

e=0

(15.25)

dn

Gl = 4

G[f + €h]|._, - (15.26)

The nth functional derivative of the functional (15.21) is

NI

§"Gn[f][h] = N —n)!

/fN "(x)h"(z)dz. (15.27)

15.4 Functional Taylor Series

It follows from the Taylor-series theorem (section 4.6) that

o0

EG[f][h] = 21,5 Glf +ehl| =G[f+h] (15.28)

n= O e=0

which illustrates an advantage of the present mathematical notation.
The functional Sy[g] of Eq.(15.1) provides a simple example of the func-
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tional Taylor series (15.28):

d 1d?

e‘SSO[q] [h] = (1 + e + 2dQ> Solq + €h]

e=0

m [t d 1 d? . 2
- 1+ 2 '

> ), ( +d6+2d2> (a(t) + eh(t)) " ar

- % / ” (qQ(t) + 24(t)h(t) + 52(75)) dt

t1
m [

. 2
-5/ () +h(t)) " dt = Sola + h). (15.29)

e=0

If the function ¢(¢) makes the action Sp[g] stationary, and if h(t) is smooth
and vanishes at the endpoints of the time interval, then

So[q + h] = So[q] + So[h]. (15.30)

More generally, if ¢(¢t) makes the action S[g] stationary, and h(t) is any
loop from and to the origin, then

o0

Slq+ h] = &’ S[q][h Z Slq + eh]|._, - (15.31)

If further Ss[g| is purely quadratic in ¢ and ¢, like the harmonic oscillator,
then

So [q + h] =5y [q] + Sz[h] (15.32)

15.5 Functional Differential Equations
In inner products like (¢’|f), we represent the momentum operator as

h d
pzf

77 (15.33)

because then

(dlpalf) = ?é,(q’lqlﬁ = :deq, (d{d1f)) = (:L +q :de > (d|f) (15.34)

which respects the commutation relation [g, p] = iA.
So too in inner products (¢'|f) of eigenstates |¢') of ¢(x, t)

o(x,1)|¢) = ¢ (z)|) (15.35)
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we can represent the momentum m(«,t) canonically conjugate to the field
¢(x,t) as the functional derivative

0

(@, t) = }Z(W(m) (15.36)
because then
(@1 D6(@,011) = 5707 (@0 1)
—h e (@) 1) (15.57)

_ 15¢'((S£L" ( [ 8@ -a) a;’)d3a:’<¢'|f>>
(

/ 5 /
=% (e~ a") + @) 00 ) €10
= (¢'| —ihd(x — ') + ¢(x, t) m(2, t)| f)
which respects the equal-time commutation relation

[6(x,t), m(x',t)] =i hd(x — ). (15.38)

We can use the representation (15.36) for m(z) to find the wave function
of the ground state |0) of the hamiltonian

H= ;/ (7% + (V§)? + m?¢?| d°x (15.39)

where we set h = ¢ = 1. We will use the trick we used in section 2.11 to find
the ground state |0) of the harmonic-oscillator hamiltonian

2 2 2
p mw-q
Hy=— 15.40
A (15.40)
In that trick, one writes
1 .
Ho = 5 (mwq — ip)(mewq + ip) + %[ 4]
1 1
= %(qu — ip)(mwq + ip) + iﬁw (15.41)
and seeks a state |0) that is annihilated by mwq + ip
. d
(¢'|mwq + ip|0) = (qu’ + hdq’) (¢'|0)y = 0. (15.42)

The solution to this differential equation

d mwq'
T(J'<q/‘0>:_ ——(d10) (15.43)
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nay (w14 _qu’2
(d)0) = (m) exp< = (15.44)

in which the prefactor is a constant of normalization.
So extending that trick to the hamiltonian (15.39), we factor H

_ ;/ [\/—W Fm2é— m} [\/—W Fm2+ m} Br+C  (15.45)
in which C' is the (infinite) constant
_ ;/ [m /At m2 o] da. (15.46)

The ground state |0) of H therefore must satisfy the functional differential
equation (¢'|vV/—V2 +m? ¢+ im|0) =0 or

gfﬁ;g = —V-V2+m? /() (¢/0). (15.47)

The solution to this equation is
1
(#'10) = N exp (—2 /¢’(m) V=V2+m?2¢(x) d%) (15.48)

in which NN is a normalization constant. To see that this functional does

is

satisfy equation (15.47), we compute the derivative

UL [ [ 6 eh) BT (o ) ]

de d€
(15.49)
which at e =0 is
/
d<¢jl—€h|0> _ _% [/h(a;)\/mqﬁ’(:n)ésx
€
e=0 (1550)

/ z)v/—A + m2 h(z) ] (¢/10).

We integrate the second term by parts and drop the surface terms because
the smooth function h goes to zero quickly as its arguments go to infinity.
We then have

d(¢' + €h|0)

de

= / VW=D +m2¢ () d32 (¢)0).  (15.51)
e=0

Letting h(x’) = §®) (2’ — x), we arrive at (15.47).
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The spatial Fourier transform ¢’ (p)

~ 3
¢/(a}) = /eip-a: (;5’(1)) (;iﬂ_l)??, (15.52)

satisfies ¢/'(—p) = ¢'*(p) since ¢ is real. In terms of it, the ground-state
wave function is

3 3
(@10) = N exp (—i R g;)’) . (15.53)

Example 15.3 (Other Theories, Other Vacua) We can find exact ground
states for interacting theories with hamiltonians like

H = ;/ [\/ —V2+m2¢ —ic,¢" — ’L'ﬂ'} {\/ —V2+m2¢+ic,o" + iw} dz.

(15.54)
The state |Q2) will be an eigenstate of H with eigenvalue zero if
(|02
5<j/(|m)> = — [\/ —V2+m?2¢(x)+ icnqu} (¢'). (15.55)

By extending the argument of equations (15.45-15.51), one may show (ex-
ercise 15.4) that the wave functional of the vacuum is

(¢'|Q) = N exp [—/ <§¢>/ V=V2+m2¢ + Tfflqs’"“) d%] . (15.56)

O]

Exercises

15.1 Compute the action Sp[g] (15.1) for the classical path (15.24).

15.2 Use (15.25) to find a formula for the second functional derivative of the
action (15.2) of the harmonic oscillator for which V(q) = mw?q?/2.

15.3 Derive (15.53) from equations (15.48 & 15.52).

15.4 Show that (15.56) satisfies (15.55).



