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One-Loop Radiative Corrections
in Quantum Electrodynamics

In this chapter we shall proceed to carry out some of the classic one-loop
calculations in the theory of charged leptons — massive spin % particles
that interact only with the electromagnetic field. There are three known
species or ‘flavors’ of leptons: the electron and muon, and the heavier,
more recently discovered tauon. For definiteness we shall refer to the
charged particles in our calculations here as ‘electrons,” though most of
our calculations will apply equally to muons and tauons. After some
generalities in Section 11.1, we will move on to the calculation of the
vacuum polarization in Section 11.2, the anomalous magnetic moment of
the electron in Section 11.3, and the electron self-energy in Section 11.4.
Along the way, we will introduce a number of the mathematical techniques
that prove useful in such calculations, including the use of Feynman
parameters, Wick rotation, and both the dimensional regularization of
‘t Hooft and Veltman and the older regularization method of Pauli and
Villars. Although we shall encounter infinities, it will be seen that the
final results are finite if expressed in terms of the renormalized charge
and mass. In the next chapter we shall extend what we have learned
here about renormalization to general theories in arbitrary orders of
perturbation theory.

11.1 Counterterms

The Lagrangian density for electrons and photons is taken in the form*
& = — \F} g — s |7, [0 + ienAf] +mp | (11.1.1)

where F' = 044} — 0" A%; A% and yp are the bare (i.e., unrenormalized)
fields of the photon and electron, and —ep and my are the bare charge and

* In this chapter we will not be making transformations between Heisenberg- and interaction-
picture operators, so we shall return to a conventional notation, in which an upper case 4 and a
lower case p are used to denote the photon and charged particle fields, respectively.
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mass of the electron. As described in the previous chapter, we introduce
renormalized fields and charge and mass:

~1/2

v=2 "ys, - (11.1.2)
Ry Z;2 48 (11.1.3)

e=7; | (114

m=mp+om, | | (11’.1.5)'

with the constants Z», Z3,‘ and ém adjusted so that the propagators of the
renormalized fields have poles in the same position and with the same
residues as the propagators of the free fields in the absence of interactions,

- The Lagrangian may then be written in terms of renormalized quantities,

g=$o+$1+$2, (11.1.6)

where . .
Lo=—LF"F,, — [yﬂ aﬂ+m}w, (11.1.7)
L1 = —ied, py*yp , - (11.1.8)

~and &5 is a sum of ‘counterterms’

L2 == 4L = DF"Fu — (Zy — 1)p [y, " + mlip
| TZ20mPp p —ie(Zy — 1) 4, y*p . (11.1.9)

It will turn out that all of the terms in %5 are of second order and
higher order in e, and that these terms just suffice to cancel the ultraviolet
divergences that arise from loop graphs.

11.2  Vacuum Polarization

We now begin our first calculation of a radiative correction involving
loop graphs, the so-called vacuum polarization effect, consisting of the
corrections to the propagator associated with an internal photon line.
Vacuum polarization produces measurable shifts in the energy levels of
hydrogen, and makes an important correction to the energies of muons
bound in atomic orbits around heavy nuclei. Also, as we shall see in
Volume II, the calculation of the vacuum polarization provides a key
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Figure 11.1. The one-loop diagram for the vacuum polarization i in quantum elec-
trodynamics. Here wavy lines represent photons; lines carrying arrows represent
electrons. :

element in the calculation of the high energy behavior of electrodynamics
and other gauge theories. |

As in Section 10.5, we define i(27)*II*#*(q) as the sum of all connected
graphs with two external photon lines with polarization indices x and
v and carrying four-momentum ¢ into and out of the diagram, not
including photon propagators for the two external lines, ‘and with the
asterisk indicating that we exclude diagrams that can be disconnected
by cutting through some internal photon line. The complete photon
propagator A" (q) is given by Eq. (10.5.13):

A=Al —TT"A]Y, (11.2.1)

where A*¥(q) is the photon propagator without radiative corrections. Our
task here is to calculate the leading contributions to IT**?(q).

In lowest order there is a one-loop contribution to IT*, corresponding
to the diagram in Figure 11.1: :

i(2m)* I}, loop(@) = — / d*pTr { {(2::)4 pz__i’fn;l__r_n ie:l

X {(2%) ey ] [(2%)4 R e p— [(271) ey ] (11.2.2)
with the first minus sign on the right required by the presence of a fermion
loop. More simply, this is

wpe o —ie2 g Tr{[—if +mly? [—i( f — 91)+m] v’}
M = s | 4 s =i (=P T v

(11.2.3)
The ﬁrst step in doing this integral is to use a trick introduced by
Feynman.! We use the elementary formula

1 dx
AB ~Jo [(1 —x)A+ xB]?

(11.2.4)
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to write the prodﬁct of scalar propagators'in Eq. (11.2.3) as

. 1 L , |
(p* +m? —ie)((p— g + m? — ie) 2/0 |0+ m? = ie)(1 — x)

+ ((p —q) +m?— ie) x] i

1 -2
=/0 [p2+m2—ie—2p-qxl+q2xJ dx.

1 —2
=/O [(p—qx)2+m2—ie+q2x(1—-x)}- dx .

(This is a special case of a class of integrals given in the Appendix to

this chapter.) We can now shift the variable of integration in momentum
space” ‘ ' ’

P—=p+agx,
so that Eq. (11.2.3) becomes

*00 —ie’ 1 N RPN
HlLoop(Q)=W/0, dx/dp[p +m” —ie+gq x(l—x)]

XTe{{—i(§+ ¢x)+m]y? [—i(§— d(1—x)) +m]y°} . (11.2.5)

Using the results of the Appendix to Chapter 8, the trace here can easily
be calculated as

Tr{[~i( § + ¢x) Fm]y? [=i(F — 41 - x) +m]y°)
- 4[ ~ P+ (0 —a(1 = %) +(p+gx) - (p — g(1 x))n?°
~0 a0 (p—q(l~x)p + w7 . (11.26)

