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(2.5.47)) that takes the three-axis into the direction of p, and
10 0 0
0 1 0 0

B(lpl) = 0 0 y \/yT—_l
0 0 y2—1 y

Then for an arbitrary rotation %
W (%.p) = R(#p)B~ (PR~ (%)% R(D)B(pHR(b) .

But the rotation R™(%p)% R(p) takes the three-axis into the direction ,
and then into the direction #p, and then back to the three-axis, so it must
be just a rotation by some angle 6 around the three-axis

cosd sinf 0 O
o N _ | .—sinf cosf# 0 O
R™YZP)ZR(P) = R(H) = 0 0 10
0 0 0 1

Since R(8) commutes with B(|p|), this now gives

W (2, p) = R(Zp)B~(Ip))R(O)B(Ip)R~(H) = R(ZP)R(O)R (D)
and hence ‘

W(R,p) =R

as was to be shown. Thus states of a moving massive particle (and,
by extension, multi-particle states) have the same transformation un-
der rotations as in non-relativistic quantum mechanics. This is another
piece of good news — the whole apparatus of spherical harmonics,
Clebsch—Gordan coeflicients, etc. can be carried over wholesale from
non-relativistic to relativistic quantum mechanics.

Mass Zero

First, we have to work out the structure of the little group. Consider
an arbitrary little-group element WH,, with W#,k' = k*, where k* is
the standard four-momentum for this case, k* = (0,0,1,1). Acting on a
time-like four-vector t* = (0,0,0, 1), such a Lorentz transformation must
yield a four-vector Wt whose length and scalar product with Wk = k are
the same as those of ¢:

(W (W), = tht, = —1,
Any four-vector that satisfies the second condition may be written

(Wt)ﬂ = (Oﬂ,ﬁ,c,l + C)
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and the first condition then yields the relation
{ = (*+pY/2. (2.5.25)

It follows that the effect of WH, on t" is the same as that of the Lorentz
transformation

1 0 —«o o
Sh@B) = | ; 1:ﬁc g . (2.5.26)
« B - 1+4¢

This does not mean that W equals S(a,f), but it does mean that
S~ )W is a Lorentz transformation that leaves the time-like four-
vector (0,0,0,1) invariant, and is therefore a pure rotation. Also, S¥, like
WH, leaves the light-like four-vector (0,0,1,1) invariant, so S~ pYW
must be a rotation by some angle 6 around the three-axis

S~(e, pYW = R(9), (2.5.27)
where.
cosf sing 0 O
RE,(0) = —s(1)n6 COSH (i 8
0 0 01
The most general element of the little group is therefore of the form
W (0,0, B) = S(a, PIR(O) . (2.5.28)

What group is this? We note that the transformations with 0 = 0 or
with o = = 0 form subgroups: '

S@, B)S(a, ) = S@+ o, p+ ) (2.5.29)

R(B)R(A) = R(6 +0) . (2.5.30)

These subgroups are Abelian — that is, their elements all commute with
each other. Furthermore, the subgroup with 6 = 0 is invariant, in the
sense that its elements are transformed into other elements of the same
subgroup by any member of the group

R(0)S (o, ﬁ)R—l(B) = S(acosf + B sinf,—asin6 + Bcosf). (2.531)

From Egs. (2.5.29)-(2.5.31) we can work out the product of any group
clements. The reader will recognize these multiplication rules as those
of the group IS0(2), consisting of translations (by a vector (,f)) and
rotations (by an angle 6) in two dimensions.

