$Hg = gH \ \forall g \in G$, and so the left cosets are the same sets as the right cosets. In this case, the coset space G/H is itself a group with multiplication defined by

$$(Hg_1) (Hg_2) = \{h_i g_1 h_j g_2 | h_i, h_j \in H\}$$

$$= \{h_i g_1 h_j g_1^{-1} g_1 g_2 | h_i, h_j \in H\}$$

$$= \{h_i h_k g_1 g_2 | h_i, h_k \in H\}$$

$$= \{h_\ell g_1 g_2 | h_\ell \in H\} = Hg_1 g_2$$
(9.17)

which is the multiplication rule of the group G. This group G/H is called the factor group of G by H.

9.6 Morphisms

An **isomorphism** is a one-to-one map between groups that respects their multiplication laws. For example, the relation between two equivalent representations

$$D'(g) = S^{-1}D(g)S (9.18)$$

is an isomorphism (problem 7). An **automorphism** is an isomorphism between a group and itself. The map $g_i \to g g_i g^{-1}$ is one to one because $g g_1 g^{-1} = g g_2 g^{-1}$ implies that $g g_1 = g g_2$, and so that $g_1 = g_2$. This map also preserves the law of multiplication since $g g_1 g^{-1} g g_2 g^{-1} = g g_1 g_2 g^{-1}$. So the map

$$G \to gGg^{-1} \tag{9.19}$$

is an automorphism. It is called an **inner automorphism** because g is an element of G. An automorphism not of this form (9.19) is called an **outer automorphism**.

9.7 Schur's Lemma

Part 1: If $D_1(g)A = AD_2(g)$ for all $g \in G$, and if $D_1 \& D_2$ are inequivalent irreducible representations, then A = 0.

Proof: First suppose that A annihilates some vector $|x\rangle$, that is, $A|x\rangle = 0$. Let P be the projection operator P into the subspace that A annihilates, which is of at least one dimension. This subspace, incidentally, is called the **null space** $\mathcal{N}(A)$ or the **kernel** of the matrix A. The representation D_2 must leave this null space $\mathcal{N}(A)$ invariant since

$$AD_2(g)P = D_1(g)AP = 0.$$
 (9.20)

If $\mathcal{N}(A)$ were a proper subspace, then the representation D_2 would be reducible, which is contrary to our assumption that D_1 and D_2 are irreducible. So the null space $\mathcal{N}(A)$ must be the whole space upon which A acts, that is, A = 0.

A similar argument shows that if $\langle y|A=0$ for some bra $\langle y|$, then A=0. So either A is zero or it annihilates no ket and no bra. In the latter case, A must be square and invertible, which would imply that $D_2(g)=A^{-1}D_1(g)A$, that is, that D_1 and D_2 are equivalent representations, which is contrary to our assumption that they are inequivalent. The only way out is that A vanishes.

Part 2: If for a finite-dimensional, irreducible representation D(g) of a group G, we have D(g)A = AD(g) for all $g \in G$, then A = cI. That is, any matrix that commutes with every element of a finite-dimensional, irreducible representation must be a multiple of the identity matrix.

Proof: Every square matrix A has at least one eigenvector $|x\rangle$ and eigenvalue c so that $A|x\rangle = c|x\rangle$ because its characteristic equation $\det(A-cI) = 0$ always has at least one root by the fundamental theorem of algebra (5.89). So the null space $\mathcal{N}(A-cI)$ has dimension greater than zero. Now D(g)A = AD(g) for all $g \in G$ implies that D(g)(A-cI) = (A-cI)D(g) for all $g \in G$. Let P be the projection operator onto the null space $\mathcal{N}(A-cI)$. Then we have (A-cI)D(g)P = D(g)(A-cI)P = 0 for all $g \in G$ which implies that D(g)P maps vectors into the null space $\mathcal{N}(A-cI)$. This null space is therefore invariant under D(g), which means that D is reducible unless the null space $\mathcal{N}(A-cI)$ is the whole space. Since by assumption D is irreducible, it follows that $\mathcal{N}(A-cI)$ is the whole space, that is, that A=0.

Example and Application: Suppose an arbitrary observable O is invariant under the action of the rotation group SU(2) represented by unitary operators U(q) for $q \in SU(2)$

$$U^{\dagger}(g)OU(g) = O \quad \text{or} \quad [O, U(g)] = 0.$$
 (9.21)

These unitary rotation operators commute with the square J^2 of the angular momentum $[J^2, U] = 0$. Suppose that they also leave the hamiltonian H unchanged [H, U] = 0. Then as shown in Sec. 9.3, the state $U|E, j, m\rangle$ is a sum of states all with the same values of j and E. It follows that

$$\sum_{m'} \langle E, j, m | O | E', j', m' \rangle \langle E', j', m' | U(g) | E', j', m'' \rangle =$$

$$\sum_{m'} \langle E, j, m | U(g) | E, j, m' \rangle \langle E, j, m' | O | E', j', m'' \rangle$$
(9.22)

or more simply in view of (9.11)

$$\sum_{m'} \langle E, j, m | O | E', j', m' \rangle D^{j'}(g)_{m'm''} = \sum_{m'} D^{(j)}(g)_{mm'} \langle E, j, m' | O | E', j', m'' \rangle.$$
(9.23)

Now Part 1 of Schur's lemma tells us that the matrix $\langle E, j, m | O | E', j', m' \rangle$ must vanish unless the representations are equivalent, which is to say unless j = j'. So we have

$$\sum_{m'} \langle E, j, m | O | E', j, m' \rangle D^{j}(g)_{m'm''} = \sum_{m'} D^{(j)}(g)_{mm'} \langle E, j, m' | O | E', j, m'' \rangle.$$
(9.24)

Now Part 2 of Schur's lemma tells us that the matrix $\langle E, j, m|O|E', j, m'\rangle$ must be a multiple of the identity. Thus the symmetry of \mathcal{O} under rotations simplifies the matrix element to

$$\langle E, j, m | O | E', j', m' \rangle = \delta_{jj'} \delta_{mm'} O_j(E, E'). \tag{9.25}$$

This result is a special case of the **Wigner-Eckart theorem** (Eugene Wigner, 1902–1995, and Carl Eckart, 1902–1973).

9.8 Characters

Suppose the $n \times n$ matrices $D_{ij}(g)$ form a representation of a group $G \ni g$. The **character** $\chi_D(g)$ of the matrix D(g) is the trace

$$\chi_D(g) = \text{Tr}D(g) = \sum_{i=1}^n D_{ii}(g).$$
(9.26)

Traces are cyclic, that is, TrABC = TrBCA = TrCAB. So if two representations D and D' are equivalent, so that $D'(g) = S^{-1}D(g)S$, then they have the same characters because

$$\chi_{D'}(g) = \text{Tr}D'(g) = \text{Tr}\left(S^{-1}D(g)S\right) = \text{Tr}\left(D(g)SS^{-1}\right) = \text{Tr}D(g) = \chi_D(g).$$
(9.27)

If two group elements g_1 and g_2 are in the same conjugacy class, that is, if $g_2 = gg_1g^{-1}$ for some $g \in G$, then they have the same character in a given representation D(g) because

$$\chi_D(g_2) = \text{Tr}D(g_2) = \text{Tr}D(gg_1g^{-1}) = \text{Tr}\left(D(g)D(g_1)D(g^{-1})\right)$$

= \text{Tr}\left(D(g_1)D^{-1}(g)D(g)\right) = \text{Tr}D(g_1) = \chi_D(g_1). (9.28)