10
Non-Perturbative Methods

We are now going to begin our study of higher-order contributions to
physical processes, corresponding to Feynman diagrams involving one or
more loops. It will be very useful in this work to have available a method
of deriving results valid to all orders in perturbation theory (and in some
cases beyond perturbation theory). In this chapter we will exploit the
field equations and commutation relations of the interacting fields in the
Heisenberg picture for this purpose. The essential bridge between the
Heisenberg picture and the Feynman diagrams of perturbation theory is
provided by the theorem proved in Section 6.4: the sum of all diagrams for
a process « — f with extra vertices inserted corresponding to operators
0a(x), 05(y), etc. is given by the matrix element of the time-ordered product
of the corresponding Heisenberg-picture operators

(B T{ —i0ux), -0y ) .

As a special case, where the operators Og,(x), Op(x), etc. are elementary
particle fields, this matrix element equals the sum of all Feynman dia-
grams with incoming lines on the mass shell corresponding to the state o,
outgoing lines on the mass shell corresponding to the state f, and lines
off the mass shell (including propagators) corresponding to the operators
O4(x), Op(x), etc. After exploring some of the non-perturbative results
that can be obtained in this way we will be in a good position to take up
the perturbative calculation of radiative corrections.

10.1 Symmetries

One obvious but important use of the theorem quoted above is to extend
the application of symmetry principles from S-matrix elements, where all
external lines have four-momenta on the mass shell, to parts of Feynman
diagrams, with some or all external lines off the mass shell.

For instance, consider the symmetry of spacetime translational invari-
ance. This symmetry has as a consequence the existence of a Hermitian
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four-vector operator P#, with the property that, for any local function
O(x) of field operators and their canonical conjugates,

[PM,O(J;)] = 1%0( ). (10.1.1)

(See Egs. (7.3.28) and (7.3.29).) Also, the states « and § are usually chosen
to be eigenstates of the four-momentum:

PPt = php,t Py~ = plyWs . (10.1.2)

It follows that for any set of local functions O4(x), Op(x), etc. of fields
and/or field derivatives |

g = pa) (P57 T{0ulx1), Opli2) b, )
= (%57, [Pw VT{Oa(xl), 04(x2) Y] ¥a)

<8i# + aiu T ) (Tﬂ—T{Oa(x1)»0b(x2)""}%+> - (1013

»ThlS‘ has the solution

(27 T{0ule), Optoa) 1)

= exp (i(pe — Pp) * X) Fapeo(¥1 = X2, )., (10.1.4)
where x is any sort of average spacetime coordinate '
Xt =cix] +exh+ 0, ci+e+=1 - (10.1.5)

and F depehds ohly on differences among the xs. (In particular, a vacuum

expectation value can depend only on the coordinate differences.) We can

Fourier transform Eq. (10.1.4) by integrating separately over x* and the

coordinate differences, with the result that

| / dxydixy (‘Pﬁ_, T{Oa(xi), Op(x2)," " }‘I’a+)
x exp(—iky - X1 —iky - Xg — ++) oc 8*(py — pg — k1 —ky— 7). (10.1.6)

We saw in Section 6.4 that the matrix element of the time-ordered product
is given by applying the usual coordinate-space Feynman rules to the sum
of all graphs with incoming particles corresponding to particles in o,
outgoing particles in f8, and external lines that simply terminate in vertices
at x1,x, . The Fourier transform (10.1.6) is correspondingly given
by applying the, momentum-space Feynman rules to the same sum of
Feynman dlagrams with off-shell external lines carrying four-momenta
ki,ky, - into the diagrams. Eq. (10.1.6) is then just the statement that
this sum- of Feynman graphs conserves four-momentum. The result is
obvious in perturbation theory, because four-momentum is conserved at
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show that the sum of all graphs with a given set of op- and oﬂ-shellvlines
satisfies the same Lorentz transformation conditions as the lowest-order

Similar arguments apply to the conservation of internga] quantum num-
bers, like electric charge. Ag shown in Section 7.3, a field or other operator
Ou(x) that destroys a charge ¢, (or creates g charge —qq) will satisfy

in the Heisenberg and interaction pictures alike, Also, if the free-particle

states « and £ have charges ¢, and dp, then so do the corresponding ‘in’
and ‘out’ states, We then have

(95— q2) (¥, 7{04(), 04(y),- - } ¥*)
= (% [o 7{0um.000 - ),
=t g+ (g, T{0u(+), 04(y), - ',}T“+> '

Thus the amplitude (‘I’/g“, T{Oa(x), Ob(y),--"}‘I’f). vanishes unlegs .

charge is conserved

0 0 —1 ¢
pc:o% 0 0

o
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gives
C@y*p)C" = —pCy*T Cy = —y*y .

If C is to be conserved in electrodynamics, it must then also be defined to
anticommute with the free photon field

C(a*)Cl = —a* .

In theories like electrodynamics for which C commutes with the interaction
as well as Hy, it also commutes with the similarity transformation Q(t)
between the Heisenberg and interaction pictures, and so it anticommutes
with the electric current of the interacting fields

- C(PyMw)CT = Py (10.1.8)
and the electromagnetic field in the Heisenberg-picture
c(AHC™! = —4*. (10.1.9)

It follows then that the vacuum expectation value of the time-ordered
product of any odd number of electromagnetic currents and/or fields
vanishes. Therefore the sum of all Feynman graphs with an odd number
of external photon lines (off or on the photon mass shell) and no other
external lines vanishes.

This result is known as Furry’s theorem.! It can be proved perturbatively
by noting that a graph consisting of electron loops Z, to each of which
are attached n, photon lines, must have numbers I and E of internal and
external photon lines related by an analog of Eq. (6.3.11):

2 + E =an.
£

Hence if E is odd at least one of the loops must have attached an
odd number of photon linés. For any such loop there is a cancellation
between the two diagrams in which the electron arrows circulate around
the loop in opposite directions. Hence Furry’s theorem is a somewhat less
trivial consequence of a symmetry principle than translation or Lorentz
invariance; it is not true of individual diagrams, but rather of certain sums
of diagrams. Figure 10.1 illustrates the application of Furry’s theorem that
was historically most important, its use to show that the scattering of a
photon by an external electromagnetic field receives no contributions of
first order (or any odd order) in the external field.

10.2 Polology

One of the most important uses of the non-perturbative methods described
in this chapter is. to clarify the pole structure of Feynman amplitudes as
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Figure 10.1. * The lowest-order diagrams for the scattering of a photon by an
electromagnetic field. Here straight lines represent virtual electrons; wavy lines
represent real and virtual photons; and the double line represents a heavy particle
like an atomic nucleus that serves as a source of an electromagnetic field. The
contributions of these two diagrams cancel, as required by charge-conjugation
invariance. ‘ :

functions of the momenta carried by external lines. Often the S-matrix
for a physical process can’ be well approximated by the contribution of a
single pole. Also, an understanding of this pole structure will help us later
in dealing with radiative corrections to particle propagators.

Consider the momentum-space amplitude

/ dbxy e dhxy e i <T{A;(x1) ) .An(xn)}%

=G(q1 " qn) . (10.2.1)
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The As are Heisenberg-picture operators of arbitrary Lorentz type, and
(-+-)o denotes the expectation value in the true vacuum Yot =¥y~ =Y.
As discussed in Section 6.4, if Ay, - A, are ordinary fields appearing in
the Lagrangian, then (10.2.1) is a sum of the terms calculated using the
ordinary Feynman rules, for all graphs with external lines corresponding
to the fields Ay, - An, carrying off-shell four-momenta qi - dn into the
graph. However, we will not be limited to this case; the A; may be
arbitrary local functions of fields and field derivatives.

We are interested in poles of G at certain values of the invariant squares
of the total four-momenta carried by various subsets of the external lines.
To be definite, let’s consider G as a function of g2, where

,qEQI+"'+Qr:;‘Qr+1"""—q" (102.2)

with 1 < r < n—1. We will show that G has a pole at g% = —m?, where m is
the mass of any one-particle state that has non-vanishing matrix elements

with the states A;r . -A:r W, and A,y AnPo, and that the residue at this
pole is given by

—2i\/q2+m2 7 ¢4
G i —ie (2m)'6%(q1 + - + )

xS~ Mojge(@2 " 4 Mgol0(@r2” " dn) (10.2.3)
[

where the Ms are defined by"

/ dxy - dix, e7U T (‘Po', T{Al(xl) o -Ar(xr)}‘I’I&g)
= @n)*0%(q1 ++ + ¢ — P)Mopo(@2 " @) oo (1024
/ Ay dhxn oI XL L X
X (‘Pp,a, T{Ar+1(xr+1) . 'An(xn)}‘Po)
= (2n)* 8*(Gre1 + + @n + PYMpgio(gr2 " d0) (102.5)

(with p° = /p? +m?), and the sum is over all spin (or other) states of the
particle of mass m.

Before proceeding to the proof, it will help to clarify the significance of

* Recall that in the absence of time-varying external fields, there is no distinction between ‘in’ and
‘out’ one-particle states, so that ¥po" = ¥po~ = ¥po-
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(10.2.3) if we write it in the somewhat long-winded form
Glar g > 3 [ d'k
a

1/2
| 8+ + 0~ e (2R ) by (g o)

. 1
% [(zny* K2+ m? — iJ

X [(Zn:)“ 5k + grp1 + - + gn) (20)Y2

| 2
X <2vk2+m2) | Mk,alO(Qr-i—Z"“ln)] : (10.2.6)

This is just what we should expect from a Feynman diagram with a single
internal line for a particle of mass m connecting the first » and the last
n—r external lines.** However, it is nor necessary that the particle of mass
m correspond to a field that appears in the Lagrangian of the theory.
Egs. (10.2.3) and (10.2.6) apply even if this particle is a bound state of the
so-called elementary particles whose fields do appear in the Lagrangian.
In this case, the pole arises not from single Feynman diagrams, like Figure
10.2, but rather from infinite sums of diagrams, such as the one shown
in Figure 10.3. This is the first place where the methods of this chapter
take us beyond results that could be derived as properties of each order -
of perturbation theory.