Groups that do not have invariant Abelian subgroups have certain
simple properties, and for this reason are called semi-simple. As we have
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seen, the little group 7S0(2) like the inhomogeneous Lorentz group is not
semi-simple, and this leads to interesting complications. First, let’s take

a look at the Lie algebra of ISO(2). For 0,q, 8 infinitesimal, the general
group element is

W(G, OC, ﬁ)#v = 5'“\; + CO'“V 5

0 6 —o «o

_| -0 0 —B B

=19 B0 0

- —f 0 0
From (2.4.3), we see then that the corresponding Hilbert space operator is
UWw(,a,p) =1+iad+ifB+i0Js, (2.5.32)

where A and B are the Hermitian operators

A=—JB 4 0=y, + Ky, (2.5.33)
B=—JB4J0=_J, +K;, (2.5.34)

and, as before, J3 = Jyp. Either from (2.4.18)~(2.4.20), or directly from
Egs. (2.5.29)-(2.5.31), we see that these generators have the commutators

[J3,4] = +iB, (2.5.35)
[J3,B] = —iA, (2.5.36)
[4,B] =0. (2.5.37)

Since A and B are commuting Hermitian operators they (like the momen-
tum generators of the inhomogeneous Lorentz group) can be simultane-
ously diagonalized by states Wy 45

AW ap = aPrap
BY¥ap = b¥iap .

The problem is that if we find one such set of non-zero eigenvalues of
A, B, then we find a whole continuum. From Eq. (2.5.31), we have

U[R®)]A UL [R(0)] = Acosd — Bsin®,
U[R(0)]B U [R(6)] = Asinb + Bcosb,
and so, for arbitrary 6,
A‘I‘,(f,a,b = (acos 0 — bsin G)T,?’a,b ,
BY] ., = (asin@+bcos0)¥]

where

¥ 5= UTH(RO) Prgp -
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Massless particles are not observed to have any continuous degree of
freedom like 0; to avoid such a continuum of states, we must require
that physical states (now called W,) are eigenvectors of A4 and B with
a=b=0:

AY¥y s = B¥;s =0. (2.5.38)
These states are then distinguished by the eigenvalue of the remaining
generator

VA TS (2.5.39)

Since the momentum k is in the three-direction, ¢ gives the component of
angular momentum in the direction of motion, or helicity.

We are now in a position to calculate the Lorentz transformation
properties of general massless particle states. First note that by use of the
general arguments of Section 2.2, Eq. (2.5.32) generalizes for finite o and

B to .
U(S(x, B)) = explind + if B) (2.5.40)
and for finite 0 to
U(R(8)) = exp(iJ30) . (2.5.41)

An arbitrary element W of the little group can be put in the form (2.5.28),
so that

U(W )W, = exp(iad + if B) exp(i0J3) ¥y = exp(ifo) ¥
and therefore Eq. (2.5.8) gives
DO’IO‘(W) = exp(iea)éa’a s
where 0 is the angle defined by expressing W as in Eq. (2.5.28). The
Lorentz transformation rule for a massless particle of arbitrary helicity is
now given by Egs. (2.5.11) and (2.5.18) as

0
UA)Y,o = (’;{’)) exp (i00(A, ) Papo (2.542)

with B(A; p) defined by '
W(A,p) = L™ (Ap)AL(p) = S (A, p), BA D) R(O(A,p)) . (2543)

We shall see in Section 5.9 that electromagnetic gauge invariance arises
from the part of the little group parameterized by « and .

At this point we have not yet encountered any reason that would forbid
~ the helicity o of a massless particle from being an arbitrary real number.
As we shall see in Section 2.7, there are topological considerations that
restrict the allowed values of ¢ to integers and half-integers, just as for
massive particles.
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To calculate the little-group element (2.5.43) for a given A and p, (and
also to enable us to calculate the effect of space or time inversion on these
states in the next section) we need to fix a convention for the standard
Lorentz transformation that takes us from k# = (0,0, %, «) to p*. This may
conveniently be chosen to have the form

L(p) = R(p)B(lpl/x) (2.5.44)
where B(u) is a pure boost along the three-direction:
1 0 0 0
B(u) = 01 0 0 (2.5.45)

