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Hg = gH Vg € G, and so the left cosets are the same sets as the right cosets.
In this case, the coset space G/ H is itself a group with multiplication defined
by

(Hg1) (Hgo) = {higihjgz|hi, hy € HY}
= {hig1hjg; g192|hi, by € H}
= {hihrg1g2|hi, by € H}
= {heg1galhe € H} = Hg1 gy (9.17)

which is the multiplication rule of the group G. This group G/H is called
the factor group of G by H.

9.6 Morphisms

An isomorphism is a one-to-one map between groups that respects their
multiplication laws. For example, the relation between two equivalent rep-
resentations

D'(g) = 87'D(g)S (9.18)

is an isomorphism (problem 7). An automorphism is an isomorphism

between a group and itself. The map g; — ¢gg; g
1 1

is one to one because

9919 " = gg2g - implies that g g1 = ggo, and so that g1 = go. This map
also preserves the law of multiplication since gg1 9 'gg929 ' =gg1 929"
So the map

G — gGg! (9.19)

is an automorphism. It is called an inner automorphism because g is an
element of G. An automorphism not of this form (9.19) is called an outer
automorphism.

9.7 Schur’s Lemma

Part 1: If Di(g)A = ADy(g) for all g € G, and if Dy & D, are inequivalent
irreducible representations, then A = 0.

Proof: First suppose that A annihilates some vector |z), that is, A|z) = 0.
Let P be the projection operator P into the subspace that A annihilates,
which is of at least one dimension. This subspace, incidentally, is called the
null space N (A) or the kernel of the matrix A. The representation Ds
must leave this null space N(A) invariant since

AD,(g)P = D1(g)AP = 0. 9.20)
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If M(A) were a proper subspace, then the representation Dy would be re-
ducible, which is contrary to our assumption that Dy and D are irreducible.
So the null space N(A) must be the whole space upon which A acts, that
is, A=0.

A similar argument shows that if (y|A = 0 for some bra (y|, then A = 0.

So either A is zero or it annihilates no ket and no bra. In the latter case, A
must be square and invertible, which would imply that De(g) = A~1D1(g)A4,
that is, that D1 and Dy are equivalent representations, which is contrary
to our assumption that they are inequivalent. The only way out is that A
vanishes.

Part 2: If for a finite-dimensional, irreducible representation D(g) of a
group G, we have D(g)A = AD(g) for all g € G, then A = cI. That is, any
matrix that commutes with every element of a finite-dimensional, irreducible
representation must be a multiple of the identity matrix.

Proof: Every square matrix A has at least one eigenvector |z) and eigen-
value ¢ so that A|z) = c|z) because its characteristic equation det(A—cl) = 0
always has at least one root by the fundamental theorem of algebra (5.89).
So the null space N'(A —cI) has dimension greater than zero. Now D(g)A =
AD(g) for all g € G implies that D(g)(A—cl) = (A—cI)D(g) for all g € G.
Let P be the projection operator onto the null space N(A — ¢I). Then we
have (A — cI)D(g)P = D(g)(A — c¢I)P = 0 for all g € G which implies that
D(g) P maps vectors into the null space N'(A —cI). This null space is there-
fore invariant under D(g), which means that D is reducible unless the null
space N(A — ¢I) is the whole space. Since by assumption D is irreducible,
it follows that N (A — ¢I) is the whole space, that is, that A = 0.

Exzample and Application: Suppose an arbitrary observable O is in-
variant under the action of the rotation group SU(2) represented by unitary
operators U(g) for g € SU(2)

Ul(g)OU(g) =0 or [0,U(g)]=0. (9.21)

These unitary rotation operators commute with the square J? of the angular
momentum [J2,U] = 0. Suppose that they also leave the hamiltonian H
unchanged [H,U] = 0. Then as shown in Sec. 9.3, the state U|E, j,m) is a
sum of states all with the same values of j and E. It follows that

> (B,j,m|OIE', j',m' (B, j',m'\U(9)|E',j',m") =

m'

> B, §,m|U(9)|E, j,m')(B, j,m'|O|E', j',m") (9.22)

m!
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or more simply in view of (9.11)

Z(E) Js mIOlE/» jl> ml>Djl (g)m’m” = Z D(J) (g)mm’ <E’ Js mllolEl, j/) m”>'
m/ m/

_ (9.23)

Now Part 1 of Schur’s lemma tells us that the matrix (E, j, m|O|E', 5/, m’)

must vanish unless the representations are equivalent, which is to say unless

j=3". So we have

Z(E)j7m|O|E/7ja m’m” = ZD g)mm’ 7]am/|O|E/,j)m”>'
ml
(9.24)
Now Part 2 of Schur’s lemma tells us that the matrix (F, j, m|O|E', j, m/)
must be a multiple of the identity. Thus the symmetry of © under rotations

simplifies the matrix element to
(E,j, m|O|E’,j', m') = 5jj’5mm'0j(E, E/). (9.25)

This result is a special case of the Wigner-Eckart theorem (Eugene
Wigner, 1902-1995, and Carl Eckart, 1902-1973).

9.8 Characters

Suppose the n x n matrices D;;(g) form a representation of a group G > g.
The character xp(g) of the matrix D(g) is the trace

xp(9) = TtD(g) = > Dii(g). (9.26)
i=1

Traces are cyclic, that is, TrABC = TrBCA = TrCAB. So if two represen-
tations D and D’ are equivalent, so that D'(g) = S~1D(g)S, then they have
the same characters because

xpr(9) = TeD'(g) = Tr (S™'D(9)S) = Tr (D(g)SS™) = TrD(g) = x(g)-

(9.27)

If two group elements g; and go are in the same conjugacy class, that is,

if go = gg1g™! for some g € G, then they have the same character in a given
representation D(g) because

xp(g2) = TrD(gz) = TrD(gg19~ ") = Tr (D(9)D(g1)D(¢g™}))
= Tr (D(q1)D(g9)D(g)) = TrD(g1) = xp(91)- (9.28)