Now to the proof. Among the n! possible orderings of the times Xy x9
in Eq. (10.2.1), there are n!/r!(n —r)! for which the first r of the x? are
~ all larger than the last n —r. Isolating the contribution of this part of the
volume of integration in Eq. (10.2.1), we have

G(q1 -~ qn) = / dhxy e dhx, emrN L gmiaen”
x0 (min [x) - x%] — max [x2, ~~x2])
< (Yo T{i00) A0} T {Args )+~ ) 0
+ 0T, ~ (10.2.7)

where ‘OT” denotes the other terms arising from different time-orderings.
We can evaluate the matrix element here by inserting a complete set of

S ' " 1/2 -
** See Figure 10.2. The factors (2m)3/2 [2\/ k2 + mz} just serve to remove kinematic factors

. associated with the mass m external line in Mo, and My 0. Also, the sum over o of the
product of coefficient-function factors from these two matrix elements yields the numerator of
the propagator asseciated with the internal line in Figure 10.2.
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Figure 10.2. A Feynman diagram with the pole structure (10.2.6). Here the |

line carrying a “momentum k represents an elementary particle, one whose field
appears in the Lagrangian.

r r+1

r+2

Figure 10.3. Figure 10.3. A Feynman diagram of the class whose sum has the
pole structure>(10.2.6). Here the pole is due to a composite particle, a bound state
of two elementary particles. The elementary particles are represented by straight

lines, and interact by the exchange of particles represented by wavy lines.

intermediate states between time-ordered products. Among these may
be the single-particle state W, of a definite species of mass m. Further
isolating the contribution of these one-particle intermediate states, we
have

G(CII ce qu) — / d4x1 v d4xn e"i‘h'xl ce e“iQn'xn
6 (min [x} %) — max [x2,; -~ x /d3

(o, T{A1(x1) - -A;(x»}wp,a) (\Pp,o, T{Ars1(irir) + Anlxa) o)
+ OT, (10.2.8)

where ‘OT” now denotes other terms, here arising not only from other time-

orderings, but also from other intermediate states. It will be convenient
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to shift variables of integration, SO that
xi=x1+yl'9 i=233;“'r3
Xi = Xpq1 + y; (=r+42

b

and use the results of the previous section to write

(%o, 7{as(xy) - Ar(r) )

433

) = e (,, T{Al(O)Az(yz) a -Ar(-yr)}‘l’p,‘a) > (1029

(le,a, T{Af+1 (xr—f-l) e 'AJX,,)}‘P())

L v (%o, T{Ar+1(0)---An(yn)}‘I’o) . (102.10)

Also, the argument of the theta function becomes

min [x{ .. *x7] — max [x,9+1 o xY]

=0 min [0y0 30 o 057y -+ 507
We also insert the Fourier representation (6.2.15) of the step function
1 o0 —iwt |
0(r) =~ L dw e |
211 Joo + ie
The integrals Over x; and x,,; now j

ust yield delta functions:

Glg1-q,) = / %4}'2"'d4Yrd4yr+2"'d4J/n

X e_i‘]Z'J’Z . e“iQr')’re“iQr+2'J’r+2 . e“iQn'J’n

I 1o gy . . 0 0 o o
A o 0 £ je 3P ("’a’[ minf0y3 - 7] — max[o Vet yn]])

<2 [ @p(w, T{4;(0) - A1) ¥y, )
X (Yoo, T{4,44(0) - An(ya) } W)
X Q)5 (p—qy— ... _ g Y2 tm? y o —gd .. _ o)

X (2m)* 53(qr+1+"'+qn +p)o <f19+1+"'+q,?+\/p2+m2 '+co)
4+ 0T .- ,
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now trivial, and yield the pole

—1
a1 qn) — i20) 6%q1 + -+ + an) [qO _Jr w4 ie]
XY Mojgo(q2 "~ gn) Mygio(dr2° " qn) + (10.2.12)
g

where now

g=q1+" "+ =—@+1— """ —qn,

M0|‘l,0(q2 o qr) = / d4Y2 e d4yr e—iqz'yz SR e""iQr‘J’r

x (o, T{410)A2(02) + 4:(3) [ ¥ ) - (102.13)
© .
o Myoo(ar2 " qn) = / dyyyn - dby, eI L gD
x (Yoo T{Ars1(0)Ar2(yrs2) An(y) }¥0) (10.2.14)

and the final -~ in Eq. (10.2.12) denotes terms that do not exhibit this
particular pole. (The ‘other terms’ arising from other single-particle states
produce poles in g at different positions, while those arising from multi-
particle states produce branch points in g, and those arising from other
time-orderings produce poles and branch cuts in other variables.) Using
Egs. (10.2.9) and (10.2.10), it is easy to see that these Ms are the same as
defined by Egs. (10.2.4) and (10.2.5). Also, near the pole we can write

1 _ —q° —V/q2 +m? +ie . —2/q2 + m?
P —Valtmd tie  —(@P+ (/@ +m —ie) @ +m—ie

(We again redefine e by a positive factor 21/q2 + m?, which is permissible
since e stands for any positive infinitesimal.) Eq. (10.2.12) is thus the same
as the desired result (10.2.3).

This result has a classic application to the theory of nuclear forces. Let
®,(x) be any real field or combination of fields (for instance, proportional
to a quark-antiquark bilinear gyst;q) that has a non-vanishing matrix
element between a one-pion state of isospin @ and the vacuum, normalized
so that

(VAC| @,4(0) |75, p) = 21)>2(2p%) 26 . (10.2.15)

nThe matrix element of ®, between one-nucleon states with four-momenta
p,p then has a pole at (p — p')* — —mZ which isospin and Lorentz
invariance (including space inversion invariance) dictate must take the
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form**
(N, 0, 0u(0) N, 0, p ) — 402 =3¢ (#7551 102.16
205D @a(0) N, 0, p — i(2n) nxm> (10.2.16)
T “

where u and o/ gre the initial and final nucleon spinor coefficient functions,
including the nucleon waye functions in isospinlspace, and 7, with g —
1,2,3 are the 2 x 2 Paulj isospin matrices. The constant Gy, is known as the
Pion—nucleon coupling constant. This pole is not actually in the physical
region for the matrix element (10.2.16), for which (p — P')? >0, but it can
be reached by analytic extension of thjg matrix element, for instance by

/ dixdtx’ e~irrg ¥ T{®4(0) N(x) N'(x)} pyace

where N and N/ are appropriate components of a field operator or
product of field operators with non-vanishing matrix elements between
one-nucleon states and the vacuum, The theorem proved above in this
section shows then that exchange of g pion in the scattering of two
nucleons with Initia] four-moments P1,p2, and fing] four-momenta P 28
yields a pole at (21 = p})? = (p, ~p5)? > —m?

2
: 454, ’

SN;NQ,NINZ = —H2m)* 6%} + py — p, ~pz)m

X (2m)3 (ﬁy V574 u1> X (2m)=3 (uz VsTa uz) . (10.2.17)

(The easiest 'Way to get the phases and numerica] factors right in such

formulas is to use Feynman diagrams; our theorem just says that the pole

- Structure is the same as would ‘be found in a field theory in which the

Lagrangian mvolved an elementary pion field.) Again, this pion pole is
not actually in the physical region for scattering of nucleong on the mass
shell, for which (p1—p))? > 0, but it can be reached by analytic extension
of the S-matrix element, for instance by considering the off-she]] matrix

** Lorentz and isospin invariance requires this matrix to take the form (# T <, u), where " is a 4 x 4

matrix for which the bilinear @' Ty) transforms as g pseudoscalar. T jke any 4

X 4 matrix, " can
be expanded ag a sum of terms Proportional to the Dirac matrices Loy, [y Wl ¥syu, and ys. The

H>
coefficients must be respectively pseudoscalar, pseudovector, pseudotensor, vector, and scalar,
Out of the two momenta p and p' it js possible to construct no pseudoscalars or pseudovectors;

m-space Dirac equations
or u and «/, it is €asy to see that the tensor and pseudovector matriceg in " give contributions
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element
/ d4x1 d4x2 d4x’1 d4x’2 o iP1X1 g —iP2 X2 Py X éip’z-xlz
x ( T{N1(x1), Na(x2), N1 (x}), Nay(x5)})vac -

Although this pole is not in the physical region for nucleon—nucleon
scattering, the pion mass is small enough so that the pole is quite near

_the physical region, and under some circumstances may dominate the

scattering amplitude, as for instance for large ¢ in the partial wave
expansion.

Interpreted in coordinate space, a pole like this at (p1 — P = (p2 —
ph)? — —m? implies a force of range 1/m,. For instance, in Yukawa’s
original theory? of nuclear force the exchange of mesons (then assumed
scalar rather than pseudoscalar) produced a local potential of the form
exp(—myr)/4nr, which in the first Born approximation yields an S-matrix
for non-relativistic nucleon scattering proportional to the Fourier trans-
form:

—ixq — , : 7, [ IR !
/ d3x1 d3x2 d3x’1 d3x’2 o IXUPL p—iX2 P2 X1 PL piXD P2

exp ( — Mg |X1 — X2|>

3 "3 !
- o —
47‘C|X1 le 0 (X1 X1 ) (X2 X- )

X

1
pi —p1t/)?+md

= —2n)*3Pp1+p2—p1’ — P2 ’~)(

The factor 1/[(p1 —p1’)? +m2] is just the non-relativistic limit of the prop-
agator 1/[(py — p})* + m2] in (10.2.17). (In (10.2.17) the energy transfer
pd — pP for |p1| < my and |pj| < my equals [p® — p,%1/2my, which is
negligible compared with the magnitude |p; —pj| of the momentum trans-
fer.) When Yukawa’s theory was first proposed, it was generally supposed
that this sort of momentum-dependence arises from the appearance of
a meson field in the theory. It was not until the 1950s that it became
generally understood that the existence of a pole at (p1 — p})* — —m3

follows from the existence of a pion particle and has nothing to do with

whether this is an elementary particle with its own field in the Lagrangian. -

10.3 Field and Mass Renormalization -

We will now use a special case of the result of the previous section to
clarify the treatment of radiative corrections in the internal and external
line of general processes.