0 0 W+1)/2u W?—1)/2u
0 0 W—1)/2u W*+1)/2u

and R(p) is a pure rotation that carries the three-axis into the direction
of the unit vector p. For instance, suppose we take p to have polar and
azimuthal angles 0 and ¢:

p = (sin 8 cos ¢, sin0sin @, cos6) . (2.5.46)

Then we can take R(P) as a rotation by angle 6 around the two-axis,
which takes (0,0,1) into (sin, 0,cos6), followed by a rotation by angle
¢ around the three-axis: '

U(R(p)) = exp(—iJ3) exp(—ifJ2) , (2.5.47)

where 0 < 0 <7, 0 < ¢ < 2m (We give U(R(p)) rather than R(p),
together with a specification of the range of ¢ and 0, because shifting
6 or ¢ by 2n would give the same rotation R(p), but a different sign
for U(R(p)) when acting on half-integer spin states.) Since (2.5.47) is a
rotation, and does take the three-axis into the direction (2.5.46), any other
choice of such an R(p) would differ from this one by at most an initial
rotation around the three-axis, corresponding to a mere redefinition of the
phase of the one-particle states.

Note that the helicity is Lorentz-invariant; a massless particle of a
given helicity ¢ looks the same (aside from its momentum) in all inertial
frames. Indeed, we would be justified in thinking of massless particles
of each different helicity as different species of particles. However, as
we shall see in the next section, particles of opposite helicity are related
by the symmetry of space inversion. Thus, because electromagnetic and
gravitational forces obey space inversion symmetry, the massless particles
of helicity 41 associated with electromagnetic phenomena are both called
photons, and the massless particles of helicity +2 that are believed to
be associated with gravitation are both called gravitons. On the other
hand, the supposedly massless particles of helicity +1/2 that are emitted
in nuclear beta decay have no interactions (apart from gravitation) that
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respect the symmetry of space inversion, SO these particles are given
different names: neutrinos for helicity —1/2, and antineutrinos for helicity
+1/2.

Even though the helicity of a massless particle is Lorentz-invariant, the
state itself is not. In particular, because of the helicity-dependent phase
factor exp(ic 0) in Eq. (2.5.42), a state formed as a linear superposition of
one-particle states with opposite helicities will be changed by a Lorentz
transformation into a different superposition. For instance, a general

one-photon state of four-momentum p may be written
where
o[>+ el =1,

The generic case is one of elliptic polarization, with |e.| both non-zero and
unequal. Circular polarization s the limiting case where either oy or O—
vanishes, and linear polarization is the opposite extreme, with o] =l
The overall phase of o4 and o has no physical significance, and for linear
polarization may be adjusted so that o— = o, but the relative phase is
still important. Indeed, for linear polarizations with o = o, the phase
of o, may be identified as the angle between the plane of polarization
and some fixed reference direction perpendicular to p. Eq. (2.5.42) shows
that under a Lorentz transformation A¥y, this angle rotates by an amount
6(A,p). Plane polarized gravitons can be defined in a similar way, and
here Eq. (2.5.42) has the consequence that a Lorentz transformation A
rotates the plane of polarization by an angle 20(A, p).

2.6 Space Inversion and Time-Reversal

We saw in Section 2.3 that any homogeneous Lorentz transformation is
either proper and orthochronous (e, DetA = +1 and A% = +1) or
else equal to a proper orthochronous transformation times either P or
T or PT, where 7 and 7 are the space inversion and time-reversal
transformations

4 0 00 {00 0
0 -1 00 010 0

- FH =

P o o 1ol 7T loo1 0
o o 01 00 0 —1

It used to be thought self-evident that the fundamental multiplication rule
of the Poincare group

U(A,a) UA,a0) = U(AA,Aa+7)
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tensors with an even total number of spacetime indices, and therefore
CPT #(x) [CPT]™! = #(—x) . (5.8.7)

More generally (and somewhat more easily) we can see that the same is
true for Hermitian scalars formed from the fields y7; 4B(x) belonging to one
or more of the general irreducible representations of the homogeneous
Lorentz group. Putting together our results in the previous section for the
effects of inversions on such fields, we find

CPT w8 (x) [CPT] " = (—1)?Py 2T (—x) . (5.8.8)

(For the Dirac field the factor (—1)?8 is supplied b§ the matrlx ys in
Eq. (5.8.3).) In order to couple together a product y;}, ' (x) wazbzz(x) - to
form a scalar #(x), it is necessary that both A1 +A4,+--- and Bi+By+--
be integers, so (—1)2B1+282+ = 1 and so a Hermitian scalar #(x) w111
automatically satisfy Eq. (5.8.7).

