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Chapter 2

The Klein-Gordon Field

2.1 The Necessity of the Field Viewpoint

Quantum field theory is the application of quantum mechanics to dynamical
systems of fields, in the same sense that the basic course in quantum mechanics
is concerned mainly with the quantization of dynamical systems of particles.
It is a subject that is absolutely essential for understanding the current state
of elementary particle physics. With some modification, the methods we will
discuss also play a crucial role in the most active areas of atomic, nuclear,
and condensed-matter physics. In Part T of this book, however, our primary
concern will be with elementary particles, and hence relativistic fields.

Given that we wish to understand processes that occur at very small
(quantum-mechanical) scales and very large (relativistic) energies, one might
still ask why we must study the quantization of fields. Why can’t we just
quantize relativistic particles the way we quantized nonrelativistic particles?

This question can be answered on a number of levels. Perhaps the best
approach is to write down a single-particle relativistic wave equation (such as
the Klein-Gordon equation or the Dirac equation) and see that it gives rise to
negative-energy states and other inconsistencies. Since this discussion usually
takes place near the end of a graduate-level quantum mechanics course, we will
not repeat it here. It is easy, however, to understand why such an approach
cannot work. We have no right to assume that any relativistic process can be
explained in terms of a single particle, since the Einstein relation F = mc?
allows for the creation of particle-antiparticle pairs. Even when there is not
enough energy for pair creation, multiparticle states appear, for example, as
intermediate states in second-order perturbation theory. We can think of such
states as existing only for a very short time, according to the uncertainty
principle AE - At = k. As we go to higher orders in perturbation theory,
arbitrarily many such “virtual” particles can be created.

The necessity of having a multiparticle theory also arises in a less obvious

way, from considerations of causality. Consider the amplitude for a free particle
to propagate from xg to x:

U(t) = (x| e ™ |xp) .
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In nonrelativistic quantum mechanics we have E =p?/2m, so
U(t) = (x| 7P /2m o)
= [ el ) o)
1 o .
— d3 —i(p?/2m)t . ip-(x—xo)
o K

— (ﬂ_)B/z eq‘.m(x~x0)2/2tl
2mit

This expression is nonzero for all @ and t, indicating that a particle can prop-

agate between any two points in an arbitrarily short time. In a relativistic

theory, this conclusion would signal a violation of causality. One might hope

that using the relativistic expression E = \/p? + m?2 would help, but it does

not. In analogy with the nonrelativistic case, we have

U(t) = (x] e VP Ixq)

2

1 T it/ P2+
S S /dpp sin(p|x — xo|)e ™" phbm?,
272|x — xo|
0

This integral can be evaluated explicitly in terms of Bessel functions.* We
will content ourselves with looking at its asymptotic behavior for a? > 2
(well outside the light-cone), using the method of stationary phase. The phase
function pz—t+/p? + m?2 has a stationary point at p = ima /Vz? — 2. We may
freely push the contour upward so that it goes through this point. Plugging
in this value for p, we find that, up to a rational function of z and ¢,

U(t) ~e ™Y ot —t?

Thus the propagation amplitude is small but nonzero outside the light-cone,
and causality is still violated.

Quantum field theory solves the causality problem in a miraculous way,
which we will discuss in Section 2.4. We will find that, in the multiparticle
field theory, the propagation of a particle across a spacelike interval is indis-
tinguishable from the propagation of an antiparticle in the opposite direction
(see Fig. 2.1). When we ask whether an observation made at point xo can
affect an observation made at point z, we will find that the amplitudes for
particle and antiparticle propagation exactly cancel—so causality is preserved.

Quantum field theory provides a natural way to handle not only multipar-
ticle states, but also transitions between states of different particle number.
Tt solves the causality problem by introducing antiparticles, then goes on to

Ly o~ 1T 1. 1T 1000 L9 01 A
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Figure 2.1. Propagation from o to & in one frame looks like propagation
from 2 to zg in another frame.

explain the relation between spin and statistics. But most important, it pro-
vides the tools necessary to calculate innumerable scattering cross s,ections
particle lifetimes, and other observable quantities. The experimental conﬁr—,
mation of these predictions, often to an unprecedented level of accuracy, is
our real reason for studying quantum field theory. ,

2.2 Elements of Classical Field Theory

111. this section we review some of the formalism of classical field theory that
will be necessary in our subsequent discussion of quantum field theory.