The special case that concerns us here is the one in which the four-
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momentum of a single external line approaches the mass shell. (In the
notation of the previous section, this corresponds to taking r = 1.) We
will consider a function

Gelq1q2- ) = / d*x d¥x, -+ el gmigrxs

x (Wo, T{0s(xy), Ar(x), o), (103.0)

where O(x) is a Heisenberg-picture operator, with the Lorentz transfor-
‘mation properties of some sort of free field ¢ belonging to an irreducible
representation of the homogeneous Lorentz group (or the Lorentz group
including space inversion for theories that conserve parity), as labelled by
the subscript ¢, and A,, As, etc. are arbitrary Heisenberg-picture oper-
ators. Suppose there is a one-particle state Wy, , that has non-vanishing

matrix elements with the states (9;‘1’0 and with 4,43+ W,. Then ac-
cording to the theorem proved in the previous section, G, has a pole at

q} = —m?, with

qat +m? — ie

Ge(q142++7) — (27)° 37 (o, 0(0)¥y,0)

[e2
x / dxy e emiwm (Fae T{a002)-- 1), (1032)
We use Lorentz invariance to write
(¥0.0/0%4,.0) = 272 N us(aqz,0) (10.3.3)

where u,(q, ) is (aside from the factor (2m)%/2) the coefficient function®
appearing in the free field Ys with the same Lorentz transformation
properties as O, and N is a constant. (It was in order to obtain Eq. (10.3.3)
with a single free constant N that we had to assume that @, transforms
irreducibly.) We also define a ‘truncated’ matrix element M, by

[ e (8 T ) bwo)
=N"Cm 72 Y uilan0) Mi(ar ). (103.4)
£

~)

Eq. (10.3.2) then reads, for g2 — —m]

—2iv/q1 2 + m?
Gy, —

qf+m2—ie

ol

According to Egs. (6.2.2) and (6.2.18), the quantity multiplying M, in
(10.3.5) is the momentum Space matrix propagator —iAs.(qy) for the free

* For instance, for a conventionally’normalized free scalar field, us(q1,0) = [24/ qf + m2]~1/2,

> uas, o) (qi, 0) My . (10.3.5)
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field with the Lorentz transformation properties of O, (or at least its
limiting behavior for g7 — —m?), so (10.3.5) allows us to identify M,
as the sum of all graphs with external lines carrying momenta qp, g -~
corresponding to the operators O, Az, - - -, but with the final propagator for
the Oy line stripped away. Eq. (10.3.4) is then just the usual prescription for
how to calculate the matrix element for emission of a particle from the sum
of Feynman diagrams: strip away the partlcle propagator, and contract
with the usual external line factor (2m)~ 32y 7. The only discrepancy with
the usual Feynman rules is the factor N.

The above theorem is a famous result due to Lehmann, Symanzik, and
Zimmerman,® known as the reduction formula, which we have proved here
by a somewhat different method that has allowed us easily to generalize
this result to the case of arbitrary spin. One important aspect of this
result is that it applies to any sort of operator; 0y need not be some field
that actually appears in the Lagrangian, and the particle it creates may
be a bound state composed of those particles whose fields do occur in the
Lagrangian. It provides an important lesson even where 0 is some field
¥, in the Lagrangian: if we are to use the usual Feynman rules to calculate
S-matrix elements, then we should first redefine the normalization of the
fields by a factor 1/N, so that (with apologies for the multiple use of the
symbol ¥):

(o, W (0)%4, ) = 2m) 7 ue(q.0) - (10.3.6)

A field normalized as in Eq. (10.3.6) is called a renormalized field.

The field renormalization constant N shows up in another place. Sup-
pose that there is just one of the operators Aj, 43, -~ in Eq. (10.3.1), and
take it to be the adjoint of a member of the same field multiplet as 0.
Then Eq. (10.3.2) reads

/ P / xy eI gmigr (‘I‘o, T{(O;(xl)@}z(xz)}'ﬂ)
—>—m \/ q12 -+ m2 (27'5)3

qi +m* —
X / d4x2 g2 X2 g% (qu,a, (9;/ (0)T0>

- 2NEValT

q} +m? —

Z ('lPO’ Or (O)II{ql ,a)

[

Z ue(q1, o) uj (g1, 0) 2m)* 6*(q1 + o) -

This is just the usual behavior of a propagator (the sum of all graphs with
two external lines) near its pole, except for the factor |NJ2. According to
Eq. (10.3:6), this factor is absent in the propagator of the renormalized
field W,. Thus a renormalized field is one whose propagator has the same
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behavior near its pole as for a free field, and the renormalized mass is defined
by the position of the pole.

To see how this works in practice, consider the theory of a real self-
interacting scalar field ®g, the subscript B being added here to remind

us that so far this is a ‘bare’ (ie., unrenormalized) field. The Lagrangian
density is taken as usual as

satisfy condition (10.3.6), nor that the pole in ¢? would be at —m3, 50 let
us introduce a renormalized field and mass :

=712, (10.3.8)

m=md 4 om:, (10.3.9)

with Z to be chosen so that ® does satisfy Eq. (10.3.6), and ém? chosen
that the pole of the propagator is at g2 = —p2, (The use of the symbol
Z in this context has become conventional; there is g different Z for each

L =P+ 2, (10.3.10)

Z0= = 10,90"0 — 1n??, (10.3.11).

1=~ 4Z - 1)[0, 004D + Mm% + 1Z5mP0? — y(q), (10.3.12) -

where

V(®) = 13p(\/ZD).

In calculating the corrections to the complete momentum space propagator
of the renormalized scalar field, conventionally called A’ (), it is convenient
to consider separately the one-particle-irreducible graphs: those connected
graphs (excluding a graph consisting of a single scalar line) that cannot be
disconnected by cutting through any one internal scalar line. An example is
shown in Figure 10.4. It i conventional to write the sum of all such graphs,
with the two external line Propagator factors —i(2z)~4(q2 + m? — ie)~1
omitted, as i(27)*I1*(¢2), with the asterisk to remind us that these are
one-particle-irreducible graphs. ‘Then the corrections to the complete
bropagator are given by a sum of chains of one, two, or more of these
one-particle-irreducible subgraphs connected with the usual uncorrected
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S A

Figure 10.4. Diagrams that (a) are, or (b) are not, one-particle irreducible. These
diagrams are drawn for a theory with some sort of quadrilinear interaction, like
the theory of a scalar field ¢ with interaction proportional to ¢*.

propagator factors:

—i 1
(27‘6)4A (@) = 2n)* g2 +m? —ie

— 1 . . ' . 1

+ [ (2n’)4 po— ie} {z(zn)m (qz)] [ (27;)4 o Z.J
—i 1 . ) —i 1

* [(2;)4 7% +m? — ie] {1(2”)4H (qz)] [(2;)4 ¢ +m?— ie]

X [i(2n)4H*(q2)] [ (2;")4 o n112—ie} SRR (10.3.13)

or more simply .
A(g) = [q* +m* —ie] ' + [¢* + m? — ie] "' (¢)[g® + m® — ie] !
2 2 =L A2\ A2 2 =L T 2042 2 -1 ..,
+lg" +m” —ie] 1 (q°)[q” +m® —ie] ' (¢%)[q* + m? —ie] ™ -+
(10.3.14)

Summing the geometric series, this gives
‘ 1
N(g) = [g* +m? —TI'(g?) — ie] (103.15)

In calculating IT", we encounter a tree graph arising from a single insertion
of vertices corresponding to the terms in Eq. (10.3.12) proportional to

0,®0*® and @, plus a term IT} oop arising from loop graphs like that in
Figure 10.4(a): : ‘

(g% = —(Z = DIg* + m*] + Zom* + W oop(@?) .~ (10.3.16)

3 ;
The condition that m? is the true mass of the particle is that the pole of
the propagator should be at g> = —m?, so that

" (—m?) =0. (10.3.17)
Also, the condition that the pole of the propagator at g2 = —m? should
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have a unit residue (like the uncorrected propagator) is that

d
—IT"(q? ] =0. 10.3.
Fruats o (103.15)
These conditions allow us to evaluate Z and ém?: (
Zom® = —TI} o op(—m?) (10.3.19)
d

Z=1+ bq—znioop(q% (10.3.20)

] gr=—m?

This incidentally shows that Z §ns2 and Z —1 are given by a series of terms

containing one or more coupling constant factors, justifying the treéatment
of the first two terms in Eq. (10.3.12) as part of the interaction % 1.

In actual calculations it is simplest just to say that from the loop terms
I0} 5op(g?) we must subtract a first-order polynomial in q? with coefficients
chosen so that the difference satisfies Egs. (10.3.17) and (10.3.18). As we
shall see, this subtraction procedure incidentally cancels the infinities that
arise from the momentum space integrals in IIj 5op. However, as this
discussion should make clear, the renormalization of masses and fields has
nothing directly to do with the presence of infinities, and would be necessary
even in a theory in which all momentum space integrals were convergent.

An important consequence of the conditions (10.3.17) and (10.3.18) is

that it is not necessary to include radiative corrections in external lines on
the mass shell. That is,

[H*(qz)[q2 + m?— ]! + H*(qz)[q2 +m? — ie]'"II"I*(qz)[q2 +m? — ie] ™!
+ . e

Vi

~0. | (10.3.21)

]' P2o—m?

Similar remarks apply to particles of arbitrary spin. For instance, for
the ‘bare’ Dirac field the Lagrangian is

& = —¥p[§ + mp]¥s — Vs (Pp¥s). (10.3.22)

We introduce renormalized fields andimasses
Y=z, (10.3.23)
m=mg+om. - © (10.3.24)

(The subscript 2 on Z, is conventionally used to distinguish-the renor-
malization constant of a fermion field.) The Lagrangian density is then
rewritten

F =P+, (10.3.25)

Lo =—¥[§+m¥, (10.3.26)
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= —(Zy — DP[J + m]¥] + Z26mPY — Ve(Z,¥Y) . (103.27)

Let t(2n)42 (K) be the sum of all connected graphs, with one fermion line
coming in with four-momentum k and one going out with the same four-
momentum, that cannot be disconnected by cutting through any single
internal fermion line, and with external line propagator factors —i(2m)~4
and [i ¥ +m —ie]™! omitted. (Lorentz invariance is being used to justify
writing X* as an ordinary function of the Lorentz scalar matrix ¥ = k,y*.)
Then the complete fermion propagator is

S'ky=T[i k+m—iel™ +[i k+m—iel 'O} ¥ +m—ie]™?
+ [k +m—ie] O K+ m—ie IS (O K+ m—ie] ™t +
=l f+m—2"(f)—ie] " . (10.3.28)

In calculating X*(K) we take into account the tree graphs from the terms in
Eq. (10.3.27) proportional to ¥ ¥ and WW¥ as well as loop contributions:

) =—(Zo =D ¥ +m] + Zodm + =] o0p(§) - (10.3.29)
The condition that the complete propagator has a pole at k2 = —m? with
the same residue as the uncorrected propagator is then that
X (im) =0, (10.3.30)
0%" (k)
=0, (10.3.31)
a k im
and hence
225m = —Zioop(im) 5 (10‘332)
Zy=1-— aZLOOP k)\ (10.3.33)
=im