From Eg. (5.8.7) it follows immediately that CPT commutes with the
interaction V = [ d>x #(%,0):

CPTV [CPT] ! =V . (5.8.9)

Also, in any theory CPT commutes with the free-particle Hamiltonian H.
Thus the operator CPT, which has been defined here by its operation on
free-particle operators, acts on ‘in’ and ‘out’ states in the way described
in Section 3.3. The physical consequences of this symmetry pr1n01ple have
already been discussed in Sections 3.3 and 3.6.

5.9 Massless Particle Fields

Up to this point we have dealt only with the fields of massive particles.
For some of these fields, such as the scalar and Dirac fields discussed in
Sections 5.2 and 5.5, there is no special problem in passing to the limit
of zero mass. On the other hand, we saw in Section 5.3 that there is a
difficulty in taking the zero-mass limit of the vector field for a particle of
spin one: at least one of the polarization vectors blows up in this limit.
In fact, we shall see in this section that the creation and annihilation
operators for physical massless particles of spin j > 1 cannot be used to
construct all of the irreducible (4, B) fields that can be constructed for
finite mass. This peculiar limitation on field types will lead us naturally to
the introduction of gauge invariance.

Just as we did for massive particles, let us attempt to construct a
general free field for a massless particle as a linear combination of the
annihilation operators a(p, o) for particles of momentum p and helicity o,
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and the corresponding creation operators a‘f(p, o) for the antiparticles:”
pelx) = @ [ @Y [cap.olu(p.o) 7
g
+ La®t(p,0)vs(p, o) e"’l"«\‘] (5.9.1)

where now p® = |p|. The creation operators transform just like the one-
particle states in Eq. (2.5.42)

00U~ 0) = /B exp (19066, 1)l (i) . (592

0
UA)a! (p,0)U™(A) = (Ap’é) exp (i00(p, A)) ! (o, o), (59.3)
and hence also
0
U(A)a(p,s)UYA) = (’;{? exp(—iae(p,A))a(pA,a), (5.9.4)

where pp = Ap, and 0 is the angle defined by Eqs. (2.5.43). Hence if we
want the field to transform according to some representation D(A) of the
homogeneous Lorentz group

UA)pe () U (A) = D DA wz(Ax) , (5.9.5)
7

then we must take the coefficient functions u and v to satisfy the relations

0
up(par0) exp (100, A)) =/ 5 > DrAuelp0),  (596)
(Ap)® %

0
v7(pa,0) exp ( —i00(p,A)) = (KW Z/: Dy(Aelpo)  (597)

in place of Egs. (5.1.19) and (5.1.20). (Again, p» = Ap.) As in the massive
particle case, we can satisfy these requirements by setting (in place of

* We deal here with only a single species of particle, and drop the species label n. Also, x and A
are constant coefficients to be determined by the requirement of causality with some convenient
choice of normalization of the coefficient functions u, and vy.
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Egs. (5.1.21) and (5.1.22))

uz(p, ) f > Dy (Z(p) ur(k, o), (5.9.8)

vy ( ZD,/ p) ve(k, o), (5.9.9)

where k is a standard momentum, say (0,0,k), and #(p) is a standard
Lorentz transformation that takes a massless particle from momentum k
to momentum p. Also, in place of Egs. (5.1.23) and (5.1.24), the coefficient
functions at the standard momentum must satisfy

(k. 0) oxp (io0(k, W) = > Dgs(W hue(k, o) (5.9.10)
4

vs(k, o) exp ( —ig(k, W)) =" Dy, (W) (k,0) (5.9.11)
£

where WH, is an arbitrary element of the ‘little group’ for four-momentum
k = (k, |k]), i.e., an arbitrary Lorentz transformation that leaves this four-
momentum invariant.

