VI I .5 Grand Unification

Crying out for unification

A gauge theory is specified by a group and the representations the matter fields belong
to. Let us go back to chapter VII.2 and make a catalogue for the SU3) ® SU (2) ® U(1)
theory. For example, the left handed up and down quarks are in a doublet ( « ), With
hypercharge 1Y = {. Let us denote this by (3, 2, $)r, with the three numbers indicating
how these fields transform under SU(3) ® SU(2) ® U(1). Similarly, the right handed up
quark is (3, 1, 2) ;. The leptons are (1, 2, —1)j and (1, 1, —1) g, where the “1” in the first
entry indicates that these fields do not participate in the strong interaction. Writing it all
down, we see that the quarks and leptons of each family are placed in

(3, 2; %)L; (3: 1’ %)R: (3: 1: _—%)R: (1: 2’ “%)L: and (1’ 1! _1)R . (1)

This motley collection of representations practically cries out for further unification.
Who would have constructed the universe by throwing this strange looking list down?

What we would like to have is a larger gauge group G containing SU3) ® SU(2) ®
U(1), such that this laundry list of representations is unified into (ideally) one great big
representation. The gauge bosons in G [butnotin SU(3) ® SU(2) ® U (1) of course] would
couple the representations in (1) to each other.

Before we start searching for G, note that since gauge transformations commute with
the Lorentz group, these desired gauge transformations cannot change left handed fields
to right handed fields. So let us change all the fields in (1) to left handed fields. Recall from
exercise I1.1.9 that charge conjugation changes left handed fields to right handed fields
and vice versa, Thus, instead of (1) we can write

3,29, 351L-9,0651 1,12 -1, and (1, 1, 1) (2)

We now omit the subscripts L and R: everybody is left handed.
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A perfect fit

The smallest group that contains SU(3) ® SU(2) ® U(1) is SU(5). (If you are shaky
about group theory, study appendix B now.) Recall that SU (5) has 5% — 1= 24 generators,
Explicitly, the generators are represented by 5 by 5 hermitean traceless matrices acting on
five objects we denote by y# with w = 1, 2, . . ., 5. [These five objects form the fundamental
or defining representation of SU(5).]

It is now obvious how we can fit SU(3) and SU(2) into SU(5). Of the 24 matrices that

generate SU (5), eight have the form ( ‘3 8 ) and three the form ( 8 g ), where A represents

3 by 3 hermitean traceless matrices (of which there are 32 — 1 =8, the so-called Gell-
Mann matrices) and B represents 2 by 2 hermitean traceless matrices (of which there
are 2% — 1= 3, namely the Pauli matrices). Clearly, the former generate an SU(3) and the
latter an SU(2). Furthermore, the 5 by 5 hermitean traceless matrix

1
-1 0 o0 00

0 -1 0 0 0

ly=L 0o o0 -} 0 0 (3)
0 0 0 1 0
o 0 0 0 3

generates a U(1). Without being coy about it, we have already called this matrix the
hypercharge 1.

In other words, if we separate the index u = {«, i} witha =1,2,3 and i =4, 5, then
the SU(3) acts on the index o and the SU(2) acts on the index i. Thus, the three objects
P transform as a 3-dimensional representation under SU(3) and hence could be a 3
or a 3*. Let us choose ¢ as transforming as 3; we will see shortly that this is the right
choice with ¥/2 given as in (3). The three objects %% do not transform under SU(2)
and hence each of them belongs to the singlet 1 representation. Furthermore, they carry
hypercharge —1 as we can read off from (3). To sum up, ¥ transform as (3,1, —3)
under SU(3) ® SU(2) ® U(1). On the other hand, the two objects ' transform as 1under -
SU(3) and 2 under SU(2), and carry hypercharge }; thus they transform as (1, 2, 7). In
other words, we embed SU (3) ® SU(2) ® U(1) into SU (5) by specifying how the defining
representation of SU(5) decomposes into representations of SUB) Q@ SUR) @ U(1)

53 L-bHew2) | | (4)
Taking the conjugate we see that
351 @2 -3 -(3)

Inspecting (2), we see that (3%, 1, 1) and (1, 2, —1) appear on the list. We are on the right
track! The fields in these two representations fit snugly into 5*.
This accounts for five of the fields contained in (2); we still have the ten fields

3,2, 3,3 1,-%,and (1,1, 1) (6)
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Consider the next representation of SU(5) in order of size, namely the antisymmetric
tensor representation ¥+#¥ . Its dimension is (5 x 4)/2 = 10, precisely the number we want,
if only the quantum numbers under SU(3) ® SU(2) ® U (1) work out!

