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Quantum Fields and Antiparticles

We now have all the pieces needed to motivate the introduction of quan-
tum fields. 'In the course of this construction, we shall encounter some of
the most remarkable and unlversal consequences of the union of relativity
with quantum mechanics: the connection between spin and statistics, the
existence of antiparticles, and various relationships between partlcles and
antiparticles, including the celebrated CPT theorem.

5.1 Free Fields

We have seen in Chapter 3 that the S-matrrx will be Lorentz-rnvarrant if
the 1nteract10n can be wrltten as

VO =[x #(x0), (5.1.1)
where # is a sealar, in the sense that
| VoA, ) (x)Uy (A, 0) = #(Ax +a), (5.12)
and satisfies the additional condition: |
[#(x), #(x')] _ 0 for (x—x)?=0. (5.1.3)

As we shall see, there are more general possibilities, but none of them
are very different from this. (For the present we are leaving it as an open
question whether A here is restricted to a proper orthochronous Lorentz
transformatron or can also include space inversions.) In order to facilitate
also satlsfyrng the cluster decompos1t10n principle we are going to con-
struct H(x) out of creation ‘and annlhllatlon operators, but here we face
a problem as shown by Eq. (4.2.12), under Lorentz transformations each
such operator is multiplied by a matrix that depends on the momentum
carried by that operator. How can we couple such operators together
to make a scalar? The solution is to build #(x) out of fields — both
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annihilation fields  (x) and creation fields y; (x):

w0 =Y [ Epuctxiponapon), (5.1.4)
vy (x) = Z / Bp ve(x;p, 0, n)aT(p, o,h). (5.1.5)

with coefficients* us(x;p,o,n) and vs(x;p,0,n) chosen so that under
Lorentz transformations each field is multiplied with a position-inde-
pendent matrix:

VoA, ayw} (UG A @) = Y DA™ i (Ax +a) (5.1.6)
¢

Uo(A, ayp; (UG (A @) =Y DA™ w7 (Ax + a) (5.1.7)

(We might, in principle, have different transformation matrices D for the
annihilation and creation fields, but as we shall see, it is always possible
to choose the fields so that these matrices are the same.) By applying a
second Lorentz transformation A, we find that

D(ATHD(A™) = D((AA)TY,

so taking A; = (A)"! and A; = (A)~1, we see that the D-matrices furnish
a representation of the homogeneous Lorentz group:

D(A1)D(Az) = D(A1A2) . (5.1.8)

There are many such representations, including the scalar D(A) = 1, the
vector D(A)¥, = A¥,, and a host of tensor and spinor representations.
These particular representations are irreducible, in the sense that it is not
possible by a choice of basis to reduce all D(A) to the same block-diagonal
form, with two or more blocks. However, we do not require at this point
that D(A) be irreducible; in general it is a block-diagonal matrix with
an arbitrary array of irreducible representations in the blocks. That is,
the index ¢ here includes a label that runs over the types of particle
described and the irreducible representations in the different blocks, as
well as another that runs over the components of the individual irreducible
representations. Later we will separate these fields into irreducible fields
that each describe only a single particle species (and its antiparticle) and
transform irreducibly under the Lorentz group. '

* A reminder: the labels n and ¢ run over all different particle species and spin z-components,
respectively.
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Once we have learned how to construct fields satisfying the Lorentz

transformation rules (5.1.6) and (5.1.7), we will be able to construct the
interaction density as

%(X) = Z Z Z gf/l"{i\l’ Ry

NM £ty 10y
X Pz (%) pp (%) w7 (%) w7, () (5.19)

and this will be a scalar in the sense of Eq. (5.1.2) if the constant coefficients
8ltly, b1y ALC chosen to be Lorentz covariant, in the sense that for all
A: '

S > Dap(AN Dy p (ATDg 2 (AT Dy 7, (AT
Oty Lyl

X gf/l"'lefl"'fM = g;/lszzle (5110)

(Note that we do not include derivatives here, because we regard the
derivatives of components of these fields as just additional sorts of field
components.) The task of finding coefficients 8ltly, Lty that satisfy
Eq. (5.1.10) is no different in principle (and not much more difficult
in practice) than that of using Clebsch-Gordan coefficients to couple
together various representations of the three-dimensional rotation group
to form rotational scalars. Later we will be able to combine creation
and annihilation fields so that this density also commutes with itself at
space-like separations.