We can extract the content of Egs. (5.9.10) and (5.9.11) by considering
separately the two kinds of little-group elements in Eq. (2.5.28). For a
rotation R(6) by an angle 6 around the z-axis, given by Eq. (2.5.27),

cosf@ sinf 0 O
—sinf cosf 0 O

RI‘V(G) = 0 0 10 s
0 0 0 1
we find from Eqgs. (5.9.10) and (5.9.11)
)e'”? ZDM( 0))ue(k, ) (59.12)
(k, o)e "0 = ZDM( 0)) ve(k, o) . (5.9.13)

For combined rotations and boosts S(x, f) in the x — y plane, given by
(2.5.26),

St(o, B) =

= +42/2,
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Egs. (5.9.10) and (5.9.11) give
us(k, 6) = ZDZ,(S(a,ﬁ))W(k,o) , (5.9.14)
‘

vp(k,0) =3 Dy, (S(oc, ﬁ)) ve(k, o) . (5.9.15)
¢

Egs. (5.9.12)-(5.9.15) are the conditions that determine the coefficient
functions u and v at the standard momentum k; Eqs. (5.9.8) and (5.9.9)
then give them at arbitrary momenta. The equations for v are just the
complex conjugates of the equations for u, so with a suitable adjustment
of the constants « and A we may normalize the coefficient functions so
that

v(p,0) = ue(p, o) . (5.9.16)

The problem is that we cannot find a.u, that satisfies Eq. (5.9.14) for
general representations of the homogeneous Lorentz group, even for those
representations for which it is possible to construct fields for particles of
a given helicity in the case m = 0.

To see what goes wrong here, let’s try to construct the four-vector
[%,%)] field for a massless particle of helicity +1. In the four-vector
representation, we have simply

DH,(A) = A¥, .

It is conventional to write the coefficient function u, here in terms of a
‘polarization vector’ e:

uu(p, ) = (20°) 2 eu(p,0), (5.9.17)
so that Eq. (5.9.8) gives
et(p,0) = L(p)ye’(k, o). (5.9.18)
Also, Egs. (5.9.12) and (5.9.14) read here
e'(k, o) €% = R(O)", €' (k,0), (5.9.19)
et(k, o) = S(o, B)*e’ (k, o) . (5.9.20)

Eq. (5.9.19) requires that (up to a constant which can be absorbed into

the coefficients x and A),
e!(k,+1) = (1,1i,0,0)//2 . (5.9.21)

But then Eq. (5.9.20) would require also that o £ i = 0, which is impos-
sible for general real o, . We therefore cannot satisfy the fundamental
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requirgment (5.9.14) or (5.9.10); instead, we have here
i (W (0, ), 1) = 5700 DR (0) (o 21

= exp (£i0) {e“(k, +1)+ Ml{“} . (59.22)

J2IK|
We have thus come to the conclusion that no four-vector field can be
constructed from the annihilation and creation operators for a particle of
mass zero and helicity +1.
Let’s temporarily close our eyes to this difficulty, and go ahead anyway,
using Egs. (5.9.18) and (5.9.21) to define a polarization vector for arbitrary
momentum, and take the field as

a;t(x') = /d3p(2ﬂ)—3/2(2p0)_1/2

x 3 edn,0)e™ap o) + cupo) e Pt p ). (5923
o=+l
We will come back later to consider how such a field can be used as an
ingredient in a physical theory.
The field (5.9.23) of course satisfies

Oa*(x)=0. (5.9.24)