Just as for scalars, the vanishing of [i ¥+ m]™'Z*(¥) in the limit ¥ — im
tells us that radiative corrections may be ignored in external fermion
lines. Corresponding results for the photon propagator will be derived in
Section 10.5. :

&

10.4 Renormalized Charge and Ward Identities

The use of the commutation and conservation relations of Heisenberg-
picture operators allows us to make a connection between the charges
(or other similar quantities) in the Lagrangian density and the properties
of physical states.. Recall that the invariance of the Lagrangian density

an
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Wwith respect to global gauge transformations ¥, — exp(igsa)¥, (with o
an arbitrary constant phase) implies the existence of a current

0¥ |
u:——' —_— , 4.1
J i E/ KD q¥Yy (104.1)

satisfying the conservation condition

8t =0. (10.4.2)

This implies that the Space-integral of the time component of J# is time-
independent: :

. d ,
i~ 0=[0H] =0, (10.4.3)»

(There is a very important possible exception here, that the Integral ( 10.4.4)
may not exist if there are long-range forces due to massless scalars in the
system. We will return to this point when we consider broken symmetries

i Volume I1.) Also, since it is Space-integral, Q is manifestly translation-
invariant |

[P,0] =0 (10.4.5)

and since J* is g four-vector, Q is invariant with reéspect to homogeneous
Lorentz transformations : '

0¥ =0, (1047)

Also, O acting on any one-particle-state W00 must be another state with
the same energy, momentum‘, and Lorentz transformation properties, and
thus (assuming no degeneracy of one-particle states) must be proportional

: 'Q\Pp,a,n = Q(n)_‘.{l‘,a,n . - ‘ (1048)

The Lorentz invariance of Q ensures that the eigenvalue q(n) 1s independent
of pand g, depending only on the species of the particle. This eigenvalue is
what is known as the electric charge (or whatever other quantum number
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of which J* may be the current) of the one-particle state. To relate
this to the g, parameters in the Lagrangian, we note that the canonical
commutation relations give

1°x,0), Poly,1)] = —ar¥ely, 08> (x ), (1049)

or integrating over X:

(0, :()] = —a¥ely) - - (10410)

The same is true of any local function F(y) of the fields and field derivatives
and their adjoints, containing definite numbers of each:

(0. F()| =—arF(»). (104.11)

where gp is the sum of the g, for all fields and field derivatives in F(y),
minus the sum of the g, for all field adjoints and their derivatives. Taking
the matrix element of this equation between a one-particle state and the
vacuum, and using Egs. (10.4.7) and (10.4.8), we have

(Yo, F(»)¥pon) (a5 —don) =0 (104.12)
Henceé we must have

dn) = 4F (10.4.13)

as long as

(‘Po, F(y) \Pp) £0. (10.4.14)

As we saw in the previous section, Eq. (10.4.14) is the condition that
assures that momentum space Green’s functions involving F have poles
corresponding to the one-particle state Wps,. For a one-particle state
corresponding to one of the fields in the Lagrangian we could take
F = ¥,, in which case gr = q¢, but our results here apply to general
one-particle states, whether or not their fields appear in the Lagrangian.
This almost, but not quite, tells us that despite all the possible high-order
graphs that affect the emission and absorption of photons by charged
particles, the physical electric charge is just equal to a parameter qs
appearing in the Lagrangian (or to a sum of such parameters, like gr .)
The qualification that has to be added here is that the requirement, that
the Lagrangian be invariant under the transformations ¥, — exp(iqso)¥y,
does nothing to fix the over-all scale of the quantities g. The physical
electric charges are those that determine the response of matter fields to
a given renormalized electromagnetic field A*. That is, the scale of the g,
is fixed by requiring that the renormalized electromagnetic field appears
in the matter Lagrangian %y in the linear combinations [0, — iqsA4,]¥e,

i 31
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so that the current J¥ is

3Ly
JH= .
oA,

(10.4.15)

But 4* and g, are not the same as the ‘bare electroniagnetic field’ Aﬁ and
‘bare charges’ gp, that appear in the Lagrangian when we write it in its
simplest form

& = — i(0uApy — 0,Ap,) (0" A} — 0"AR) + Ly (Pr, [0, — igpsApu]¥y) .

(10.4.16)
The renormalized electromagnetic field (defined to have a complete prop-
agator whose pole at p*> = 0 has unit residue) is conventionally written in
terms of A as

AP =z (10.4.17)

so in order for the charge qs to characterize the respdnse of the charged
particles to a given renormalized electromagnetic field, we should define
the renormalized charges by

4¢ = Z3qps . (10.4.18)

We see that the physical electric charge g of any particle is just pro-
portional to a parameter gp related to those appearing in the Lagrangian,
with a proportionality constant /Z3 that is the same for all particles. This
helps us to understand how a particle like the proton, that is surrounded
by a cloud of virtual mesons and other strongly interacting particles, can
have the same charge as the positron, whose interactions are all much
weaker. It is only necessary to assume that for some reason the charges
gss in the Lagrangian are equal and opposite for the electron and for
those particles (two u quarks and one d quark) that make up the proton;
the effect of higher-order corrections then appears solely in the common

factor ,/Z3.

In order for charge renormalization to arise only from radiative cor-
rections to the photon propagator, there must be cancellations among the
great variety of other radiative corrections to the propagators and electro-
magnetic vertices of the charged particles. We can see a little more deeply
into the nature of these cancellations by making use of the celebrated
relations between these charged particle propagators and vertices known
as the Ward identities.

For instance, consider the Green’s function for an electric current J#(x)
together with a Heisenberg-picture Dirac field Wn(y) of charge g and its
covariant adjoint ¥,,(z). We define the electromagnetic vertex function I'*
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=l N

Figure 10.5. Diagrams for the first corrections to the electron propagator and
vertex function in quantum electrodynamics. Here straight lines are electrons;
. wavy lines are photons. ‘

of the charged particle by

/ dtxdy dbz e rxeiky gHit (‘Po, T{J“(x) P,(y) ‘Pm(z)}%)
= — i(2n)*qS,, ()Y (k,£)S., (£)8%p +k —¢), (10.4.19)

S
where

—iQn)*S (k) 54 (k—¢) = / dyd'z (Yo, T{,(0)¥u(z) }¥o) e Vet

' (10.4.20)
According to the theorem of Section 6.4, Eq. (10.4.20) gives the sum of
all Feynman graphs with one incoming and one outgoing fermion line,
ie., the complete Dirac propagator. Also, Eq. (10.4.19) gives the sum of
all such graphs with an extra photon line attached, so I'* is the sum of
“vertex” graphs with one incoming Dirac line, one outgoing Dirac line,
and one photon line, but with the complete Dirac external line propagators
and the bare photon external line propagator stripped away. To make the
normalization of S” and I'* perfectly clear, we mention that in the limit
of no interactions, these functions take the values

S'(k) > liyk* +m —ie]™ |, Th(k,£) — 9 .

The one-loop diagrams that provide corrections to these limiting values
are shown in Figure 10.5.
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We can derive a relation between I'* and S’ by use of the identity

o T{TH 0,00 T0(2)) = T{0,74 () (1) %)
P -N TP e}

T =) T{20(0) [/, B(2)] } (104.21)

where the delta functions arise from time-derivatives of step functions.
The conservation condition (10.4.2) tells us that the first term vanishes,
while the second and third terms can be calculated using the commutation
relations (10.4.9), which here give

76,0, ¥a(5,0] = ~a%, (3,083 — (10422)

and its adjoint
00, Faly,0)] = g%, (v, 5% (x — y) . (104.23)
Eq. (10.4.21) then reads ~

727 T R0)8)] = g5 T{20)%(2)}
+q6%x —2) T,{\}{n.(y)\ifm(z)} . ' (10.4.24)
Inserting this in thq Fourier transform (10.4.19) gives
(£ — k) S'(k)TH(k,£) S'(¢) = i S'(¢) — iS'(k)
or »in other words |

(¢ —k)uT*(k,¢) = i §"" (k) — iS"71(¢). (10.4.25)

This is known as the generalized Ward identity, first derived (by these meth-

ods) by Takahashi.* The original Ward identity, derived earlier by Ward>
from a study of perturbation theory, can be obtained from Eq. (10.4.25)
by letting # approach k. In this limit, Eq. (10.4.25) gives

TH(k, k) = —i 9 S (k). ©(10.4.26)
ok,

The fermion Ipropagator is related to the self-energy insertion X*( k) by
Eq. (10.3.28) |

STk =i f+m—2"(k),
so Eq. (10.4.26) may be written

TR =i gy, (104.27)
1
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For a renormalized Dirac field, Eqs. (10.3.31) and (10.4.27) tell us that on
the mass shell

i TRk, k) we = o/ v uy , (10.4.28)

where [iyk* + mlu, = [iy,k* + mlu, = 0. Thus the renormalization
of the fermion field ensures that the radiative corrections to the vertex
function I'; cancel when a fermion on the mass shell interacts with an
electromagnetic field with zero momentum transfer, as is the case when
we set out to measure the fermion’s electric charge. If we had not used
a renormalized fermion field then the corrections to the vertex function
would have just cancelled the corrections due to radiative corrections to
the external fermion lines, leaving the electric charge again unchanged..

