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which is
2mal * z¢ 2wai
I_:~e7““/ ——do = —e“™™ ], 5.167
o (z+1)? ( )

Now the sum of all these contour integrals is zero because it is a closed
contour that encloses no singularity., So

0= (1-e*™) I +2miae™ (5.168)
or
ma
I= : 5.169
sin(7a) (5.169)

5.15 Cauchy’s Principal Value

Suppose that f(x) is differentiable or analytic at and near the ﬁoiht xz =0,
and that we wish to evaluate the integral

b
K=tim | do 18 (5.170)
. e—0 J_, T — 1€

for @ > 0 and b > 0. First, we regularize the pole at x = 0 by using a
method devised by Cauchy:

—~8 ] b

ke [ ([ 22 s [ dD) s [ J). oy
6—0 [e—0 —a T — 1€ _§ xr — 1€ § X — 1€

In the first and third integrals, since |z| > §, we may set € =0

K = lim (/_6d$ @ + /:dm @) + lim lim Zdw M (65.172)

§—0 —a §—0 ¢—0 [__ T — 1€

We'll discuss the first two integrals before analyzing the last one.
The limit of the first two integrals is called Cauchy’s principal value

P/b daciEE—"E2 = lim < _jd:vf—(;@ + /;d:c %ﬂ> . (5.173)

—a 6—0

If the function f(x) is nearly constant near & = 0, then the large negative
values of 1/ for z slightly less than zero cancel the large positive values of
1/z for  slightly greater than zero.

The point z = 0 is not special; Cauchy’s principal value is more generally
defined by the limit

b z , -9 x b x
P dw—ﬂ—)—zhm (/y da:f—(—-)——}—/y dmi—)—) (5.174)
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Using Cauchy’s principal value, we may write the quantity K as

K=P bdmiii”l + lim lim d:z: /(=) (5.175)

—a 6—0 e—0 T — i€

To evaluate the last integral, we use differentlablhty of f(z) near z =0
to write f(z) = f(0) + zf'(0) and then extract f(0) from the integral:

é !
i tim [ de L i tim [ do LOF2SO)
6—0 -0 J_5 z — 1€ -0 600 J_ 5 T — 1€
é
= lim li d 5.176
f(O) (Sgr(l) 62% -5 m{L‘-"’L.C ( 7 )
Now since 1/(z — i€) is analytic, we may deform the straight contour from
x = —d to £ = § into the tiny semicircle
z—z=06e? for w<O<2nm (5.177)

which avoids the point z =0

8 1

K= P/b f()+f()hm iz (5.178)
—a 6—0 J_5 Z - 7;6. '
We now can set € = 0 and so write K as
b f(=) N I
K:Plad$7+f(0)%%/,r zdeldﬁm
b
:P/ dm@mf(oy (5.179)
—a
Recalling the definition (5.170) of K, we have
. G f( )
ll_rg% g T = o +im £(0). (5.180)
for any function f(z) that is differentiable at z = 0.
This trick is of wide applicability. Physicists write it as
1 1
=P-+1 . 181
- P$+z7r5(a:) (5.181)
It has a brother
1 1
P PE —imé(z) (5.182)
and cousins
1
= ) —1). 5.1
P Pm_y:[:wré(m v) (5.183)
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194 Complex-Variable Theory
Ezamples of Cauchy’s Trick We may use trick (5.182) to evaluate the
integral
o 1 1
I= — 5.184
/_oodww+iel+w2 (5.184)
as
« 1 < 6
I=P/ dm—#~i7r/ dm——(—@—. (5.185)
oo T 142 o 1+ 2?

Because the function 1/[z(1 + z?)] is odd, the principal part is zero. The
integral over the delta function gives unity, so we have

I = —im. (5.186)

FExample: To compute the integral
0 1.
I =/ dk sink (5.187)
o k

which we used to derive the formula (3.126) for the Green’s function of the
laplacian in three dimensions, we first express it as an integral along the

whole real axis
*® dk ; ; ® dk
I = ik _ —ik\ _ / ik 5.1
/0 2ik (e ¢ ) o 2ik € (5.188)

and then add a ghost contour along the path k = Rexp(if) for 6 =0 — 7

in the limit R — oo
dk 1 j[ dk
= ¢ — =P ¢ —¢ .
I j{ 53k © 577 € (5.189)

in which we interpret the integral across the point k = 0 as Cauchy’s prin-
cipal value. Using Cauchy’s trick (5.182), we have
dk dk ; dk .
I=P¢ —eb=¢ —— ¢t }[—'61@ i, 5.190
j{%ke j{Zi(k-He)e g imilk)e (5.190)

The first integral vanishes because the pole is below the real axis leaving the
desired result

*dk ™
I —/0 - sink = 3 (5.191)

as stated in (3.125).

Example—The Feynman Propagator: Adding +ie to the denomina-
tor of a pole term of an integral formula for a function f(z) can slightly shift
the pole into the upper or lower half plane, causing the pole to contribute if

20
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a ghost contour goes around the UHP or the LHP. The choice of ghost con-
tour often is influenced by the argument z of the function f(z). Physicists
use such 7¢’s to impose boundary conditions on Green’s functions.