Lagrangian Field Theory

?[‘he fundamental quantity of classical mechanics is the action, S, the time
integral of the Lagrangian, . In a local field theory the Lagra?ngi:an can be
Wr'itten as the spatial integral of a Lagrangian density, denoted by £, which is
a function of one or more fields ¢(z) and their derivatives 9,,¢. Thus’ we have

S = /Ldt = /ﬁ(qb, Out) d*a. (2.1)

Since this is a book on field theory, we will refer to £ simply as the Lagrangian.

. The principle of least action states that when a system evolves from one
given cgnﬁguration to another between times £1 and ¢y, it does so along the
“path” in configuration space for which S is an extremum (normally a mini-
mum). We can write this condition as

0=465
[ for oL
- [+ {5+ gm0

- /d4w {%w — 8, (%}%) 5+ 0, (%f@&ﬁ) } . (22)

The last term can be turned into a surface integral over the boundary of the

four-dimensional spacetime region of integration. Since the initial and final
Hold canforratinng ara aaciiinord alxran SA Ja oarn ot Fha Formna el e g a1 o
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and end of this region. If we restrict our consideration to deformations 6¢ thgt
vanish on the spatial boundary of the region as well, then the surface‘ term is
zero. Factoring out the §¢ from the first two terms, we note ‘Pha.t, since the
integral must vanish for arbitrary §¢, the quantity that multl}?hes b¢ mw‘ust
vanish at all points. Thus we arrive at the Euler-Lagrange equation of motion

for a field, o (0L > 9L (2.3)
“\9(0,9)) 04

If the Lagrangian contains more than one field, there is one such equation for

each.

Hamiltonian Field Theory

The Lagrangian formulation of field theory is particular‘ly sui.ted to relativistic
dynamics because all expressions are explicitly Lorentz invariant. Nevertl?eles‘s
we will use the Hamiltonian formulation throughout the first pz?rt of this
book, since it will make the transition to quantum mechanics easier. Recal}
that for a discrete system one can define a conjugate momen’Fum p= 'aL /0¢
(where ¢ = dq/0t) for each dynamical variable ¢. The Hgnnltonmn is then
H = 5" p¢— L. The generalization to a continuous system is best understood
by pretending that the spatial points x are discretely spaced. We can define

o eL 9 o iy
b0 = 555 = g | EENE)

7] ; 3
~ 59 2 L(o(y), o(y))d’y
= n(x)d*z,
where
m(x) = azé( ) (2.4)

is called the momentum density conjugate to ¢(x). Thus the Hamiltonian can
be written '
1= Y p(x)d6) — L.

Passing to the continuum, this becomes

H= /d?’m [r(x)(x) — L] = /d%H. (2.5)

We will rederive this expression for the Hamiltonian density H near the end
of this section, using a different method. .
As a simple example, consider the theory of a single field ¢(z), governed
by the Lagrangian
; 21,242
L= 3¢ — 2V — s

PR » ¥ 1 0 0

(2.6)
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For now we take ¢ to be a real-valued field. The quantity m will be interpreted
as a mass in Section 2.3, but for now just think of it as a parameter. From
this Lagrangian the usual procedure gives the equation of motion

02
(g -V +n)e=0 o (@o4me=0 @)

which is the well-known Klein-Gordon equation. (In this context it is a classi-
cal field equation, like Maxwell’s equations—not a quantum-mechanical wave
equation.) Noting that the canonical momentum density conjugate to o(x) is
m(x) = ¢(x), we can also construct the Hamiltonian:

H= /d%H = /d% 577+ 5(Ve)? + im?¢?]. (2.8)

We can think of the three terms, respectively, as the energy cost of “moving”
in time, the energy cost of “shearing” in space, and the energy cost of having

the field around at all. We will investigate this Hamiltonian much further in
Sections 2.3 and 2.4.