10.5 Gauge Invariance

The conservation of electric charge may be used to prove a useful result
for the quantities

Mﬂg"“(q, g, )= /d4x /d4x’ L S U
x (\P;, T{J“(x), T }‘P+> . (105.1)

In theories like spinor electrodynamics in which the electromagnetic in-
teraction 1s linear in the field A#, this is the matrix element for emission
(and/or absorption) of on- or off-shell photons having four-momenta g,
q’, etc. (and/or —q, —¢', etc.), with external line photon coefficient func-
tions or propagators omitted, in an arbitrary transition « — f. Our result
is that Eq. (10.5.1) vanishes when contracted with any one of the photon
four-momenta:

auMgy (a4 ) = a,MEY (g4, )
=-=0. (10.5.2)
Since M is defined symmetrically with respect to the photon lines, it will

be sufficient to show the vanishing of the first of these quantities.
For this purpose, note that by an integration by parts

du Mug/m(Q> q,’ o ) = —1 /d4x /d4x/ T
9
OxH

The electric current J¥(x) is conserved, but this does not immediately
imply that Eq. (10.5.3) vanishes, because we still have to take account

 e—ia% =g N (\PE’ T{J#(x)’ JE () }‘I’j) . (10.5.3)
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of the x%-dependence contained in the theta functions that appear in the
definition of the time-ordered product. For instance, for just two currents

T{THT(9)} = 00 )70 () 4 0,0 — X (7)4(x)

so, taking account of the conservation of J#(x):

o T{7h(x) POV = 862 =50)7°6) 1 (5) — 500 = %) 1) 100

LMzaniﬂ=—%F®0ﬁ@—w,

where gr is the sum of the gss for the fields and field derivatives in
F, minus the sum of the qrs for the field adjoints and their derivatives.
For the electric current, gy is zero; J¥(y) is itself an electrically neutral
operator. It follows that

[ﬂ@aﬂ@ﬂzo (10.5.5)
and therefore Eq, (10.5.4) vanishes, so that Eq. (10.5.3) gives
4Mp " (q,q, ) =0 (10.5.6)

as was to be proved.

There is an important qualification here. In deriving Eq. (10.5.5) we
should take into account the fact that a product of fields at the same
spacetime point y like the current operator J”(y) can only be properly
defined through some regularization procedure that deals with the infinities
in such products. In many cases it turns out that there are non-vanishing
contributions to the commutator of JO(X,¢) with the regulated current
J'(3,t), known as Schwinger terms.5 Where the current includes terms
arising from a charged scalar field @, there are additional regulator-
independent Schwinger terms involving @, However, all these Schwinger
terms are cancelled in multi-photon amplitudes by the contribution of
additional interactions that are quadratic in the electromagnetic field,
either arising from the regulator procedure (if gauge-invariant) or, as for
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in what follows we will ignore this issue and continue to use the naive
commutation relation (10.5.5).

‘The same argument yields a result like Eq. (10.5.2) even if other particles
besides photons are off the mass shell, provided that all charged particles
are taken on the mass shell, i.e., kept in the states W~ and ¥, *. Otherwise,
the left-hand side of Eq. (10.5.2) receives contributions from non-vanishing
equal-time commutators, such as those we encountered in the derivation
of the Ward identity in the previous section.

One consequence of Eq. (10.5.2) is that S-matrix elements are unaffected
if we change any photon propagator Ay, (q) by

Auy(q) = Aw(q) + gy + quby (10.5.7)
or if we change any photon polarization vector by
ep(k, A) — ep(k, A) + ckp (10.5.8)

where k° = |k|, and «, f8y, and ¢ are entirely arbitrary (not necessarily
constants, and not necessarily the same for all propagators or polarization
vectors.) This is (somewhat loosely) called the gauge invariance of the
S-matrix.

To prove this result it is only necessary to display the exp11c1t dependence
of the S-matrix on photon polarization vectors and propagators

Spa o0 [ da1 '+ By (00 M)
x e, (ki A1)ep, (Ky245) -« - eqy (Kid1)eq, (Kada) -
X Mé‘é:uZ"'VIVZ'“P1P2”'<710'2"'(_qb —q2," ", q1,92," " _klla _k/2 Y kl: k2 v )
| (10.5.9)

where MP?" is the matrix element (10.5.1) calculated in the absence of
electromagnetic interactions.* The invariance of Eq. (10.5.9) under the
‘cauge transformations’ (10.5.7) and (10.5.8) follows immediately from
the conservation conditions (10.5.2). (In Section 9.6 we used the path-
integral formalism to prove a special case of this theorem, that vacuum
expectation values of time-ordered products of gauge-invariant operators
are independent of the constant « in the propagator (9.6.21).) This result
is not as elementary as it looks, as it applies not to individual diagrams,
but only to sums of diagrams in which the current vettices are inserted in
all poss1b1e places in the diagrams.

There is a particularly important application of Eq (10.5.2) to the
calculation of the photon propagator. The complete photon propagator,

* The states a and b are the same as « and B, but with photons deleted. Note that the arguments
of M are all taken to be incoming four-momenta, which is why we have to insert various signs
for some of the arguments of M in Eq. (10.5.9).
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conventionally called A, (q), takes the form

Aw(@) = A (q) + Ay ()M “(@DAsi(q), (10.5.10)

where M*7 ig proportional to the matrix element ( 10.5.1) with two currents
and o and f both the vacuum state, and A, is the bare photon propagator,
written here in a general Lorentz-invariant gauge as

—_ 2 2
Aw(q) = T = $(a7)du4, /9

prh . (105.11)
From Eq. (10.5.2) we have here 9*Myy(q) =0, so that
@ (1 —¢(q?))

=» WE may express the complete photon propagator in terms of a
sum II*(q) of graphs with two external photon lines that (unlike M) are
one-photon-irreducible : '

A'(q) = A(g) + AP (9)A(q) + ADIT(QAQIT (9)A(g) + -+

=T -t , (10.5.13)
orin other words )
A(@) = B () + Ay (@)TT (), (g) (10.5.14)
Then in order to satisfy Eq. (10.5.12), we must have
\ 311" (q) =0, (10.5.15)

This together with Lorentz Invariance tells us that IT*(g) must take the
form

(@) = (4*1*° — ¢Pq")n(q?) (10.5.16)
Then Eq. (10.5.13) yields a complete propagator of the form

' — M — E(aDq,q, /42
A (q) = [;2 T }_”n ik (10.5.17)

where

$@%) = €@ — n(g)] +n(g?) . (10.5.18)

Now, because IT,,(q) receives contributions only from one-photon-
irreducible graphs, it is expected not to have any pole at g% = (), (There

discussed in Volume IL) In particular, the absence of poles at ¢ = 0 in
the g,q, term in IT),(q) tells us that the function 7(g?) in Eq. (10.5.16) also
has no such pole, and so the pole in the complete propagator (10.5.17) is
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still at g% = 0, indicating that radiative corrections do not give the photon
a mass. '

For a renormalized electromagnetic field, radiative corrections should
also not alter the gauge-invariant part of the residue of the photon pole
in Eq. (10.5.17), so

7(0)=0. (10.5.19)

This condition leads to a determination of the electromagnetic field renor-
malization constant Z3. Recall that when expressed in terms of the renor-
malized field (10.4.17), the electrodynamic Lagrangian takes the form

L = — 175(0,4, — 0yA)(0HAY — 0" AR) + L (Yo, 104 — iqrA)Yy)

The function 7(¢?) in the one-photon-irreducible amplitude is then

| n(q?) = 1 —Z3 + nroor(q?) , ©(10.5.20)
where n1oop 18 the contribution of loop diagrams. It follows that
Z3 =1+ noop(0) . ‘(10.5.21)

In practice, we just calculate the loop contributions and subtract a constant
in order to make 7(0) vanish.

Incidentally, Eq. (10.5.18) shows that for g # O the gauge term in the
photon propagator is altered by radiative corrections. The one exception
is the case of Landau gauge, for which & = ¢ =1 for all ¢2.

10.6 Electromagnetic Form Factors and Magnetic Moment

Suppose that we want to calculate the scattering of a particle by an
external electromagnetic field (or by the electromagnetic field of another
particle), to first order in this electromagnetic field, but to all orders in
all other interactions (including electromagnetic) of our particle. For this
purpose, we need to know the sum of the contributions of all Feynman
diagrams with one incoming and one outgoing particle line, both on the
mass shell, plus a photon line, which may be on or off the mass shell.
According to the theorem of Section 6.4, this sum is given by the one-
particle matrix element of the electromagnetic current J#(x). Let us see
what governs the general form of this matrix element.

According to spacetime translation invariance, the one-particle matrix
element of the electromagnetic current takes the form

(Tyorr T )W) = expli(p — ') - ) Ty (O ¥po) . (1060)

The current conservation condition 0,J# = 0 then requires

(0 = D) (Ppor> JHO)¥ps) = 0. (10.6.2)
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Also, setting y = 0 and integrating over all x gives ,
(Fro 0¥ps) = @m0 — ) (T, J0) ¥y )
Using Eq. (10.4.8), this gives |
(¥pos I°0) ) = 204 3,1, (10.63)

where ¢ is the particle charge.

We also have at our disposal the constraints on the current matrix
elements imposed by Lorentz invariance. To explore these, we will limit
ourselves to the simplest cases: spin zero and spin % The analysis
presented here provides an example of techniques that are useful for other

currents, such as those of the semi-leptonic weak interactions.

Spin Zero

For spin zero, Lorentz invariance requires the one-particle matrix element
of the current to take the general form ‘

(¥ J H0) ) = g(2m) > 222012 g (), p), (10.6.4)

where p° and p'° are the mass-shell energies (p? — Vp?+m?), and ZH4p, p)
is a four-vector function of the two four-vectors p* and p*. (We have
extracted a factor of the charge g of the particle from ¢ for future
convenience.) Obviously, the most general such four-vector function takes
the form of a linear combination of p* and p#, or equivalently of p'* + p
and p* — p, with scalar coefficients. But the scalars p? and p? are fixed
at the values p? = p’> = —m?, so the scalar variables that can be formed
from p* and p'* can be taken as functions only of p- p/, or equivalently of

=p-p)Y=—2m>=2 9. (10.6.5)
Thus the function ##(p/, p) must take the form |
D', p) = (0 + ) F(k*) + i(p — p)*H(KY) . (10.6.6)

The fact that J# is Hermitian implies that ¢4(p/, p)* = JHp, '), so that
both F(k?) and H(k?) are real. |

Now (p'—p) - (p' + p) vanishes, while (' —p)? = k2 is not generally zero,
so the condition of current conservation is simply

HKk?) =0, | (10.6.7)

Also, setting p’ = p and ;& = 0 in Eq. (10.6.4), and comparing with Eq.
(10.6.3), we find that .

FO)=1. (10.6.8)

The function F(k?) is called the electromagnetic form factor of the particle.

(‘\-«
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Spin %

For spin %, Lorentz invariance requires the one-particle matrix elemént of
the current to take the general form

(Fyor, 4Oy ) = ig 2m) 0@, )T, pJu(p, @) (10.69)

where I'* is a four-vector 4 x 4 matrix function of p,p”, and y*, and u
is the usual Dirac coefficient functioni. We have extracted a factor iq to
make the normalization of T'* the same as in the previous section.