The Feynman propagator Ap(z) is a Green’s function for the Klein-
Gordon differential operator (Weinberg, 1995, pp. 274-280)

(0 —m?)Ap(z) = — §(z) (5.192)
in which z = (20, z) and
o* 0?
D — _— = — ——ee .
A 52 A )2 (5.193)

is the four-dimensional version of the laplacian A = V-V. Here §*(z) is the
four-dimensional version of Dirac’s delta function (3.27)

4 4
)= [ (;:)14 xplila @ = %00 = [ éiﬂ%ezqm (5.194)

-

in which gz = q - & — ¢°29 is the Lorentz-invariant inner product of the 4-

vectors ¢ and z. There are many Green’s functions that satisfy Eq.(5.192).
Feynman’s propagator Ap(z) is the one that satisfies certain boundary

conditions which will become evident when we analyze the effect of its ie

4 exp{igr
N

The quantity Eq = 1/g? + m? is the energy of a particle of mass m and
momentum ¢ in natural units with the speed of light ¢ = 1. Using this
abbreviation and setting €’ = ¢/(2E,), we may write the denominator as

@P4+m?—ie=q q— (q0)2+m2—ie: (Bq — i€ — ¢°) (Bq —ic' + ¢°) + €?

(5.196)
in which € is negligible. We now drop the prime on the ¢ and do the ¢°
integral

_[*de o—iga? 1
o=~ % @ (B il (Bqtig] O

The function

(@) = et :

[4° — (Bq —i¢)] [¢° — (—Eq + ie)]

(5.198)

has poles at Eq — i€ and at —Eq + i€, as shown in Fig. 5.9. If 29 > 0, then
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Figure 5.9 In Eq. (5.198), the function f(¢°) has poles at =(Eq — i€), and
the function exp(—iq°z®) is exponentially suppressed in the LHP if z° > 0
and in the UHP if 2° < 0. So we can add a ghost contour in the LHP if
2% > 0 and in the UHP if z° < 0.

we can add a ghost contour that goes cw around the LHP, and we get

1(q) = ie~Far" 5-;— 20 > 0, (5.199)
q

If 2° < 0, we add a ghost contour that goes ccw around the UHP, and we
get

. 1
I(q) = ig'Par’ sg 0 <0. (5.200)
qa
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Using Heaviside’s step function

we may combine the last two equations into

~il(q) =

1
2E

{0(3:0) ¢~ iBa® | 6(—z°) eiEqu] _

In terms of the Lorentz-invariant function

Arl@) = <>/§;

expli(q - @ — Bqz")]

and with a factor of —i, the Feynman propagator is

—iAp(z) = 0(z%) Ay

(2) + 0(=2°) A (x, —2°).
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197

(5.201)

(5.202)

(5.203)

(5.204)

But the integral (5.203) defining A (z) is insensitive to the sign of q, and

S0

Ay(-z) =

Thus we arrive at the standard form of the Feynman propagator

—iAp(z) = 0(2°) Ay (z) + 0(=2°) Ay (-2).

2Eq

2E4

—}7 / 4 expli(—q - @ + Eqz°)]

=(-571;)-/ L9 oplifa @+ Bar®)] = Ay (x,

.-

0).

(5.205)

(5.206)

The Lorentz-invariant function A4 (xz—y) is the commutator of the positive-
frequency part

of a scalar field ¢ = ¢+ + ¢~ with its negative-frequency part

where p°

relation

= B,

/W

/«/ 2m 32q
= 4/p?+m? and ¢°

[a(q), ' (p)]

i(p- @ — p’z°)] a(p)

[~i(q -y — ¢°y*)] o' (q)

(5.207)

(5.208)

= Fq. For since the annihilation
operators a(q) and the creation operators af(p) satisfy the commutation

=6%(q—p)

(5.209)
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we have
dpdiq —
#* @80 = [ LA e fo(p), al ()
(2m)32+/¢°p"
d’p ePlE—y) —
= /W = A4 (z—v) (5.210)

in which pz = p - x — p2?, etc.
Incidentally, at points z that are space-like

e =x—(2%?=r*>0 (5.211)

the Lorentz-invariant function Ay (z) depends only upon r = ++v/z? and has
the value (Weinberg, 1995, p. 202)

.

= e K 212
Ay(@) = o K () (5.212)
in which the Hankel function Ky is
Ki(e) =~ [71(i2) + il (iz)) = 1+ ? () - L+
' e e +2 |\2) T T o T
(5.213)

where Jp is the first Bessel function, N7 is the first Neumann function, and
v =0.57721... is the Euler-Mascheroni constant.

The Feynman propagator arises most simply as the mean value in the
vacuum of the time-ordered product of the fields ¢(z) and ¢(y)

T {$(2)p(v)} = 0(° — 1°)d(@)p(y) + 0(y° — 2°)p(W)b(2).  (5.214)

Since the operators a(p) and af(p) respectively annihilate the vacuum ket
a(p)|0) = 0 and bra (0|at(p) = 0, the mean value in the vacuum of the
time-ordered product is —iAp(z — y)

—iAp(z—y) = (0|7{¢($)¢( )}10)
= (0]0(z° — y°)¢* (z)p™ (v) + 0(y° — %) p(v) T ¢ (x)[0)
=9(w°~y )(0l[¢™ (), ¢~ (¥)]10)

+0(y° — 2°)(0|[¢T (v), 6~ (2)]10)
=0(z° — ) Ay (z —v) +0(s° —2")Ay(y— )  (5.215)

which is (5.206). Feynman put i¢ in the denominator of the Fourier trans-
form of his propagator to get this result.
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