Other properties of the field follow from those of the polarization vector.
(We shall need these properties of the polarization vector later when we
come to quantum electrodynamics.). Note that the Lorentz transformation
#(p) that takes a massless particle momentum from k to p may be written
as a ‘boost’” %(|p|) along the ,-axis which takes the particle from energy
k| to energy pl, followed by a standardized rotation R(p) that takes the
,-axis into the direction of p. Since ¢'(k,+1) is a purely spatial vector
with only x and y components, it is unaffected by the boost along the
z-axis, and 8o

et(p, +1) = R(p)'y ¢’ (k, 1) - (5.9.25)
In particular, €°(k,+1) =0 and k - e(k,+1) =0 so
Op,+1) =0 (5.9.26)
and
p-e(p, =) =0. (5.9.27)
It follows that
O(x)=0 (5.9.28)

and
V-a(x)=0. (5.9.29)
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As we shall see in Chapter 9, these are the conditions satisfied by the
vacuum vector potential of electrodynamics in what is called Coulomb or
radiation gauge.

The fact that a° vanishes in all Lorentz frames shows vividly that a*
cannot be a four-vector. Instead, Eq. (5.9.22) shows that for a general mo-
mentum p and a general Lorentz transformation A, in place of Eq. (5.9.6)
we have

e!(pa, 1) exp (£i0(p, A)) = D*,(A) €' (p, 1) + p"Qy(p,A),  (5.9.30)
so that under a general Lorentz transformation
U(A)a,,(x)U_l(A) = A"yay(Ax) + 9,Q(x, A) (5.9.31)

where Q(x,A) is a linear combination of annihilation and creation op-
erators, whose precise form will not concern us here. As we will see in
more detail in Chapter 8, we will be able to use a field like a(x) as an
ingredient in Lorentz-invariant physical theories if the couplings of a*(x)
are not only formally Lorentz-invariant (that is, invariant under formal
Lorentz transformations under which a* — A#, "), but are also invariant
under the ‘gauge’ transformations a, — a, 4 8, Q. This is accomplished by
taking the couplings of g, to be of the form a,j*, where j is a four-vector
current with 0, j* = 0.

Although there is no ordinary four-vector field for massless particles of
helicity +1, there is no problem in constructing an antisymmetric tensor
field for such particles. From Eq. (5.9.22) and the invariance of k* under
the little group we see immediately that

DY, (W (0,0, ) D" (W (6,0, §)) (ke 1) — ke (k, 1))
= et (ke (k, 1) — ' e (K, 1)) (5.9.32)

This shows that the coefficient function that satisfies Eq. (5.9.6) for the
antisymmetric tensor representation of the homogeneous Lorentz group
is (with an appropriate choice of normalization)

w”(p, £1) = i2m)22p°) 2 [pte! (p, 1) — plef(p,+1) 1, (5.9.33)

where ef(p,£1) is given by Eq. (59.25). Using this together with
Eq. (5.9.23) gives the general antisymmetric tensor field for massless par-
ticles of helicity +1 in the form

f;w = a;tav - avau . (5.9.34)

Note that this is a tensor even though a* is not a four-vector, because
the extra term in Eq. (5.9.31) drops out in Eq. (5.9.34). Note also that
Egs. (5.9.34), (5.9.24), (5.9.28), and (5.9.29) show that f*' satisfies the
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vacuum Maxwell equations:

auf* =0, ©(59.35)

"M By fuw = 0. (5.9.36)

To calculate the commutation relations for the tensor fields we need
sums over helicities of the bilinears efe"™. The explicit formula (5.9.21)
gives

i ; kil
S ik 0)el(k,0)" = 8y — 7
o=+1 |k|2
and so, using Eq. (5.9.25),
. o i)
S él(p,o)el(p,0)" = 5ij—’l’—%. (5.9.37)
o=+1 p

A straightforward calculation gives then

[f (%), fpa(J’)T] = (27’5)_3 [=1up0y0s + MvpOpls + HuoOv0p — r]w@#@p]
TN

This clearly vanishes for x° = y* if and only if
k> = A1 (5.9.39)

in which case since f,, is a tensor the commutator also vanishes for all
space-like .separations. Eq. (5.9.39) also implies that the commutator of
the o* vanishes at equal times, and as we shall see in Chapter 8 this is
enough to yield a Lorentz-invariant S-matrix. The relative phase of the
creation and annihilation operators can be adjusted so that k = 4; the
fields are then Hermitian if the particles are their own charge-conjugates,
as is the case for the photon.