Just as for any 4 x 4 mattix, we may expand I'* in the 16 covariant
matrices 1, y,, [yp,7s], y575, and ys. The most general four-vector T'* can
therefore be written as a linear combination of

1: p*, p*
USRS R 4P Y o 4N L S
[yp: 70‘] . [’Vua ﬁ]a [»))ﬂ, #]9 [ﬁa ﬁ ]pﬂa [ﬁ: ﬁ]p/‘u

VsV i sy, €PMOp,pl
vs:  NONE

with the coefficient of each term a function of the only scalar variable in
the problem, the quantity (10.6.5). This can be greatly simplified by using
the Dirac equations satisfied by u and #:

ap,o') (i f +m) =0, (i f+mu(p,0)=0.

In consequence, we can drop* all but the first three entries: p*, p'*, and
y¥. We conclude that, on the fermion mass shell, I'* may be expressed as
a linear combination of y¥, p#, and p’*, which we choose to write as

u(p, o \T*@', pup, 0) = 5, ') [y*F (K?)

- o 042600 + L g)upo). (10610

* This is obvious for the terms p* §, p* g, p* jf, and p'* §', which may be replaced respectively
with imp#, imp’#, imp#, and imp'*, which are the same as terms already on our list. Also, we can
write y

D5 Bl =20 ¥ — (¥, i} =20%  — 2,

which may be replaced with 2imy* — 2pH, a linear combination of terms already on our list. The

same applies to [y*, #']. Also, ‘

A [ﬁ,ﬂ’]=—2p"ﬁ+{p‘,ﬂ,}=—2ﬂlﬂ+2pP,,

which may be replaced with 2m? + 2p - p = —k2. Hence the terms [, §'Ip* and [ §, F'1p* give
nothing new. Finally, to deal with the last term we may use the relation

Ys¥p T = i (v“yvv" Y0 TR =ty — oyt — v"yvv“) :
Contracting this with p, and p/, and then moving all pf. factors to the right and §’ factors to the

left again gives a linear combination of p#, p’¥, and yA.

{
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The hermiticity of J #(0) implies that

BT, p)B = —IH(p, o) , (10.6.11)

so that F(k?), G(k?), and H (k?) must all be real functions of k2.

he conservation condition (10.6.2) is automatically satisfied by the first
two terms in Eq. (10.6.10), because

O = = =i ¥ +m) — i 4]
and
B =p) (' +p)=p2—p*.

On the other ‘hand, (' — p)* does not in general vanish, so current
conservation requires the third term to vanish

H(?* =0. ,, (10.6.12)
Also, letting p’ — p in Eqgs. (10.6.9) and (10.6.10), we find
. ) . Al . : | i | .
(Fpor 700 ¥y ) = 1g(2m)a(p, o [P4FO) = = p6(0)] u(p, o)
Using the identity Phip+m) = 2myk + 2ipk we also have

_ ipt _
e ulp0) = — L ap, o' ugp, )
Recall also that "

u(p, o’ Ju(p, o) = Ogrgi/ PO
and therefore

(‘I’p J”(O)‘Pp,a) = q2m)(p" /p°)6 514 [F(O) +G6(0)].  (106.13)
Comparing this with Eq. (10.6.3) yields the normalization condition
F0)+G(0)=1, | (10.6.14)

It may be useful to note that the electromagnetic vertex matrix ¥ is
commonly written in terms of two other matrices, as

TR pue, o) = (', 0') [yFy (1)
R R une). (10615

As already mentioned, we may rewrite the matrix appearing in the second
term in terms of those used in defining F(k?) and G(k2):

wp', o) 4i 91 (0 = p), u(p, 7)
=U0L0) [~ P+ LR )i gy 50", #}] u(p, o)
o =u(p, o) [i(p’# + M) + 2myﬂ] u(p, ) . (10.6.16)
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Comparing Eq. (10.6.15) with Eq. (10.6.10), we find

F(k*) = Fi(k*) + 2mFy(k?) - (10.6.17)
G(k?) = —2m Fy(k?) . (10.6.18)
The normalization condition (10.6.14) now reads
Fi(0)=1.

In order to evaluate the magnetic moment of our particle in terms of
its form factors, let us consider the spatial part of the vertex function in
the case of small momenta, |p|, |p/| < m. For this purpose, it is useful to
use Eq. (10.6.16) to rewrite Eq. (10.6.10) (with H = 0) in a third form:

0o )T DY, 0) = o i) [(p + ') LF() + G}
— BRI = FGR) u(p o). (106.19)

2

For zero momenta the matrix elements of the commutators of Dirac
matrices are given by (5.4.19) and (5.4.20) as

o 1 . )
00,0y, 1u(0, 0) = diey (7)) . (0,6, 1°u(0,0) = 0,

where J2) = %0' is the angular momentum matrix for spin % Hence to
first order in the small momenta,

b

} - S ,
', 00, D)u(p. 6) = (b + )00 + - [(p — B) X I, F0).

(10.6.20)
In a very weak time-independent external vector potential A(x) the matrix
element of the interaction Hamiltonian H' = — [ d®x J(x) - A(x) between
one-particle states of small momentum is therefore |
(Fy o H'¥po) = m(27)3 / Px P PI*4(x) - [(p— p') x JD]
gk (0) / 3 01 3(h) |
= — J'7) . B(x), 10.6.21

where B = Vx A4 is the magnetic field. Hence in the limit of a slowly varying

weak magnetic field, the matrix element of the interaction Hamiltonian is -

1

F(0
¥y H'¥) = =L O gy, B —p). (10622

™)

The magnetic moment p for an arbitrary particle of general spin j is
defined by the statement that the matrix element of the interaction of the
particle with a weak static slowly varying magnetic field is

(Pyor, H'W, ) = _g(J@)M B8 (p—1p). (10.6.23)
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Hence Eq. (10.6.22) gives the m gnetic moment of a particle of charge ¢,
mass m, and spin 1 as: :

F(0
u= 250

5 (10.6.24)

This contains as a special case the celebrated Dirac result’ 1 =q/2m for
a spin % particle without radiative corrections,

We mention without proof that the form factors F(k?) and G(k?) of
the proton may be measured for k2 > 0 by comparison of experimental

data for electron—proton scattering with the Rosenbluth formula8 for the
laboratory frame differential cross-section:

do & co®0/2) [ 2B, ., -1
Q ~ 4(4nVE; Sin'(0)2) [1 T S/ 2)J

x {(F(kz) +G(k)) + %(zzﬂ(ﬁ) tan’(6/2) + G2(k2))} :

where Ej is the energy of the incident electron (taken here with Ey >> Me);
0 is the scattering angle; and

2 4 E¢ sin’(6/2)
14 (2Eo/m) sin?(8 /2)

10.7 The Killen-Lehmann Representation®

We saw in Section 10.2 that the presence of one-particle intermediate
states leads to poles in Fourier transforms of matrix elements of time-
ordered products, like (10.2.1). Multi-particle intermediate states lead to
more complicated singularities, which are difficult to describe in general,
But in the special case of a vacuum expectation value involving just two
operators, we have a convenient representation that explicitly displays the
analytic structure of the Fourier transform. In particular, this representa-
tion may be used for bropagators, where the two operators are the fields of
elementary particles. When combined with the positivity requirements of
quantum mechanics, this representation yields interesting bounds on the
asymptotic behavior of propagators and the magnitude of renormalization
constants.

Consider a complex scalar Heisenberg-picture operator ®(x), which
may or may not be an elementary particle field. The vacuum expectation

" This section lies somewhat out of the book’s main line of development, and may be omitted in
a first reading,
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value of a product ®(x)®T(y) may be expressed as
(@)@ ()0 = >_(01P(x)In) (nl @ ()I0) (10.7.1)

n

where the sum runs over any complete set of states. (Here the sum over
n includes integrals over continuous labels as well as sums over discrete
labels.) Choosing these states as eigenstates of the momentum four-vector
P*, translational invariance tells us that

(0|®(x)|n) = exp(ipn * X)(01@(0)In) ,
(@ (1)]0) = exp(—ips - Y@ @0 - (10.7.2)

and so

@)D () = D exp(ips - (x = ¥)) (0| @O) )| . (10.7.3)

It is convenient to rewrite this in terms of a spectral function. Note that
the sum 3, 64(p — pn) l(O\CI)(O)ln>l2 is a scalar function of the four-vector
p#, and therefore may depend only on p* and (for p* < 0) on the step

function 6(p%). In fact, the intermediate states in Eq. (10.7.3) all have
p? <0 and p° >0, so this sum takes the form

S 64(p — pa) [(OIO) ) = )72 0(0%) p(—p°) (10.7.4)

n

with p(—p*) = 0 for p* > 0. (The factor (2n)~3 is extracted from p
for future convenience.) The spectral function p(—p?) is clearly real and
positive. With this definition, we can rewrite Eq. (10.7.3) as

(@)D ()0 = (21) / iy explip - (x— ) 00°) p(—17)
s [ [T L 0
=@y [d'p /0 a2 explip - (x— 1 6(°)

X o) (0 + 1) - (1075)

Interchanging the order of integration over p* and 2, this may be ex-
pressed as

(@)@ 0)ho = / 42 oD Asix—yiid),  (1076)

where A, is the familiar function

Ap(x—yipd) = (2m)7 / d'p explip- (x— 0@ 6" + 1) . (10.7.7)

In just the same way, we can show that

@106 = [ di pUA) Ay —xisd) 1 (10T8)
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with a second spectral function p(14?) defined by

D 3 —py) |{n®(0)/0)|* = (27)~3 0(°) p(—p?) . (10.7.9)

We now make use of the causality requirement, that the commutator
[D(x), ®(1)] must vanish for space-like Separations x — y. The vacuum
expectation value of the commutator is :

([D(x), DT (y)])o = / " (P2 Ay (x = ;) D) Ay — x ) .

0
(10.7.10)

As noted in Section 5.2, for x — Y space-like the function As(x —y) does
not vanish, but it doeg become eyen, In order for (10.7.10) to vanish for
arbitrary space-like separations, it is thus necessary that

P?) = p(u?) . (10.7.11)

This is a special case of the CPT theorem, proved here without the use of
perturbation theory; for Wwhatever states with P* = —42 have the quantum

TR0 o = —i [ 02 piu) ey 0y (10.712)

where Ap(x — V;u?) is the Feynman bropagator for a spinless particle of
mass yu:

—IAR(x ~ y;p?) = 0(x0 — VAL~ ;1) — 00 — ALY —x;02)
(10.7.13)
Borrowing the notation introduced in Section 10.3 for complete propaga-

~i0)= [ d'x explip (e (1 (e, (10714

Recall that

. 1 |
/d4x exp[—ip _' (x —y)] Ap(x — yip?) = A E (10.7.15)
This yields our spectral representation -9
0 du?
o) = [ puty S (107.16)
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that A’(p) cannot vanish for [p?| — oo faster** than the bare propagator
1/(p* + m* —ie). From time to time the suggestion is made to include
higher derivative terms in the unperturbed Lagrangian, which would make
the propagator vanish faster than 1/p? for |p?| — oo, but the spectral
representation shows that this would necessarily entail a departure from
the positivity postulates of quantum mechanics.