Our next step is called a Wick rotation? Ag long as —q% < 4m2, the
quantity m® + ¢2x(1 — x) is positive for all x between 0 and 1, so the poles
in the integrand of Eq. (11.2.5) are at P’ =+ +m? ¥ *x(1 — x) — e,
Le., just above the negative real axis and just below the positive real
axis. (See Figure 11.2.) We can rotate the contour of integrations of p°
counterclockwise without crossing either of these poles, so that instead of
integrating p° on the real axis from —o0 to +o0, we integrate it on the
imaginary axis from —ico to +ico. That is, we can write p° = ip, with p*
integrated over real values from —00 to +o00. (If an ie instead of —ie had
appeared in the denominator of the propagator, then we would have been
setting p° = —ip*, with p* again integrated over real values from —oo to

* Strictly speaking, this step is only valid in convergent integrals. In principle, in order to justify
he shift of variables, we should introduce some regulator scheme to make all integrals converge,
such as the dimensional regularization scheme discussed below. :
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Figure 11.2. Wick rotation of the p° contour of integration. Small X’s mark the
poles in the p° complex plane; the arrow indicates the direction of rotation of the
contour of integration, from the real to the imaginary p°-axes.

1;1)—0(\). The effect would be a change of sign of Hi’igop(q).) Eq. (11.2.5) now
ecomes

*00 462 1 _
1—Ilqoop(q) = W /(; dx /(d4p)E [PZ +m2 + q2x(1 — x)] 2

<[~ (+axf(p—all —x)" + @ +ax) (=g =" .

—(p+ g2 (o — (L — %) + mn?°], (112.7)
where
(d*p)g = dp*dp*dp’dp*
and all scalar products are evaluated using the Euclidean norm
a-b=a'b' +ab? + a®b* + a'b*

with the understanding that ¢* = —ig® . Also, #°° can be taken as either
the Kronecker delta, with the indices running over 1, 2, 3, 4, or as the
usual Minkowski tensor, with the indices running over 1, 2, 3, 0.

The integral (11.2.7) is badly divergent. Eventually all infinities will
cancel, but to see this it is necessary at intermediate stages of the calcula-
tion to use some sort of regularization technique that makes the integrals
finite. Tt would not do simply to cut off the integrals at some maximum
momentum A, integrating only over p* with p* < A?, because this would
amount to introducing a step function 8(A? — p?) into the electron prop-
agator, and the Ward identity (10.4.25) shows that in order to maintain



gauge invariance, any modification of the electron propagator must be |
accompanied with a modification of the electron—photon vertex. In fact,
with an ordinary cutoff A, radiative corrections would induce a photon
mass, a clear violation of the requirements of gauge invariance.
Experience has shown that the most convenient method. for regulating
divergent integrals without impairing gauge invariance is the dimensional I
regularization technique introduced by ’t Hooft and Veltman3 in 1972, !
based on a continuation from four to an arbitrary number d of spacetime )
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like (11.2.7) by dropping all terms that are odd in p, and replacing the
terms that have even numbers of p-factors with**

PP~ " [, (11.2.8)
PO’ PP — (Pt nre + n*nYe 4+ nhoyre) / dd+2), (11.2.9)

Also, after writing the integrand in this way as a function only of p?, the

volume element d*py is to be replaced with Q k% di, where x = N
and Qg is the area of a unit sphere in d dimensions

Q=212 [T(d)2). (11.2.10) i
. M)

The integral (11.2.7) now convérges for complex spacetime dimension-
ality d. We can continue the integral through complex d-values to d = 4,
the infinities then reappearing as factors (d — 4)~1,

For the integral (11.2.@, dimensional regularization gives

*00 { 4829 1 o0 - -2
Hlﬁoop(q) = (27r)4d /o dx\/o k1 [Kz +m? + g*x(1 — x)]

— 2 o o 2 2 , o 2, po
X y n*?+2q°q x(l—x)—i—(ic —q x(l—x))np +myP?| .

/0 TR 422, {2 T (d)2) T(2—dy2) (11.2.11)

/()Oo;cd+1[;c2+v2]—2d;c= Lw)i-ip (1+d/2)T (1-4d/2) , (11.2.12)

** These expressions may most easily be derived by noting that their form is dictated by Lorentz
invariance and the symmetry among the indices M, v, p, etc., while the factors may be found by 1l
requiring that both sides give the same result when contracted with zs. ' BRI
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and find
* Zezﬂd |
qugop(q) = (27_5')4 {

x /01 dx{(l——2/d) nP° (m2+q2x(1—x)>2 T(1+d/2)T(1—d/2)

d

+ <2q"q"’x(1 —x)— ¢’ x(1 —x) + mznp") (m2 +g*x(1 — x)) ’
x T (d/2)T(2— d/2)}

The two terms in the integrand can be combined, using
(1—2/d)T(1+4d/2)T (1-4d/2) — T (d/2)T(2-4d/2).
We find

, |
L) = ot T (@/2) T Q= d/2) e =)

X /0 1 dx x(1 — x)(m? + ¢*x(1 — X)2. (112.13)

We note the very important result that this contribution to IT*P? satisfies
the relation g

QPHquop(Q) =0 (11214)

that was derived in Section 10,5 on the basis of the conservation and
neutrality of the electric current. It was precisely to achieve this result
that we adopted the dimensional regularization scheme. The reason that
dimensional regularization gives this result is that the conservation of
current does not depend on the dimensionality of spacetime.