Now, what shall we take as the coefficient functions us(x;p,o,n) and
ve(x;p,0,n)? BEq. (4.2.12) and its adjoint give the transformation rules™
for the annihilation and creation operators

Uo(A, b)a(p, o, ) Uy (A, b) = exp (i(Ap) - b)y/ (Ap)°/p°
| x > DY (W"l(A, p)) apa,3,1) , (5.1.11)

Uo(A, b)al (p, o, n)U5 (A, b) = exp ( —i(Ap) - b) /(Ap)°/p°
x S D@ (WA p)a'easm) . (5112)

where j, is the spin of particles of species n, and py is the three-vector
part of Ap. (We have used the unitarity of the rotation matrices D((,Jg) to
put both Egs. (5.1.11) and (5.1.12) in the form shown here.) Also, as we
saw in Section 2.5 the volume element d3p/p° is Lorentz-invariant, so we

** This is for massive particles. The case of zero mass will be taken up in Section 5.9.
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194 5 Quantum Fields and Antiparticles

can replace d°p in Egs. (5.1.4) and (5.1.5) with d3(Ap) 0/(Ap)°. Putting
this all together, we find

Us(A,bwF (UG (A, D) = 3 / P(AP) uelx;p,0.1)

ooh

X €exXp (i(Ap) . b)ijg) (W‘I(A, p))\/ b/ (AP)0 a(pa, 3, 1)

and

oA, Bwr (U (AB) = 3 / 3 (Ap) ve(x;p,0,m)

oon

X €Xp ( —i(Ap) - b) ijg)*( WA, P)) \/ p°/(Ap)° a'(pa,&,1) .

We see that in order for the fields to satisfy the Lorentz transformation
rules (5.1.6) and (5.1.7), it is necessary and sufficient that

Dyp(AMuz(Ax +b;pa, 0,1) = 4/p° / (Ap)°
zz; ¢z ? /

x Y2 DU (WA D)) exp (+i(Ap) - b)uc(x:p.3m)

> D (A" Nop(Ax + b;pa, 0,1m) = 4/ p° / (Ap)°

z
X ZD(J" ( "1(A,p)) exp(——i(Ap)~b)v;(x;p,5,n)

and

or somewhat more conveniently
S up(Ax + b o, 3, mDE (W(A,p)) =4/ /(Ap)°
x ;DZ,(A) exp (i(Ap) : b) Ug(x:p, 0, 1) (5.1.13)
and »
S oy + b, DY (WA, ) = A
x ZD;Z(A) exp ( —i(Ap) - b)ur(xsp,0m) . (5.1.14)

These are the fundamental requlrements that will allow us to calculate
the u, and v, coefficient functions in terms of a finite number of free
parameters.
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We will use Egs. (5.1.13) and (5.1.14) in three steps, considering in turn
three different types of proper orthochronous Lorentz transformation:

Translations

First we consider Egs. (5.1.13) and (5.1.14) with A = 1 and b arbitrary.
We see immediately that us(x;p, o, n) and v.(x;p,o,n) must take the form

up(x;p, 0,n) = (21) 2>y, (p, o, n) , (5.1.15)
ve(x;p,0,m) = 2n) 2P p,(p, o, 0) (5.1.16)
so the fields are Fourier transforms:
Wi = S @n) " [ Epuctp,o,merap,o,m), (5.117)
o.n .
and ‘ |
w70 =3 @n " [ Ppodpome o, (5118)
o,n

(The factors (2r)~>/% could be absorbed into the definition of u, and vy,
but it is conventional to show them explicitly .in these Fourier integrals.)
Using Egs. (5.1.15) and (5.1.16), we see that Egs. (5.1.13) and (5.1.14) are
satisfied if and only if

, 0 ‘ A
3 uzlon, 3,mDR (WA p) =\ 55 S DacdMuctpom) (5.119)
R ¢ ,

and :
. 0
> vp(pa, 5, DY (W (A, p)) = (—A%)—)EZD”(A)W(D,G,n). (5.1.20)
G £

for arbitrary homogeneous Lorentz transformations A.

Boosts

Next take p = 0 in Eqgs. (5.1.19) and (5.1.20), and let A be the standard
boost L(g) that takes a particle of mass m from rest to some four-
momentum g*. Then L(p) = 1, and

W(A,p) = L™ (Ap)AL(p) = L™ (q)L(q) = 1.
Hence in this special case, Egs. (5.1.19) and (5.1.20) give
uz(q,0,m) = (m/q°)""> 3" Dy (L(q)) ue(0,0,m) (5.1.21)
¢
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We will use Egs. (5.1.13) and (5.1.14) in three steps, considering in turn
three different types of proper orthochronous Lorentz transformation:

Translations

First we consider Egs. (5.1.13) and (5.1.14) with A = 1 and b arbitrary.
We see immediately that uy(x;p,o,n) and vs(x;p,o,n) must take the form

up(x;p, 0, m) = (21) 2P *y,(p, o, 1) , (5.1.15)
ve(x;p,0,n) = (2%)"3/2e_ip'xvf(p, o,n), (5.1.16)
so the fields are Fourier transforms:
Wi =3 0n 2 [ Epuw,omeapon),  (5117)
on
and 4
Py (x) = 2(271)”3/2 /d3p ve(p, o, m)e " P*al(p, o, 1) . (5.1.18)
on

(The factors (27)~%/2 could be absorbed into the definition of u, and vy,
but it is conventional to show them explicitly in these Fourier integrals.)
Using Eqgs. (5.1.15) and (5.1.16), we see that Egs. (5.1.13) and (5.1.14) are
satisfied if and only if

, 0 -
> uston, 3,mDER (WA, D) =/ 55 3 D Awep.oom) - (51.19)
EI ¢ .

and

. 0
Z vz(PA, G, n)Dgg)* <W(A, p)) = (—lf_p)ﬁ Z Dz,(A)ve(p,o,n) . (5.1.20)
g £

for arbitrary homogeneous Lorentz transformations A.