We can use the spectral representation together with equal-time commu-
tation relations to derive an interesting sum rule for the spectral function.
If ®(x) is a conventionally normalized (not renormalized) canonical field
operator, then

8®ét ) ety t)] i3(x—y). ' (10.7.17)
We note that

9 .

00+ =) e —ié (x —y)

so the spectral representation (10.7.10) and the commutation relations
(10.7.17) together tell us that

(0]
/0 o) dit =1, (10.7.18)

This implies that for |p?| — oo, the momentum space propagator (10.7.16)
of the unrenormalized fields has the free-field asymptotic behavior

1
N(p)— = .
(p) 2

This result is only meaningful within a suitable scheme for regulating
ultraviolet divergences; in perturbation theory the unrenormalized fields
have infinite matrix elements, and their propagator is ill-defined.

Now consider the possibility that there is a one-particle state |k) of mass
m with a non-vanishing matrix element with the state (0|®(0). Lorentz

** In fact, it is not even certain that A’(p) vanishes for |p?| — o at all, even though this would
seem to follow from the spectral representatlon The problem arises from the 1nterchange of
the integrals over p# and u?. What is certain 1s that A ( ) is an analytlc function of —p? with
a discontinuity across the positive real axis —p? = p? g1ven by np(u?), as can be shown by the
methods of the next section. From this, it follows that A’(p) is given by a dlspersmn relation with
spectral function p(x?) and possible subtractions:

dy?
(u2+u2)" P pt—ie”

A(p) = P(p?) + (—p* + 1

/

where n is a positive integer, ,uo is an arb1trary positive constant, and P(p?) is a ,u(z)-dependent

polynomial in p? of order n — 1 that is absent for n = 0. IS

=
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invariance requires this matrix element to take the form

(01O = (2r)2 (2vie ) 2y (10.7.19)

where N is a constant. According to the general results of Section 10.3,

the propagator A’ (p) of the unrenormalized fields should have a pole at
p? — —m? with residue 7 — INI> > 0. That is,

PU) = Z8(12 — m?) + o (u?) (10.7.20)

.where o(4?) > 0 is the contribution of multi-particle states. Together with
Eq. (10.7.18), this has the consequence that

o8]
=27+ / c(12) 2 (10.7.21)
0

Z <1 , (10.7.22)

with the equality reached only for a free particle, for which (0|®(x) has
N0 matrix elements with multi-particle states.

Because Z is positive, Eq. (10.7.21) can also be regarded as providing
an upper bound on the coupling of the field ® to multi-particle states:

/ (D) d? <1 (10.7.23)
0

‘with the equality reached for 7 — 0. The limit Z = 0 has an interesting
interpretation as a condition for a particle to be composite rather than
elementary.!0 In this context, a ‘composite’ particle may be understood to
be one whose field does not appear in the Lagrangian. Consider such a
particle, say a neutral particle of spin zero, and suppose that its quantum
numbers allow it to be destroyed by an operator F(¥) constructed out of
other fields. We can freely introduce a field @ for this particle by adding a
term to the Lagrangian density of the form Ay — (® — F(¥))?%, because
the path integral over ® can be done by setting it equal to the stationary
point ® = F(¥), at which A% — 0. But suppose instead we write
AY = A%y + AP, where A%y =—10,00rp — 1m?®? is the usual free-
field Lagrangian, and treat AT =AY — A%y as an interaction. A term
30,0 ® in the interaction is nothing new. We encountered such a term
in Eq. (10.3.12), multiplied by a factor (1 —Z); the only new thing is that
here Z = 0. Instead of adjusting Z to satisfy the field renormalization
condition IT"(0) = 0, here we must regard this as a condition on the

T This is known in condensed matter physics as a ‘Hubbard-Stratonovich transformation’ ! It will

be used to introduce fields for pairs of electrons in our discussion of superconductivity in Volume
IL .
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coupling constants of the composite particle. Unfortunately, it has not
been possible to implement this procedure in quantum field theories,
because as we have seen Z = 0 means that the particle couples as strongly
as possible to its constituents, and this rules out the use of perturbation
theory. The condition Z = 0 does prove useful in non-relativistic quantum
mechanics; for instance, it fixes the coupling of the deuteron to the neutron
and proton.!?

Although the spectral representation has been derived here only for a
spinless field, it is easy to generalize these results to other fields. Indeed,
in the next chapter we shall show that to order €2, the Z-factor for the
electromagnetic field (conventionally called Z3) is given by

e? A?
Zy = 1— —1—27_65111 (;};g)

(where A > me is an ultraviolet cutoff), in agreement with the bound
(10.7.22).

10.8 Dispersion Relations

The failure of early attempts to apply perturbative quantum field theory
to the strong and weak nuclear forces had led theorists by the late 1950s
to attempt the use of the analyticity and unitarity of scattering amplitudes
as a way of deriving general non-perturbative results that would not
* depend on any particular field theory. This started with a revival of
interest in dispersion relations. In its original form,!3 a dispersion relation
was a formula giving the real part of the index of refraction in terms of
an integral over its imaginary part. It was derived from an analyticity
property of the index of refraction as a function of frequency, which
followed from the condition that electromagnetic signals in a medium
cannot travel faster than light in a vacuum. By expressing the index
of refraction in terms of the forward photon scattering amplitude, the
dispersion relation could be rewritten as a formula for the real part of
the forward scattering amplitude as an integral of its imaginary part,
and hence via unitarity in terms of the total cross-section. One of the
exciting things about this relation was that it provided an alternative to
conventional perturbation theory; given the scattering amplitude to order
¢2, one could calculate the cross-section and the imaginary part of the
scattering amplitude to order ¢t and then use the dispersion relation to -

* This section lies somewhat out of the book’s main line of development, and may be omitted in
a first reading,
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calculate the real part of the forward scattering amplitude to this order,
without having ever to calculate a loop graph.

The modern approach to dispersion relations began in 1954 with the
work of Gell-Mann, Goldberger, and Thirring.'* Instead of considering
the propagation of light in a medium, they derived the analyticity of the
scattering amplitude directly from the condition of microscopic causality,
which states that commutators of field operators vanish when the points
at which the operators are evaluated are separated by a space-like interval.
This approach allowed Goldberger!® soon thereafter to derive a very useful
dispersion relation for the forward pion-nucleon scattering amplitude.

To see how to use the principle of microscopic causality, consider the
forward scattering in the laboratory frame of a massless boson of any

- spin on an arbitrary target o of mass m, > 0 and P. = 0. (This has

important applications to the scattering not only of photons but also
pions in the limit m, = 0, to be discussed in Volume IL.) By a repeated
use of Eq. (10.3.4) or the Lehmann-Symanzik-Zimmerman theorem,? the
S-matrix element here is

1
S = limyz_, limy._
(213 Ao NP2 -0 Mg

x [ dix / Ay €7 RX60,)00,) (o T{aM(y), AN . (108.1)

Here k and k' are the initial and final boson four-momenta, with o = kO,
o =k A(x) is any Heisenberg-picture operator with a non-vanishing
matrix element (VAC|A(x)[k) = (21)~% 2(2w)~'2Ne*> between the one-
boson state |k) and the vacuum; and N is the constant in this matrix
element. In photon scattering A(x) would be one of the transverse com-
ponents of the electromagnetic field, while for massless pion scattering
it would be a pseudoscalar function of hadron fields. The differential
operators —illy and —i0, are inserted to supply factors of k2 and ik?
that are needed to cancel the external line boson propagators. Letting
these operators act on AT(y) and A(x), we have

1
2n)3 Jrww N2 K0 TR0

x / d*x / 4y e F X TN ), I(0)}e) +ETC, (1082)

where J(x) = O,4(x), and ‘ETC’ denotes the Fourier transform of equal
time commutator terms arising from the derivative acting on the step
functions in the time-ordered product. The commutators of operators like
A(x) and A'(y) (or their derivatives) vanish for x0 = 30 unless x —= y,
so the ‘ETC’ term is the Fourier transform of a differential operator
acting on 6*(x — y), and is hence a polynomial function of the boson
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four-momenta. We are concerned here with the analytic properties of the
S-matrix element, so the details of this polynomial will be irrelevant.

Using translation invariance, Eq. (10.8.2) gives the S -matrix element as
S = —2mid* (k' — k)M(w), where

Mi(w) = 2607;”2 Flo), (10.8.3)

F(w) = /d4x eiwf'x(oclT{JT(O), J(x)}|e) + ETC, (10.8.4)

it now being understood that k* = w/*, where 7 is a fixed four-vector
with £¢¢, = 0 and £° = 1.