The gamma function I'(2 — d/2) in Eq. (11.2.13) blows up for d — 4.
Fortunately, as we saw in Section 11.1, there is another ‘term that must
be added to IT*P9(q), arising from the term ——%(Z3 — 1)F,, F# in the
interaction Lagrangian. This term has a structure like Eq. (11.2.13)

20 (q) = —(Zs — D(g*n”” — 4°¢") , (11.2.15)
<o to order ¢, the complete IT" has the form
' (q) = (¢*n*° — a° 4" )a®) » (11.2.16)

with

2 | d
n(g’) =~ Aéng)!f r(Hre-19 /0 dx x(1 — x)(m* + g*x(1 — x))2 2

—(Z3—1). (11.2.17)
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As we saw in Section 10.5, the definition of the renormalized electromag-
netic field requires that 7(0) = 0 (in order that the residue of the pole in
the complete photon propagator at g% = 0.should be the same as for the
bare propagator, aside from gauge-dependent terms). Therefore, to order
e, )
4eQ)y
(2m)*

so that, to order ¢2,

Z3 =1 T(HT(2— 9)m?) g"z/olx(l—x)dx, (11.2.18)

4¢2Q) 1
M) =G TOT = 9) [ avx1—x)

x [(mz +¢*x(1 — x)) 2 (mz)‘%-ﬂ . (11.2.19)

- Now we can remove the regularization, allowing d to approach its
physical value d = 4. As mentioned before, there is an infinity in the
one-loop contribution, arising from the limiting behavior of the Gamma
function '
| 1
T C=dap "

where y is the Euler constant, Y = 0.5772157. The infinite part of Zs—1

is given by using 1/(2 — d/2) for I'(2 — d/2), and replacing d everywhere

else by 4:

4¢% - 272 1 2 1
(23 = 1)e 6Qn)* 2—d/2  6n2 d—4

We shall see in Volume 11 that this result may be used to derive the leading
term in the renormalization group equation for the electric charge,

The poles at d = 4 obviously cancel in 7(g?), because for d — 4 both
(m? + ¢%*x(1—x))3~2 and (m*)2=2 have the same limit, unity. For the same
reason, the term —y in T (2—d/2) cancels in the total 7(q?), though it does
make a finite contribution to Z3—1. There are other finite contributions to
Z3—1, that arise from the product of the pole in I'(2—d/2) with the linear
terms in the expansion of QI (d/2) around d = 4, but these also cancel
in the total n(g?). Indeed, in carrying out our dimensional regularization,
we might have replaced (27)~* with (2n)7%, and the factor Tr1 = 4 might
have been replaced with the dimensionality 29/2 of gamma matrices in
arbitrary even spacetime dimensionalities d, and these too would have
contributed to the finite part of Z3 — 1, but not of n(q%). Moreover, ¢?
cannot be supposed to be d-independent, because as shown by inspection
of Eq. (11.2.13), it has the d-dependent dimensionality [mass]*~¢. If we
take e oc u*, where u is some quantity with the units of mass, then

(11.2.20)
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there are additional finite terms.in Z3 — 1, arising from the product of the
pole in I'(2 — d/2) with the term (4 —d)Inu in the expansion of y*~¢ in
powers of 4 — d, but again, these cancel between Z3 — 1 and the one-loop
contributions to 7(g?). ‘

The only terms that do contribute to n(g?) in the limit d — 4 are those
arising from the product of the pole in I'(2 — d/2) with the linear terms

in the expansion of (m? + ¢%x(1 — x))3~2 and (m2)3~2 in powers of d — 4:
. b 2 _ -
(m2 (13 2= ()2 o> (4= 2)In (1 + 9-1(:1—21)> (11221

This gives at last

[

n(q?) = 26—;2 /01 x(1— x) In (1 + ﬁz—x(—ml—;@) dx. (11.2.22)

The physical significance of the vacuum polarization can be explored
by considering its effect on the scattering of two charged particles of
spin % The Feynman diagrams of Figure 11.3 make contributions to the
scattering S-matrix element of the form

Sa(1,2 - 1,2y = 2r)"226%py + py — p1 — p2) [61(271)45‘1/7“%}

x [=iem 2] [eemtum)

Sp(1,2 = 1,2) = 2n) 26 (py + py — p1 — p2) [61(2@4@1'7““1}
s 1727 _
< [ = ieny ] [an) @ — gua)n(@)] [ea2n) )

where e; and e, are the charges of the two particles being scattered;
n(q?) is calculated using for e in Eq. (11.2.22) the magnitude of the
charge of the particle circulating in the loop in Figure 11.3; and g* is the
momentum transfer ¢ = p;—py = py—p,. Using the conservation property
qutiyy*ur = 0 the two diagrams together yield an S-matrix element:

—iejep
4n2q? *
X [ﬂlly“ul} [ﬁz/)}uuz] . _ (11.2.23)
In the non-relativistic limit, ;9% ~ ~—iéa/lo.l while #;y'u; ~ 0, and

likewise for particle 2. Also, in this limit ¢° is negligible compared with
lq|. Eq. (11.2.23) in this limit becomes

Sarp(1,2 > 1,2/) = [1 + n(g*)] 8*(py + pr — p1 — p2)

' —iete
Sen(1,2 > 1,2) = %—2&; [1+ (@) 8*(pr + P2 — p1 = P2)3516,61,, -

(11.2.24)
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N
-

This may be compared with the S-matrix in the Born approximation due
to a local spin-independent central potential V(r): .

SBorn(l,z - 1_/, 2/) = —27‘Ci5(E1/ + E2, - El —_— EZ)TBOI‘n(]-,Z — 1/, 2/) ) 1

(11.2.25)

Toom(L221,2) = 810dg, [ @1 [ @ ¥ (151 =0
¢ (zn)—12/2e—ip1/~x1é—ipzz'xzeipl'xleipz-xz . (11.2.26)

Setting Xy. = X, + 1, this gives
—i
SBorn = my‘(pl’ +Dpy —p1 —p2)5aio‘1 50&62

X / Er V() e ar | (11.227)

y .

Comparing this with Eq. (11.2.23) shows that in the non-relativistic limit
the diagrams of Figure 11.3 yield the same S-matrix element as a potential
V(r) such that ‘

" 14 7(q?

4 /d3r V(r)e ™M = elezﬁ—_*— 7;((] )

q-. |

or, inverting the Fourier transform, ‘

ere wr | 14 7(g? ’
V(r) = (Zln )23 / d>q 4T [_—_qz(q )} : (11.2.28) o

Eq. (11:2.28) is to first order in the radiative correction the same potential

energy that would be produced by the electrostatic interaction of two
extended charge distributions e;7(x) and exn(y) at a distance r:

V(Ir]) = ese, / B / £y 4;17:%(2 -, (11.229)
where |
3 I 2\ igr
(0 = 80 + m/.d g n(q?) T (11.2.30) H
Note that | y
| / Prom =14 in(0)=1, (11.2.31) i

so the total charges of particles 1 and 2, as determined from the long-
range part of the Coulomb potential, are the same constants e; and e;
that govern the interactions of the renormalized electromagnetic field.