Why should we want to use fields like a*(x) in constructing theories of
massless particles of spin one, rather than being content with fields like
f#*(x) with simple Lorentz transformation properties? The presence of the
derivatives in Eq. (5.9.34) means that an interaction density constructed
solely from f,, and its derivatives will have matrix elements that vanish
more rapidly for small massless particle energy and momentum than one
that uses the vector field a,. Interactions in such a theory will have
a correspondingly rapid fall-off at large distances, faster than the usual
inverse-square law. This is perfectly possible, but gauge-invariant theories
that use vector fields for massless spin one particles represent a more
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general class of theories, including those that are actually realized in
nature.

Parallel remarks apply to gravitons, massless particles of helicity +2.
From the annihilation and creation operators for such particles we can
construct a tensor R,,,, with the algebraic properties of the Riemann—
Christoffel curvature tensor: antisymmetric within the pairs u,v and p,o,
and symmetric between the pairs. However, in order to incorporate the
usual inverse-square gravitational interactions we need to introduce a field
hy that transforms as a symmetric tensor, up to gauge transformations
of the sort associated in general relativity with general coordinate trans-
formations. Thus in order to construct a theory of massless particles of
helicity £2 that incorporates long-range interactions, it is necessary for
it to have a symmetry something like general covariance. As in the case
of electromagnetic gauge invariance, this is achieved by coupling the field
to a conserved ‘current’ 0*', now with two spacetime indices, satisfying
0,0 = 0. The only such conserved “tensor is the energy-momentum
tensor, aside from possible total derivative terms that do not affect the
long-range behavior of the force produced.” The fields of massless parti-
cles of spin j > 3 would have to couple to conserved tensors with three
or more spacetime indices, but aside from total derivatives there are none,
S0 high-spin massless particles cannot produce long-range forces.

#* ok ok

The problems we have encountered in constructing four-vector fields for
helicities &1 or symmetric tensor fields for helicity 42 are just special cases
of a more general limitation. To see this, let’s consider how to construct
fields for massless particles belonging to arbitrary representations of the
homogeneous Lorentz group. As we saw in Section 5.6, any representation
D(A) of the homogeneous Lotentz group can be decomposed into (24 +
1)(2B + 1)-dimensional representations (A4, B), for which the generators of
the homogeneous Lorentz group are represented by

(Fi)aas = itk [ e s + TPy b
(Fk0)ap ap = —1 [(JIEA) )aa St — (T By 5a’a] ,

where JU) are the angular-momentum matrices for spin j. For 0 infinites-

** If 9#1IN is a tensor current satisfying O 01171 = 0, then [ dPx 6%2N js a conserved quantity
that transforms like a tensor of rank N — 1. The only such conserved tensors are the scalar
‘charges’ associated with various continuous symmetries, and the energy-momentum four-vector.
The conservation of any other four-vector, or any tensor of higher rank, would forbid all but
forward collisions.
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imal, D(R(0)) = 1 +i 120, so Egs. (5.9.12) and (5.9.13) give
augp(k,a) = (a + bjua(k, 0) ,

—ava(k, o) = (a + b)vap(k, 0) ,

and so ug(k, o) and vgp(k, o) must vanish unless 0 = a+band o0 = —a—>b,
respectively. Also, letting oo and  become infinitesimal in Eq. (5.9.14) gives