The time-ordered product can be rewritten in terms of commutators in
two different ways:

T{I1(0),7(x)} = 0(—x)I (), I (] + ()7 (O)
— 06O [IT(0),J(x)] +JTO0)(x) .  (1085)
Correspondingly, we can write
F(0) = Fa(®) + F1(0) = Fr(@) + F-(). (108.6)
where

? Fy(o) = / % 0(—x®) (a|[J7(0), J(o)l|a) €7 + ETC,  (10.87)
Fg(a)) = — / dx 0(x°) (o[J1(0), J(x)]|w) €29* 4+ ETC,  (10.88)
Fi(w)= / dx (o] J(x) JT(0)]or) €27, | (10.8.9)

F_(0)= / dx (o JT(0) J(x)|ar) €% . (10.8.10)

Microscopic causality tells us that the integrands in (10.8.7) and (10.8.8)
vanish unless x* is within the light cone, and the step functions then
require that x* is in the backward light cone in (10.8.7), so that x-Z >0,
and in the forward light cone in Eq. (10.8.8), so that x-¢ < 0. We conclude
that F4(w) is analytic for Imw > 0 and Fr(w) is analytic for Im w <0,
because in both cases the factor ¢?* provides a cutoff for the mtegrgl
over x*. (Recall that the ‘ETC’ term is a polynomial, and hence analytic
at all finite points.) We may then define a function

- _ F( ) Imw >0 811
‘/'(w)={ F}i(z) Imo <0 (108.11)
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real axis.
We can now derive the dispersion relation, According to Eq. (10.8.6),
the discontinuity of & (@) across the cut at any real E is
F(E + ie) — F(E —ie) = Fy(E) — FR(E) = F_(E)~Fy(E). (10.8.12)
J

If #(w)/w" vanishes as |w| — o in the upper or lower half-plane, then
by dividing by any polynomia] P(w) of order n we obtain a function
that vanishes for o] = o0 and is analytic except for the cut on the real

axis and poles at the zeroes wy of P(w). (Where 4 (w) itself vanishes ag -

lo] — o0, we can take P(w) = 1.) According to the method of residues,
we then have

F (o) F(w,) 1 F(2) dz
Plw) © Z (@) — ) P/(,) ~ rmiﬁ (z— o) P(z)’

segments: one running just above the real axis from —oo + i€ to 400 4 je
and then around g large semi-circle back to —co + i€, and the other just
below the real axis from +o0 — je to —% —ie and then around g large
semi-circle back to +00 —ie. Because the function &# (z)/P(z) vanishes

for |z| — oo, we can neglect the contribution from the large semi-circles.
Using Eq. (10.8.12), Eq. (10.8.13) becomes

. P) 1+ F_(B)— F(E)
‘/’(w)"Q(w)"‘Tm o de,

where Q(w) Is the (n — 1)th-order polynomia]

Q@) = —P(w)}" (

97(601,)
Wy —w) P'(w,)

A dispersion relation of this form, with P(w) and Q(w) of order n and
n—1 respectively, is said to have » subtractions. If we can take P = 1 then
Q =0, and the dispersion relation is said to be unsubtracted.
If we now let approach the real axis from above, Eq. (10.8.14) gives
Pl@) r+° F_(B)-F,(E)

Recalling Egs. (10.8.6) and (3.1.25), this is

P(@) [+ F_(E)~ F,(E)

dE
2ni J_ o (E — w) P(E)
(10.8.16)
with 1/(E — ) now interpreted as the principal value function Z/(E —w).

Flo) = Q(w) + %F_(coH— %FJr(a)) +
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- This result is useful because the functions Fi(E) may be expressed
in terms of measurable cross-sections. Summing over a complete set of
multi-particle intermediate states g in Egs. (10.8.9) and (10.8.10) (including
integrations over the momenta of the particles in ) and using translation
invariance again, we have

Fu(E) = ) S (B 10| 0 —pa+ B +pg),  (10817)
B »
F_(E) = (2n)* Y B (O))I* 6*(ps + E£ — pp) . (10.8.18)
p

But the matrix elements for the absorption of the massless scalar boson
B in B + o — f or its antiparticle B¢ in B¢+« — f are

(2m)*

~ Mg = o ey P O (10.8.19)
4
— Mg = () (B1T(0)|2r) - (10.8.20)

(ZPﬂJﬂTN

Comparing with Eq. (3.4.15), we see that F(E) may be expressed in terms
of total cross-sections™ at energies TE:

2
F1(E) = 0(E )%'——WCGED , (10821
2E|NJ?
FLE)=0B) Gy ous(B) . (10822)
The scattering amplitude (10.8.3) is now, for real w > 0,
_ —iQ(w) i
M((D) - 20 |N|2 - 2(27'5)3 GOC-!—B(CO) |
P(w) ou+B(E) GutBe(E)
co(2n) 0 {(E —w)P(E)  (E+ w)P(—E) EdE . (10.8.23)

It is more usual to express this dispersion relation in terms of the
amplitude f(w) for forward scattering in the laboratory frame, defined
so that the laboratory frame differential cross-section in the forward
direction is |f(w)|?>. This amplitude is given in terms of M(w) by

** In some cases where selection rules allow the transition « — «+ B and « — « + B¢, the functions
F1(E) also contain terms proportional to d(E) arising from the contribution of the one-particle
state o in the sum over intermediate states . This does not occur for transversely polarized
photons, or for pseudoscalar pions in the limit m; — 0.

msem
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(@) = —4720 M(w) = 2n2%iF (w)/|IN]2, so Eq. (10.8.23) now reads

f(@) = R@) + 2, 5(0)

P(w) .OO[ 0utB(E) +. Outpe(E)
4n2  J, (E ~w)P(E) (E + w)P(—E)

where R(w) = 2iz? Q(@)/INJ?. The optical theorem (3.6:4) tells us that the
second term on the right-hand side equals iIm f(w), so this can just as
well be written in the more conventional form

Re f(0) = R(w)

+ JEdE,

P(w) = 04+5(E) OotBe(E) |
Jrey 0 [(E-co)P(E) * (E+co)P(fE)J FdE, (10824)

condition. By changing the integration variable in Egs. (10.8.7) and (10.8.8)
from x to —x and then using the translation-invariance property

(lT7(0), J(—x)]je = (@7(x), J(0)]]0)

we see that for Im e < 0, F4(~w) is the same as FR(co;), except for an
interchange of J with JT. That is, R

Fy(—w) = Fr(w) for Ime <0,

where a superscript ¢ indicates that the amplitude refers to the scattering
of the antiparticle ge on «. (We leave it to the reader to show that thjg
relation is not upset by the equal-time commutator terms in Egs. (10.8.7)
and (10.8.8).) In the same way, we find

Fr(—w) = Fi(w) for Ime >0,
and for real

but R(w) then depends not only on P(w) but also on the values of & (w)
at the zeroes of P(w). For P(w) real and of nth order, the only free
parameters in Eq. (10.8.16) are the # real coefficients in the real (n —1)th
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We might try taking P(w) = 1, but this doesn’t work. The analysis of
Section 3.7 suggests that the forward scattering amplitude should grow
like w or perhaps as fast as w In® w. In this case for f(w)/P(w) to vanish
as w — oo, it is sufficient to take P(w) as a second order polynomial,

so that R(w) is linear in . Choosing P(E) = E? for convenience, Eq.
(10.8.24) then becomes

Ref(w)=a+ bw

* /Oo [{MB(E) 0otp:(E)] dE
472 (E—w) (E+4+w)| E’
with a and b unknown real constants. The crossing symmetry condition

(10.8.25) tells us that the corresponding constants in the dispersion relation
for the antiparticle scattering amplitude f¢(w) are

“=a, b =-b. (10.8.27)

If we assume for instance that the cross-sections ,45(E) and o,45:(E)
behave for E — oo as different constants times (InE)", then (10.8.26)
would give

Re f(w) ~ [04+B(®) — 04rpe(®)]wInw ~ cb(ln w) ! (10.8.28)

so the real part of the scattering amplitude would grow faster than the
imaginary part by a factor Inw. This is implausible; we saw in Section
3.7 that the real part of the forward scattering amplitude is expected to
become much smaller than the imaginary part for @ — oo, as confirmed
by experiment. We conclude that if ¢, g(E) and ¢,yp:(E) do behave for
E — o0 as constants times (In E)" then the constants must be the same.
Because we are concerned here with the high-energy limit, this result does
not depend on the assumption that B is a massless boson, so in the same
sense, the ratio of the cross-sections of any particle and its antiparticle
on a fixed target should approach unity at high energy. This result is
~ a somewhat generalized version of what is known as Pomeranchuk’s
theorem.!® (Pomeranchuk considered only the case » = 0, while Section
3.7 and the observed behavior of cross-sections both suggest that r = 2 is
more likely.)

Although Pomeranchuk took his estimates of the asymptotic behavior
of scattering amplitudes from arguments like those of Section 3.7, today
high energy behavior is usually inferred from Regge pole theory.!” It
would take us too far from our subject to go into details about this;
suffice it to say that for hadronic processes the asymptotic behavior of
f(w) as w goes to infinity is a sum over terms proportional to w*©), where
an(t) are a set of ‘Regge trajectories’, each representing the exchange of an
infinite family of different one-hadron states in the collision process. The
leading trajectory (actually, a complex of many trajectories) in hadron—

+

(10.8.26)
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hadron Scattering is the "Pomeron,” for which «(0) is close to unity. It is
this trajectory that gIVEs Cross-sections that are approximately constant
for E — oo, According to Pomeranchuk’s theorem, the Pomeron couples
equally to any hadron and its antiparticle. We cap estimate o, (0) for
the lower Regge trajectories from the Spectrum of hadronic states. A

at m = 2350 MeV. Extrapolatingdthese values of «(t) down to  — 0, we
can estimate that thjs trajectory has 2(0) ~ 0.5. This trajectory couples

with opposite sign to 7t and 7, so for pion—nucleon scattering we expect
f(w) = f(w) to behave roughly like NG)

w? o

This is essentially the original Kramers-Kronig!3 relation. As we shall see
in Section 13.5, for a target of charge ¢ ang mass m the constant ¢ hag
the known value Re f(0) = —e2/m,

Problems

L. Consider a neutra vector field v,(x). What conditions must be
imposed on the sum IT (k) of one-particle-irreducible graphs with

two external vector field lines in order that the field should be °

properly renormalized and describe g particle of renormalized mass
m? How do we split the free-field and interacting terms in the
Lagrangian to achieve this?

2. Derive the generalized Ward identity that governs the electromag-
netic vertex function of a charged scalar field.

3. What is the most general form of the matrix element (pyo,|J “(x)[p1oy)
of the electromagnetic current J#(x) between two spin % one-particle

4. Derive the spectral (Kéillen-Lehmann) Tepresentation for the vacuum

€Xpectation valye (T{J¥x) Jv(y)T}>o, where J¥(x) is qa complex
conserved current,
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“

L »© =2 v s

10.

11.

12

10 Non-Perturbative Methods

Derive the spectral (Kéllen—Lehmann) representation for the vacuum
expectation value (T {yu(x) Pm(y)})o, Where (x) is a Dirac field.

Without using any assumptions about the asymptotic behavior of
the scattering amplitude or cross-sections, show that it is impossible
for forward photon scattering amplitudes to satisfy unsubtracted
dispersion relations.

Derive the spectral (Killen-Lehmann) representation for a complex
scalar field by using the methods of dispersion theory.

. Use dispersion theory and the results of Section 8.7 to calculate the

amplitude for forward photon—electron scattering in the electron rest
frame to order e*.
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