For [r| # 0 the integral (11.2.30) can be carried out by a straightforward
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[T . 2 ,
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1
! 2 2

(a) (b)

Figure 11.3. Two diagrams for the scattering of charged particles. Here lines
carrying arrows are charged particles; wavy lines are photons. Diagram (b) repre- ‘
sents the lowest-order vacuum polarization correction to the tree approximation *
graph (a).

contour integration:
2

) = ——s /1 x(1 — x)dx {1 + —L] ex (ﬂ—>
T = =803, 0 | Jx(1 = x) P S —=x)/
This expression is negative everywhere. However, we have seen that the

integral of #(r) over all r equals +1. Therefore, #(r) must contain a term
(1 —|—L)53(r) that is singular at r = 0, with L chosen to satisfy Eq. (11.2.31):

L—8n3/ / x(l—x)dx[l-l—\/(l—r_j

(o)

(11.2.32)
The complete expression for the charge distribution function is then
2 1
— 3 €
n(r) = (1 + L)83(x) — W/o x(1 — x) dx
mr —mr
1+ —— IR 11.2.33
< |1+ =] o () (H:2:33)

The physical interpretation of this result is that a bare point charge
attracts particles of charge of opposite sign out of the vacuum, repelling
their antiparticles to infinity, so that the bare charge is partially shielded,
yielding a renormalized charge smaller by a factor 1/(1 + L). As a check,
we may note that if we cut off the divergent integral (11.2.32) by taking the
integral to extend only over r > a, we find that the part that is divergent
for a — 0 is
32 -1

Hence if we identify the momentum space cutoff A with a~1, the divergent
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part-of L is related to the divergent part of Z3 — 1 by

(Z3 — 1) = —2L, , : (11.2.35)
because to order e? the renormalized charge (10.4.18) is given by |
er =23 %eps ~ (14 1(Z; — 1)) eps ~ (14 L) le, . (11.2.36)

Eq. (11.2.35) is confirmed below.

Vacuum polarization has a measurable effect On muonic atomic energy
levels. As we shall see in Chapter 14, the effect of Feynman graph (b) in
Figure 11.3 is to shift the energy of an atomic state with wave function
w(r) by

AE = / &Er AV(E) [pr)? | (11.237)
where AV(r) is the perturbation in the potential (11.2.28):
— €1€ 3 igr 7'C(q2)
AV = 5% / &g e [ | (11.2.38)

This perturbation falls off exponentially for r > m™!. On the other hand,
the wave function of electrons in ordinary atoms will generally be confined
within a much larger radius g > m~1; for instance, for hydrogenic orbits
of electrons around a nucleus of charge Ze we have g = 137/Zm (where
here m = m,). The energy shift will then depend only on the behavior of
the wave function for r < 4. For orbital angular momentum Z, the wave
function behaves like ¢ for r < a, so Bq. (11.2.37) gives AE proportional
to a factor (ma)=*+1), The effect of vacuum polarization is therefore very
much larger for # = 0 than for higher orbital angular momenta. For # — 0
the wave function is approximately equal to the constant p(0) for r less
than or of the order of m™!, so Eq. (11.2.37) becomes

AE = (02 / Er AV (). (11.2.39)

Using Eqs. (11.2.38) and (11.2.22), the integral of the shift in the potential
(for eje; = —Ze?) is '

47 o2

5T (11.2.40)

/ &Pr AV(r) = —Z ' (0) = —

Also, in states of hydrogenic atoms with ¢ — 0 and principal quantum

number n the wave function at the origin is

3/2
w(0)=i~'(zam> , (11.2.41)

Van \ n
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so the energy shift (11.2.39) is
,)‘\
4Z %> m

AE = — 157n3

(11.2.42)

For instance, in the 25 state of hydrogen this energy shift is —1.122 x 10~
eV, corresponding to a frequency shift AE/2rh of — 27.13 MHz This
is sometimes called the Uehling effect.* As discussed in Chapter 1, such
tiny energy shifts became measurable because in the absence of various
radiative corrections the pure Dirac theory would predict exact degeneracy
of the 2s and 2p states of hydrogen. As we shall see in Chapter 14, most
of the +1058 MHz ‘Lamb shift’ between the 2s and the 2p states comes
from other radiative corrections, but the agreement between theory and
experiment is good enough to verify the presence of the —37.13 MHz shift
due to vacuum polarization.

Although vacuum polarization contributes only a small part of the
radiative corrections in ordinary atoms, it dominates the radiative correc-
tions in muonic atoms, in which a muon takes the place of the orbiting
electron. This is because most radiative corrections give energy shifts in
muonic atoms that on dimensional grounds are proportional to m,, while
the integrated vacuum polarization energy [ & AV due to an electron
loop is still proportional to m? as in Eq. (11.2.40), giving an energy shift
proportional to mym;? = (210)>m,. However, in this case the muonic
- atomic radius is not much larger than the electron Compton wavelength,
so the approximate result (11.2.39) only gives the order of magnitude of
the energy shift due to vacuum polarization.