Boosts

Next take p = 0 in Eqgs. (5.1.19) and (5.1.20), and let A be the standard
boost L(q) that takes a particle of mass m from rest to some four-
momentum g*. Then L(p) = 1, and

W(A,p) = L™ (ADAL(p) = L~ (g)L(g) = 1.
Hence in this special case, Eqgs. (5.1.19) and (5.1.20) give
uz(q,0,n) = (m/q°)/* > D7, (L(q)) ue(0, 0,m) (5.1.21)
¢
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and
v3(q, 0, 1) = (m/q°)'*> " Dg(L(q)) ve(0,0, 1) . (5.1.22)
3

In other words, if we know the quantities u,(0,a,n) and v,(0, o, n) for zero
momentum, then for a given representation D(A) of the homogeneous
Lorentz group, we know the functions u,(p,o,n) and v(p, a,n) for all p.
(Explicit formulas for the matrices D;,(L(q)) will be given for arbitrary
representations of the homogeneous Lorentz group in Section 5.7.)

Rotations

Next, take p = 0, but this time let A be a Lorentz transformation with
pa = 0; that is, take A as a rotation R. Here obviously W(A,p) = R, and
so Egs. (5.1.19) and (5.1.20) read

S u3(0,5,m) DY(R) = 3 Dzo(R)ue(0,0,1) (5.1.23)
g ¢
and
3 0(0,5,m) DIV (R) = > Dy (Ryor(0,0,m) , (5.1.24)
3 ¢ .
or equivalently ,
S up(0,5, I =3 F7u0(0,0,m) (5.1.25)
G 3
and
S 0p(0,5,mIT" = =" F3,00(0,0,n), (5.1.26)
a I3 .

where JU) and # are the angular-momentum matrices in the represen-
tations DY(R) and D(R), respectively. Any representation D(A) of the
homogeneous Lorentz group obviously yields a representation of the ro-
tation group when A is restricted to rotations R; Eqgs. (5.1.25) and (5.1.26)
tell us that if the field w}(x) is to describe particles of some particular spin
j, then this representation D(R) must contain among its irreducible com-
ponents the spin-j representation DU)X(R), with the coefficients u,(0,0,n)
and v/(0, o,n) simply describing how the spin-j representation of the ro-
tation group is embedded in D(R). We shall see in Section 5.6 that each
irreducible representation of the proper orthochronous Lorentz group con-
tains any given irreducible representation of the rotation group at most
once, so that if the fields y}(x) and y;(x) transform irreducibly, then
they are unique up to overall scale. More generally, the number of free
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parameters in the annihilation or creation fields (including their overall
scales) is equal to the number of irreducible representations in the field.

It is straightforward to show that coefficient functions u.(p,s,n) and
v¢(p, 0, n) given by Egs. (5.1.21) and (5.1.22), with u,(0, o, n) and v4(0, 0, n)
satisfying Eqgs. (5.1.23) and (5.1.24), will automatically satisfy the more
general requirements (5.1.19) and (5.1.20). This is left as an exercise for
the reader.

Let us now return to the cluster decomposition principle. Inserting

Egs. (5.1.17) and (5.1.18) in Eq. (5.1.9) and integrating over x, the interac-
tion Hamiltonian is

y=3 [dr i i Y S T Y
NM

0‘1 O'N g1 oM n ’ nynp
x al(py o n) - ol (ply oy ny) aparanmnn) - - a(proing)
X V' Nm(Py o1 R Py O By, PLOIRL* PMOMNM) (5.1.27)

with coefficient functions given by

Y Nm(Pioiny o proing ) =8P+ —pr—+)
X V' Nm(py oy ny e prowng ), (5.1.28)
where
%NM(p,l 0'1 nl1 v 'p}l O'EV nlN » prong 'pMO'MnM) — (2n)3—3N/2—3M/2
X DD Bttt V2, (BLOLTY) vy (Bl Oy )
/3.:.[& fl...(M
X g (pro1n) -« - gy (PMOMNM) - (5.1.29)

This interaction is manifestly of the form that will guarantee that the
S-matrix satisfies the cluster decomposition principle: ¥ yp has a single
delta function factor, with a coefficient ¥y that (at least for a finite
number of field types) has at most branch point singularities at zero par-
ticle momenta. In fact, we could turn this argument around; any operator
can be written as in Eq. (5.1.27), and the cluster decomposition principle
requires that the coeflicient ¥"yjr may be written as in Eq. (5.1.28) as the
product of a single momentum-conservation delta function times a smooth
coefficient function. Any sufficiently smooth function (but not one con-

taining additional delta functions) can be expressed as in Eq. (5.1.29).TThe
cluster decomposition principle together with Lorentz invariance thus makes
it natural that the interaction density should be constructed out of the anni-
hilation and creation fields.

T For general functions the indices £ and ¢ may have to run over an infinite range. The reasons for
restricting £ and ¢ to a finite range have to do with the principle of renormalizability, discussed
in Chapter 12,