Sinceweknowthat5— (3,1, —1) @ (1, 2, 1), we simply (again, see appendix B!) have to
work out the antisymmetric product of (3, 1, = & (1, 2, 1) with itself, namely the direct
sum of (where ® 4 denotes the antisymmetric product)

G 1L-D®G.1L-D=0"1-} ) o

(. 1L-9®4 (1,2 H=03,2 -1+hH=032 1y 8
and

L2, he, 12 =111 o

[ will walk you through (7):In SU(3) 3®, 3 = 3* (remember ¢;;; from appendix B?), in
SU(2) 1®4 1=1, and in U(1) the hypercharges simply add —i-3=-1]

Lo and behold, these SU(3) ® SU(2) ® U(1) representations form exactly the collection
of representations in (6). In other words,

10— (3,2, %)@(3* L-9He 1,1, 0y (10)

The known quark and lepton fields in a given family fit perfectly into the 5* and 10
representations of SU(5)!

I have just described the SU (5) grand umﬁed theory of Georgi and Glashow. In spite of
the fact that the theory has not been directly verified by experiment, it is extremely difficult
for me and for many other physicists not to believe that SU (5) is atleast structurally correct,
in view of the perfect group theoretic fit.

It is often convenient to display the contents of the representation 5* and 10, using the
names given to the various fields historically. We write 5* as a column vector

wy ()
w":(wj>= ’ )

e

and the 10 as an antisymmetric matrix

g = (B g )

d
—u 0 u d u
(12)
d
0

—u —u —u —e 0

(I suppressed the color indices.)
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Deepening our understanding of physics

Aside from its esthetic appeal, grand unification deepens our understanding of physics
enormously. :

1. Ever wondered why electric charge is quantized? Why don’t we see particles with
charge equal to /7 times the electron’s charge? In quantum electrodynamics, you could
petfectly well write down

L= Pl — i) — mlyr +F[i(B — in/T A —m I + - - 13

In contrast, in grand unified theory A, couples to a generator of the grand unifying
gauge group, and you know that the generators of any group such as SU(N) (that is
not given by the direct product of U (1) with other groups) are forced by the nontrivial
commutation relations [T, T = i f,p. T, to assume quantized values. For example, the
eigenvalues of T3 in SU(2), which depend on the representation of course, must be
multiples of 1. Within SU(3) x SU(2) x U (1), we cannot understand charge quantization:
The generator of U(1) is not quantized. But upon grand unification into SU(5) [or more
generally any group without U (1) factors] electric charge is quantized.

The result here is deeply connected to Dirac’s remark (chapter IV.4) that electric charge is
quantized if the magnetic monopole exists. We know from chapter V.7 that spontaneously
broken nonabelian gauge theories such as the SU(5) theory contain the monopole.

2. Ever wondered why the proton charge is exactly equal and opposite to the electron
charge? This important fact allows us to construct the universe as we know it. Atoms must
be electrically neutral to some fantastic degree of accuracy for standard cosmology to work;
otherwise, electrostatic forces between macroscopic matter would tear the universe apart.

This remarkable fact is nicely incorporated into SU(5). It is fun to see how it goes.
Evaluating tr Q = 0 over the 5* implies that 3Q; = —Q,-. I have used the fact that the
strong interaction commutes with electromagnetism and hence quarks with different color
have the same charge. Now let us calculate the proton charge Q p:

0p=20,+ 04 =2Qu+ D+ 0y =304 +2= 0, +2 (14)

If Q,- = —1, then Qp = —Q,-, as is indeed the case!