® ok ok
For the purposes of comparison with later calculations, note that if we

had cut off the integral (11.2.7) at x = A, then in place of Eq. (11.2.20) we
would have encountered an integral of the form

' 2 A e pd—4 _ pAd—4
Z3— 1) = —— =3 die =
(23 = D 677:2/H Sl Ry e

where u is an infrared effective cutoff of the order of the mass of the
charged particle circulating in the loop of Figure 11.1. (The easiest way to
find the constant factor here is to require that the limit of this expression
for d <3 and A — oo matches Eq. (11.2.20).) With such an ultraviolet
cutoff in place, we can pass to the limit d — 4, and obtain

2
(23—1)(30:—5%111(/\/#). O (11.243)
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Figure 11.4. One-loop diagrams for the photon-lepton vertex function T“. Here
wavy lines represent photons; other lines represent electrons or muons, Diagrams
(a) and (b) are cancelled by lepton field renormalization terms; diagram (c) arises
from the vacuum polarization calculated in Section 11.2; and (d) is the term
calculated in Section 11.3,

11.3  Anomalous Magnetic Moments and Charge Radii

For our next example, we shall calculate the shift in the magnetic moment
and the charge radius of an electron or muon due to lowest-order radiative
corrections. The one-loop graphs and renormalization corrections for
the photon-lepton vertex are shown in Figure 11.4. Of these graphs,
those involving insertions in incoming or outgoing lepton lines vanish
because the lepton is on the mass shell, as discussed in Section 10.3. The
graph involving an insertion in the external photon line is the vacuum
polarization effect, discussed in the previous section. This leaves one
one-loop graph (the last in Figure 11.4) that needs to be calculated here:

Fﬁmwﬁﬂ=/fkkwgmﬂP:L —i(f— 1) +m MW]

Qr)* () — k2 +m? — e

—i =i )+ S
Xhm;@fmuwﬂfﬁH%ﬁ“ﬂkﬁ%w—wL
(11.3.1)

where p’ and p are the final and initial lepton four-momenta, respectively.
(The contribution of the vertex connecting the external photon line and
the internal lepton line is taken as ¥, because a factor e(2x)* was extracted
in defining I'%.) ‘

This integral has an obvious ultraviolet divergence, roughly like
Jd*k/(k*?.  Unlike the case of the vacuum polarization, here we do



not need a fancy regularization procedure like dimensional regulariza-
tion to maintain the structure required by gauge invariance, because the
photon is a neutral particle and so the integral may be rendered finite by
suitable modifications of the photon propagator (for instance by including
a factor M?/(k* + M?) with a large cutoff mass M), without having to
introduce modifications elsewhere to maintain gauge invariance. In any
case, as we shall see the anomalous magnetic moment and charge radii
can be calculated without encountering any ultraviolet divergences at all.
In what follows we shall leave the integrals for the vertex function in their
infinite form, with it being understood that if necessary any divergent
integrals can be expressed in terms of a cutoff mass M.

We start by combining denominators, using a repeated version of the
Feynman trick described in the Appendix to this chapter

ﬁ:z/oldx [ a [Ay+B(x—y>+C(1—x)]‘3. (1132)

Applied to the denominators in Eq. (11.3.1), this gives

., 1 . 1 1
(p' — k)2 +m?—ie (p—k)?+m?—ie k?—

=;2/01dx /Oxdy [((p’—k)z—l—mz—ie)y—l—<(p—k)2+m2—’ie)(x—y)
(k2 —ie) (1 ) - |

1 X 2 -3
= 2/ dx / dy [(k—p’y—p(x—y)) +mPx? + gPy(x — y) —ie|
0 0
(11.3.3)

where q' = p—p' is the momentum transferred to the photon. Shifting the
variable of integration

k—k+py+px—y)

the integral (11.3.1) becomes

2ie? d*k

Tlioop(r:) = (27t)4/ * / @ / k2—l—m2x2+q y(x — y)—ie]3
xpf[ =i P(1=y)= k= Px =) +m]y*
x[— i( pl—x+y)— K- Ié'y) —I—m]yp. (11.3.4)

Our next step is a Wick rotation. As explained in the previous section,
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the —ie in the denominator dictates that when we rotate the k° contour
of integration to the imaginary axis we must rotate counterclockwise, so
that the integral over k° from —oo to +o0 1§ replaced with an integral
over imaginary values from —ico to +ico, or equivalently over real values
of k* = —ik® from —o to +o0. We also exploit the rotational symmetry
of the denominator in Eq. (11.3.4); we drop terms in the numerator
of odd order in k, replace k*k® with n*°k?/4, and replace the volume
clement d*k = idk!dk2dk3dk* with 2in*i3dx, where x is the Euclidean
length of the four-vector k. Putting this all together, Eq. (11.3.4) now
becomes

” , —47‘6282 1 x o0 3 2o
rl]oop(pbp): () ./de/ody/o Kdic{-xyyyyayp/4

=i F =)= =) +m]p
x| =i HL—x+y) gy) +my,}
X [ 4 2 4 g2y (x — " (113.5)

We are interested here only in the matrix element #'T#u of the vertex
function between Dirac spinors that satisfy the relations

@i +m=0, i p+mlu=0.

We can therefore simplify this expression by using the anticommutation
relations of the Dirac matrices to move all factors p’ to the left and all
factors  to the right, replacing them when they arrive on the right or left
with im. After a straightforward but tedious calculation, Eq. (11.3.5) then
becomes

o -—47‘6262 1 X oo
ulrgne loop(p/ap)u = W/O dx /(; dy /0 K3d7€
( a’{y“ [ — 12 4 2mP(x — dx + 2)+2¢*(y(x —y) + 1 — x)J
+4imp*(y — x + xy) + 4imp“(2c2 — Xy — y)}u
' -3
X [Kz + m?x? + 7*y(x — y)} : ' (11.3.6)

- We next exploit the symmetry of the final factor under the reflection
y = x—y. Under this reflection, the functions y — x + xy and x? — xy — y
that multiply p’* and p* are interchanged, so both may be replaced with
their average: |

3V =X+ xp)+ 4 —xy —y) = — Ix(1 —x).
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This gives finally

47r2e2
oneloop(p p)u /dx/ dy/

X u{y“[——;c +2m2(x —4x+2)+2q (y(x — )—|—1—x)]
—2im (p* + p*)x(1 — x)}u
X [Kz + m2x2 + q2y(x — y)] - : (11.3.7)

Note that p* and p’* now enter only in the combination p* + p'¥, as
required by current conservation.