0= (731 + Fot)abav Uar(k 0)
= (U + 1T qtian(k, @) + U5 — T Yoprttay (8, 0)
0= (I3 + Ffo)aar tav(k o)
= (=D 4T sk, 0) + (—IP = TP v (k. 0)
or more simply
(JﬁA’ —i Jgﬂ)aa, ugy(k,0) =0,
(1P +i ) (o) =0 .
These require that ug(k, g) vanishes unless
a=—-A4, b= +B (5.9.40)

and the same is obviously also true of vg(k, o). Putting this together, we
see that a field of type (4, B) can be formed only from the annihilation
operators for a massless particle of helicity o and the creation operators
for the antiparticle of helicity —o, where

c=B—A. (5.9.41)

For instance, the ( ,0) and (0, {) parts of the Dirac field for a massless
particle can only destroy particles of helicity — ; and + i respectively,
and create antiparticles of helicity + { and — 1, respectively. In the ‘two-
component’ theory of the neutrino, there is only a (1,0) field and its
adjoint, so neutrinos have helicity — 4 and antineutrinos helicity + } in
this theory.

By the same methods as in Section 5.7, it can be shown that the (j,0) and
(0, j) fields for massless particles of spin j (ie, helicity Fj) commute with
each other and their adjoints at space-like separations if the coefficients
of the annihilation and creation terms in Eq. (5.9.1) satisfy Eq. (5.9.39).
The relative phase of the annihilation and creation operators may then be
adjusted so that these coefficients are equal. It is easy to see that the fields
for a massless particle of spin j of type (4,4 + j) or (B + j, B) are just
the 2Ath or 2Bth derivatives of fields of type (0, ) or (j,0), respectively,
so these more general fields do not need to be considered separately here.

We can now see why it was impossible to construct a vector field for
massless particles of helicity +1. A vector field transforms according to
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the (3, 3) representation, and hence according to Eq. (5.9.41) can only
describe helicity zero. (It is, of course, possible to construct a vector field
for helicity zero — just take the derivative Ou$ of a massless scalar field
¢.) The simplest covariant massless field for hehclty +1 has the Lorentz
transformation type (1 0) @ (0,1); that is, it is an antisymmetric tensor
fuv. Similarly, the simplest covariant massless field for helicity +2 has the
Lorentz transformation type (2,0) @ (0,2): a fourth rank tensor which like
the Riemann—Christoffel curvature tensor is antlsymmetnc w1th1n each
pair of indices and symmetric between the two pairs.

The discussion of the inversions P,C, T given in the previous section can
be carried over to the case of zero mass with only obvious modifications.

Problems

1. Show that if the zero-momentuni coefficient functions satisfy the
conditions (5.1.23) and (5.1.24), then the coefficient functions (5.1.21)
and (5.1.22) for arbitrary momentum satisfy the defining cond1t10ns
Egs. (5.1.19) and (5.1.20).

2. Consider a free field ) (x) which annihilates and creates a self-
charge-conjugate particle of spin % and mass m # 0. Show how
to calculate the coefficient functions uy(p, o), which multiply the
annihilation operators a(p, o) in this field, in such a way that the
field transforms under Lorentz transformations like a Dirac field
w¢ with an extra four-vector index p. What field equations and
algebraic and reality condltlons does this field satisfy? Evaluate the
matrix P*'(p), defined (for p?> = —m?) by

Zu(p, " (0, 0) = (2p°) "' P/(p).

What are the commutation relations of this field? How does the field
transform under the inversions P, C, T? ‘

3. Consider a free field h*'(x) satisfying h**(x) = h"#(x) and hy(x) =0,
which annihilates and creates a particle of spin two and mass m %+
0. Show how to calculate the coefficient functions u*”(p, o), which
multiply the annihilation operators a(p, ) in this field, in such a way
that the field transforms under Lorentz transformations like a tensor.
What field equations does this field satisfy? Evaluate the function
P1id(p), defined by

> (0,0 (b, 0) = (20°) 7 PIA(p).
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