3. Recall that in electroweak theory we defined tan 6 = g1/g;, with the coupling of the
gauge bosons g,A7T, + g1B,,(Y/2). Since the normalization of A, and B, is fixed by
their respective kinetic energy term, the relative strength of g, and gy is determined by
the normalization of ¥ /2 relative to Ty. Let us evaluate tr T2 and tr(¥/2)* on the defining
representation 5 :tr 72 = (1) + (1)? =} and tr(¥/2)? = ()3 + (D2 = 2.

Thus, T3 and +/3/5(Y/2) are normalized equally. So the correct grand unified combina-
tionis A7 T, + BM\/3—/—5(Y/2), and therefore tan 6 = g;/g; = +/3/5 ot

sin? 9 = (15)

0o | W
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at the grand unification scale. To compare with the experimental value of sin® @ we would
have to study how the couplings g, and g; flow under the renormalization group down to
low energies. We will postpone this discussion until the next chapter.

Freedom from anomaly

Recall from chapter VII.2 that the key to proving renormalizability of nonabelian gauge
theory is the ability to pass freely between the unitary gauge and the R; gauge. The
crucial ingredient is gauge invariance and the resulting Ward-Takahashi identities (see
chapter I1.7). .

Suddenly you start to worry. What about the chiral anomaly? The existence of the
anomaly means that some Ward-Takahashi identities fail to hold. For our theories to make
sense, they had better be free from anomalies. I remarked in chapter IV.7 that the historical
name “anomaly” makes it sound like some kind of sickness. Well, in a way, it is.

We should have already checked the SU(3) ® SU(2) ® U(1) theory for anomalies, but
we didn’t. Iwill let you do it as an exercise. Here [ will show that the SU (5) theory is healthy.
If the SU(5) theory is anomaly-free, then a fortiori so is the SU(3) ® SU(2) ® U (1) theory.

In chapter IV.7 I computed the anomaly in an abelian theory but as I remarked there
clearly all we have to do to generalize to a nonabelian theory is to insert a generator 7},
of the gauge group at each vertex of the triangle diagram in figure IV.7.1. Summing over
the various fermions running around the loop, we see that the anomaly is proportional
to Agpe(R) =tr(T,{T}, T.}), where R denotes the representation to which the fermions
belong. We have to sum A_,;,.(R) over all the representations in the theory, remembering
to associate opposite signs to left handed and right handed fermion fields. (It may be
helpful to remind yourself of remark 3 in chapter IV.7 and exercise IV.7.6.)

We are now ready to give the SU (5) theory a health check. First, all fermion fields in (2)
are left handed. Second, convince yourself (simply imagine calculating A ;. for all possible
abc) that it suffices to set T, T}, and T, all equal to

20 0 0 O
020 0 O
T=10 02 0 O
0 00 =3 0
0 00 0 =3

a multiple of the hypercharge. Let us now evaluate tr T3 on the 5* representation,
tr 775 = 3(=2)° + 2(+3)° = 30 (16)
and on the 10,

tr T30 =3(+4)° + 6(-1)3 + (—6)>=—-30 (17)

'An apparent miracle! The anomaly cancels.
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This remarkable cancellation between sums of cubes of a strange list of numbers
suggests strongly, to say the least, that SU(5) is not the end of the story. Besides, it would
be nice if the 5* and 10 could be unified into a single representation.

Exercises

Vil.5a

Vil.g.2

Vil.5.3

Vil5.4

Write down the charge operator Q acting on 5, the defining representation ¥#. Work out the charge
content of the 10 = y#¥ and identify the various fields contained therein.

Show that for any grand unified theory, as long as itis based on a simple group, we have at the unification
scale

YT
Y. 0

where the sum is taken over all fermions.

(18)

. sin% 0 =

Check that the SU(3) ® SU(2) ® U (1) theory is anomaly-free. [Hint: The calculation is more involved
than in SU(5) since there are more independent generators, First show that you only have to evaluate
tr Y{T,, T} and tr Y3, with T, and Y the generators of SU(2) and U(D), respectively.]

Construct grand unified theories based on SU(6), SU(7), SU®), .., until you get tired of the game.

People used to get tenure doing this. [Hint: You would have to invent fermions yet to be experimentally .

discovered.]