There are other diagrams that need to be taken into account. Of course,
there is the zeroth-order term y# in I'#. The term proportional to Z; — 1
in the correction term (11.1.9) yields a term in I'*

%, =(Za—1y*. (11.3.8)

Also, the effect of insertions of corrections to the external photon propa-
gator is a term:

' 1
1_‘tfacpol(p/’p) v — ) e W(p —Dp) - (11.3.9)

The form of each of these terms is in agreement with the general result
(10.6.10) (with H(g?) = 0)

AT P = [P F@) — - G+ PV O] v (11310
To order €2, the form factors are
F(q?) = Zy + n(q?) (2 )4/dx/ dy/
[K2—2m (x2 — dx +2) — 2 (y(x—y)—l—l—x)]

[K2 +m2x? 4 gy(x — )| 3

X

4

(11.3.11)

n 4m?x(1 — x) x> dx 0
7= (2”)4 / / » / K2—I—m2x2—|—q2y(x-—y)]3 (1

where 7(g?) is the vacuum polarization function (11.2.22).
The integral for the form factor G(g?) is finite as it stands:

1 —
G(g®) = dx / dy mzx;flf qzyz)c — (11.3.13)

47r2
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Figure 11.5. A two-loop diagram for the muon magnetic moment. Here the .

heavy straight line represents a muon; the light wavy lines are photons; and the
other light lines are electrons. This diagram makes a relatively large contribution
to the fourth-order muon gyromagnetic ratio, proportional to In(m, /m,).

This makes it easy to calculate the anomalous magnetic moment. As noted
in Section 10.6, it is only the y# term that contributes to the magnetic
moment, so the effect of radiative corrections is to multiply the Dirac
value e/2m of the magnetic moment by a factor F(0). But the definition
of e as the true lepton charge requires that

F0)+G(0)=1, (11.3.14)
so the magnetic moment may be expressed as |
e
= (1 - G(O)) . (11.3.15)
From Eq. (11.3.13), we find
e 1161 11.3.16

This is the famous o /2% correction first calculated by Schwinger.’

Of course, this is only the first term in the radiative corrections to the
magnetic moment. Even in just the next order, fourth order in e, there are
S0 many terms that the calculations become quite complicated. However,
because of the large muon—electron mass ratio, there is one fourth-order
term in the magnetic moment of the muon that is somewhat larger than
any of the others. It arises from the insertion of an electron loop in the
virtual photon line of the second-order diagram, as shown in Figure 11.5.
The effect of this electron loop is to change the photon propagator 1/k?
in Bq. (11.3.1) to (1 + me(k?))/k?, where 7,(k?) is given by Eq. (11.2.22),
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but with the mass m taken as the electron mass:

7o (k?) = ;:2 /1x(1—x)1n<1+5"‘-2—(1—_—’9> x

m2

Inspection of Eq. (11.3.12) shows that in calculating the muon magnetic
moment the effective cutoff on the virtual photon momentum k is m,. The
ratio m,/m, is so large that for k? of order m we may approximate

2
n L & . 2,2
)= 5 [t = 1

with the neglected terms having coefficients of order unity in place of
ln(mﬁ/mg). Since this is a constant, the change in —G(0) produced by
adding an electron loop in the virtual photon line is simply given by
multiplying our previous result (11.3.16) for —G(0) by Eq. (11.3.17), so
that now

e 1+i+ e 1nm2+0(1) (11.3.18)
M= e \" T 8a2 T 9678 >

In(m3/m?)  (11.3.17)

(As we shall see in Volume II, this argument is a primitive version of
the method of the renormalization group.) The result (11.3.18) may be
compared with the full fourth-order result:®

. e 1+ 82 A 64 [1 m2
B = e \1H 322 T 50 102

25 197 =% 9¢(3) 2 Me
—Z o+ T+ 22 3240 e | 1319

It turns out that the ‘O(1)’ terms multiplying e*/96x* add up to —6.137,
which is not very much smaller than In(m/m) = 10.663, so the approx-
imation (11.3.18) gives the fourth-order terms only to a factor of order
2. The correct fourth-order result (11.3.19) gives p, = 1.00116546¢/2m,,
in comparison with the second-order result p, = 1.001161 e/2m, and the
current experimental value,” y, = 1.001165923(8)e/2m,,.

Now let us turn to the other form factor. The integral in Eq. (11.3.11)
for F(q?) has an ultraviolet divergence. However, in order to satisfy the
charge-non-renormalization condition (11.3.14), it is necessary that Zj
take the value

R 2 Ap2e?
7o =
2 1+8n2 (271:)4/ dx/ dy/
K% — 2m*(x* — 4x + 2)

[Kz + mzxz] .

(11.3.20)
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(Recall that =(0) = 0.) This is itself ultraviolet divergent, with an infinite

part

e? [0 gk
e - (11.3.21)

Inserting Eq. (11.3.20) back into Eq. (11.3.11) gives
2 47‘5262 1 X 0
Flg®) =14 € 2 . / / / 3
(q7) + 5.2 +7(q°) + G Jo dx A dy | x dx

[KZ —2m*(x? —4x 4 2) — 2¢°(y(x — y) + 1 — x)]
X .

|2 + 22 4 g2y(x — y)] 3
[K2 — 2m(x? — dx + 2)]

— : | (1132
[xz + mzxz]
The integral over « is now convergent: _
2 2,2 41 x
2 _ e 2y, 2mce / /
Flg%) 1+8n2+n(q)+(2n)4 de 0 v .
y —mz[x2—4x+2] — ¢’ [y(x —y)+ 1 — X] + x? —4x 42
m2x2 4 q2y(x — y) | x*
mx? + ¢?y(x = )] |
~In [ . . (11.323)

However, we see that the integral over x and Yy now diverges logarith-
mically at x = 0 and Y = 0, because there are two powers of x and/or
y in the denominators, and just two differentials dx dy in the numera-
tor. This divergence can be traced to the vanishing of the denominator
[1? + m2x? + g2y(x —»)I’ in Bq. (11.3.11) at x = 0, y=0, and x = 0.
Because this infinity comes from the region of small rather than large «,
it is termed an infrared divergence rather than an ultraviolet divergence.
We shall give a comprehensive treatment of the infrared divergences
in Chapter 13. It will be shown there that infrared divergences in the
cross-section for processes like electron-electron scattering, such as those
that are introduced by the infrared divergence in the electron form factor
* F(q?), are cancelled when we include the emission of low-energy photons
as well as elastic scattering. Also, as we shall see in Chapter 14, when
we calculate radiative corrections to atomic energy levels the infrared
divergence in F (¢%) is cut off because the bound electron is not exactly
on the free-particle mass shell, For the present we shall continue our
calculation by simply introducing a fictitious photon mass 4 to cut off the
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infrared divergence in F(g?), leaving it for Chapter 14 to see how to use.

this result. ,

With a photon mass y, the denominator k? — ie in Eq. (11.3.1) would
be replaced with k? + u? — ie. The effect would then be to add a term
#2(1 — x) to the cubed quantity in the denominators of Egs. (11.3.3)-
(11.3.7), (11.3.11), (11.3.20), and (11.3.22). Eq. (11.3.23) then is replaced
with

2 222
F@) =1+ o e + o [ax [Ty

8m (2r)4
" —m?[x? —4x 4+ 2] — *[y(x —y) + 1 — x] m?[x* — 4x + 2]
m?x? + q2y(x — y) + p2(1 — x) m?x? + p*(1 — x)

—In {mzxz T4y —y) + 10 _X)H . (11.3.24)

m2x% 4+ u?(1 — x)

This integral is now completely convergent. It can be expressed in terms
of Spence functions, but the result is not particularly illuminating. For
our purposes in Chapter 14, it will be sufficient to calculate the behavior
of F(q%) for small g*>. We already know from the Ward identity that

(0) =1—G(0) =1+ €?/8n2, so let us consider the first derivative F'(¢?)
at g> = 0. Accordmg to Eq. (11 3.24), this is

F/(0) = 7'(0) + 2 5 )4/ dx/ dy

2(x —y)+1—x  m?[x* —dx +2]y(x — y) :
{_ m?x? + p2(1 — x) [m?x? + (1 — x))? } - (11.3.25)

The vacuum polarization contribution is given by Eq. (11.2.22) as

2
/ _ e
| 7' (0) = COnd - (11.3.26)
Dropping all terms proportional to powers of u/m in Eq. (11.3.25), we
then have®
2 : 2
) e U 2 1 .
= — 11.3.27
PO = s {m (m2> T3t 4} {11.3:27)

with the term %— the contribution of vacuum polarization. On the other
hand, Eq. (11.3.13) shows that G(q?) has a finite derivative at g% = 0,

2
/ €
= . 32

O (113.28)

* The y-integral is trivial. The x-integral is most easily calculated in the limit x < m by dividing
the range of integration into two parts, one from 0 to s, where u/m < s < 1, and the second
from s to 1.
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These results are most conveniently expressed in terms of the charge form

factor Fy(4?), defined by the alternative representation (10.6.15) of the
vertex function

w(p’, " )T(p', phu(p, o)
= a(p',0) [Y*Fi(g) + by "] (f — V)| up, o). (11329)
According to Eqs. (10.6.17) and (10.6.18),

Fi(¢%) = F(¢®) + G(g?) . (11.3.30)
For |¢%| < m?, this form factor is approximately
2 2 ' 2
Nat14 & (L w23
Fi(g°) ~ 1+ 472 (mz) [ln <m2> + s + 4J . (11.3.31)

This may be expressed in terms of a charge radius a, defined by the limiting
behavior of the charge form factor for q°> — 0:

Fi(¢®) > 1—q%%/6 . (11.3.32)

(This definition is motivated by the fact that the average of exp(iq-x) over
a spherical shell of radius a goes as 1 —q*a®/6 for ¢%a% < 1.) We see that
the charge radius of the electron is given by

2 2
2_ __¢ £y, 2.3
to() ] o
We will see in Chapter 14 that for electrons in atoms the role of the
photon mass is played by an effective infrared cutoff that is much less

than m, so the logarithm here is large and negative, yielding a positive
value for g2 '

11.4 Electron Self-Energy

We conclude this chapter with a calculation of the electron self-energy
function. This by itself does not have any direct experimental implications,
but some of the results here will be useful in Chapter 14 and Volume II.

As in Section 10.3, we define i(2n)4[2*(p)] g as the sum of all graphs
with one incoming and one outgoing electron line carrying momenta p
and Dirac indices o and B respectively, with the asterisk indicating that
we exclude diagrams that can be disconnected by cutting through some
internal electron line, and with propagators omitted for the two external
lines. The compléte electron propagator is then given by the sum

[=i27) S (0)] = [—i2m)~*s(p)] \
+ [=2m) S ONi2m) S ()] [~i2m) S ()] +- ... , (114.1)
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/\/\T\/\
- L .

Figure 11.6. The one-loop diagram for the electron self-energy function. As
usual, the straight line represents an electron; the wavy line is a photon.

where

—ip,+me

S(p) = o

(11.4.2)

The sum is trivial, and gives

SQ) =l f+me—2(p)—ie] ™. (11.43)

In lowest order there is a one-loop contribution to X*, given by Figure
11.6:

. * —i o
1) T ) = [ ke [ 2]

X [(2m)*ey’] [(2::)4 (p_ ii;fmx;} [@2n)'er”)

or more simply

S opl®) = i [ [
oop (2n)* k% —ie
P(—ip+if+ me)vp]
(p—kp+m;—ie |~
(This is in Feynman gauge; amplitudes with charged particles off the mass
shell are not gauge-invariant.) For use in our calculation of the Lamb

shift, it will be convenient to use a method of regularization introduced
by Pauli and Villars.® We replace the photon propagator (k* —ie)~! with

L
k2 —ie k24 p2—ie’

so that the electron self-energy function is

) ie? 4 1 1
1 100p(P) = (2m)4 /d k [kQ —ie kX4 U2 — ie]
[V"(—i Prik+ me)vp]
X — :
(p—k)? +m; —ie
Later we can drop the regulator by letting the regulator mass u go to

infinity. In Chapter 14 we will also be interested in the case where u < me.
We again use the Feynman trick to combine denominators, and recall

x (11.4.4)

(11.4.5)
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that y#y*y, = —2y* and YPy, = 4. This gives

ie?

Zionp) = gyos [ % G~ )+,

1 1
8 /0 dx {((k — x)? + P2 X(1 — x) + m2x — ie)?
1
((k— px)? 4+ p?x(1 — x) + m2x + w1 —x) — ie)zJ (114.6)

Shifting the variable of integration k — k + px and rotating the contour
of integration gives |

Zitoop(®) = s | dx i1 =) 44, |

1 . 1
* [(xz + (1 =)+ m2xP? (% + px(l — ) + mix 4 21— x»z} |

(11.4.7)
The x-integral is trivial:
. ——72262 1 .
Zitoop(P) = gy | dx 1201 = x) § + dm]
2 2 2
p™x(1 —x) + mZx + (1 — x)
X In < RS S . (114.8)

The interaction (11.1.9) also contributes a renormalization counterterm
—(Z2 = 1)(i p +m,) + Z,6m, in 2*(p), with Z, and 6m, determined by the
condition that the complete propagator S’(p) regarded as a function of i yf
should have a pole at i f = —m, with residue unity. (As we shall see in the
next chapter, this makes X* finite as p— oo to all orders in e.) In lowest
order, this gives

om, = — EI loop ip=—m,
2m,m%e? 1 m2x? + 12(1 — x)
= 1 1 £ 11.4.9
o dx [14x] In 5 , (11.4.9)

0%}
Zy—1=—j Lloop

0 ﬁ i pf=—me

2m2e? 1 m2x? + 12(1 — x)
=—(2n)4/0 dx {(1——x)1n< 2

2031 — x)2(1 + X)
x(m2xT 21— x) [

(11.4.10)



496 11 One-Loop Radiative Corrections

(To this order, we do not distinguish between dm, and Z,6m,.) Dropping
terms that vanish for u?> — oo, Eqs. (11.4.8)~(11.4.10) yield

. u*(1—x)
leoop(p) 2 )4 / dx 21(1——x)¢+4me 1 (pzx(l—x)—l—mgx) >

(11.4.11)
2m,m?e? [1 p(1—x)\
L /O dx [1 4] In (W , (11.4.12)
—272e? 1 (1 — x) 2(1 — x?)
Zy—1= o) /0 dx {(1—x)ln< " — ” .
(11.4.13)

Inspection then shows that in the complete self-energy function the In y?
terms cancel, leaving us with

*

z“order e2(p) = EI loop(p) —(Za = 1)(i P + me) + Z26m,

_ —2n%e? ! _ m2(1 — x)
- /0 dx {[1(1 —x) P +2m] In (pzx(l P m%x)

—mo[1 + ] In <1 ‘x>

x2

_ 1)
G +m) {(I—x)ln(1x2x>—2(l x)”. (11.4.14)

X

There is still a divergence from the behavior of the last term as x — 0,
which can be traced to the singular behavior of the integral over the
photon momentum k in Eq. (11.4.5) at k? = 0, when we take p? at the
point p> = —m?2 where we evaluated Z, — 1. Such infrared divergences
will be discussed in detail in Chapter 13. For the present, the point that
concerns us is that the ultraviolet divergence has cancelled.

¥ %k ok

The result (11.4.9) for dom, is of some interest in itself. Note that
ome/m, > 0, as we would expect for the electromagnetic self energy
due to the interaction of a charge with its own field. But unlike the
classical estimates of electromagnetic self-energy by Poincaré, Abraham,
and others,” Eq. (11.4.9) is only logarithmically divergent in the limit
p — oo where the cutoff is removed. In this limit:

6meme? i
Ome — o In (%) . (11.4.15)

In our calculation of the Lamb shift in Section 14.3 we will be interested



Appendix  Assorted Integrals 497

in the opposite limit, x < m,. Here Eq. (11.4.9) gives

e’ 3u |
ome - 2E [1 = S +J . (11.4.16)

Appendix  Assorted Integrals

In order to combine the denominators of N propagators, we need to
replace a product like D7'D7... Dy! with an integral of a function that
involves a linear combination of D1, Dy, ...Dy. For this purpose it is
often convenient to make use of the formula

v e [P "
=(N—-1)! [ dx XN—
DiD,.. Dy /0 1/0 2 /0 vt
X [D1xn—1 + Da(xn—2 — Xpy—1) + -+ + Dy(1 — x)I V. (1LA)

In this chapter we have used special cases of this formula for N = 2 and
N =3,

After combining denominators, shifting the four-momentum variable of
integration, Wick rotating, and using four-dimensional rotational invari-
ance, we commonly encounter integrals of the form

/ d4k (kZ)n
(k2 + v2)m

with (k% 4 y2ym coming from the combined propagator denominators,
and (k?)" coming from the propagator numerators and vertex momentum
factors. This is divergent for 2n + 4 > 2m, but the integral can be given a
finite value by analytically continuing the spacetime dimensionality from
4 to a complex value d. To evaluate the resulting integral, we use the
well-known formula

/oo g - (£/2) T (m—¢/2)
0 (k2 4 v2)m 2T (m) ’
where £ = d + 2n. We used this formula in the special cases n = 0, m = 2
and n = 1,m = 2 in Section 11.2. '

Ultraviolet divergences manifest themselves in Eq. (11.A.2) as poles in

the factor I'(m —£/2) = T(m — n — d/2) as d — 4 with fixed integer n. For
2 +n = m, this factor goes as

r <4:_d> L (11.A.3)

(11.A.2)

2 d—4
where y = 0.5772157 - - - is the Euler constant. The limiting behavior for

2+ n > m can be obtained from (11.A.3) and the recursion relation for
Gamma functions.
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Problems

. Calculate the contributions to the vacuum polarization function 7(g?)

and to Z3 of one-loop graphs involving a charged spinless particle
of mass m;. What effect does this have on the energy shift of the 2s
state of hydrogen, if mg >> Zom,?

Suppose that a neutral scalar field ¢ of mass my has an interaction
gopy with the electron field. To one-loop order, what effect does
this have on the magnetic moment of the electron? On Z,?

. Consider a neutral scalar field ¢ with mass mg4 and self-interaction

g$*/6. To one-loop order, calculate the S-matrix element for scalar—
scalar scattering,

To one-loop order, calculate the effect of the neutral scalar field of
Problem 2 on the mass shift dm, of the electron.
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