Noether’s Theorem

Next let us discuss the relationship between symmetries and conservation
laws in classical field theory, summarized in Noether’s theorem. This theorem

concerns continuous transformations on the fields ¢, which in infinitesimal
form can be written

¢(x) = ¢'(z) = ¢(2) + alg(z), (2.9)

where a is an infinitesimal parameter and A¢ is some deformation of the field
configuration, We call this transformation a symmetry if it leaves the equa-
tions of motion-invariant. This is insured if the action is invariant under (2.9).
More generally, we can allow the action to change by a surface term, since the
presence of such a term would not affect our derivation of the Euler-Lagrange

equations of motion (2.3). The Lagrangian, therefore, must be invariant un-
der (2.9) up to a 4-divergence:

L(z) = L(z)+ ad,T" (), (2.10)

for some J*. Let us compare this expectation for AL to the result obtained
by varying the fields:

_ 9L, 9L N
54 @090+ () e

o () ol (2

aAL
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The second term vanishes by the Euler-Lagrange equation (2.3). We set the
remaining term equal to ad, J* and find

oL
Opj*(x) =0, for j*(z) = WAQS - JH (2.12)
(Tf the symmetry involves more than one field, the first term of this expression
for j#(z) should be replaced by a sum of such terms, one for each field.)
This result states that the current j#(x) is conserved. For each continuous
symmetry of £, we have such a conservation law.
The conservation law can also be expressed by saying that the charge

Q= / Pz (2.13)
all space

is a constant in time. Note, however, that the formulation of field theory in
terms of a local Lagrangian density leads directly to the local form of the
conservation law, Fq. (2.12).

The easiest example of such a conservation law arises from a Lagrangian
with only a kinetic term: £ = 2(9,¢)?. The transformation ¢ — ¢ +a, where
o is a constant, leaves £ unchanged, so we conclude that the current j* = o*¢
is conserved. As a less trivial example, consider the Lagrangian

£ = |0, — m*[gf2, (2.14)

where ¢ is now a complez-valued field. You can easily show that the equation
of motion for this Lagrangian is again the Klein-Gordon equation, (2.7). This
Lagrangian is invariant under the transformation ¢ — ei®p; for an infinitesi-
mal transformation we have

alg = iad; al¢® = —iag”. (2.15)

(We treat ¢ and ¢* as independent fields. Alternatively, we could work with
the real and imaginary parts of ¢.) It is now a simple matter to show that the
conserved Noether current is

= i[(0" ") — 47 (0"9)]. (2.16)

(The overall constant has been chosen arbitrarily.) You can check directly that
the divergence of this current vanishes by using the Klein-Gordon equation.
Later we will add terms to this Lagrangian that couple ¢ to an electromagnetic
field. We will then interpret j# as the electromagnetic current density carried
by the field, and the spatial integral of 49 as its electric charge.

Noether’s theorem can also be applied to spacetime transformations such
as translations and rotations. We can describe the infinitesimal translation

o? — pH — gt
alternatively as a transformation of the field configuration

(ﬁ(ﬂ)‘ —_ @(ﬂ? -+ CL) = (15(37) L aﬂall,qs(m)'

2.3 The Klein-Gordon Field as Harmonic Oscillators 19

The Lagrangian is also a scalar, so it must transform in the same way:
L= L+a"0L =LA+ a"8,(8"L).

Comparing this equation to (2.10), we see that we now have a nonzero J*.

Taking this into account, we can apply the theorem to obtain four separately
conserved currents:
oL

T, = ———0,¢ — L. 2.1
v 8(8#¢) l/¢ v ( 7)
This is precisely the stress-energy tensor, also called the energy-momentum
tensor, of the field ¢. The conserved charge associated with time translations

is the Hamiltonian:
H= /TOO d*z = /Hd3:c. (2.18)

By computing this quantity for the Klein-Gordon field, one can recover the
result (2.8). The conserved charges associated with spatial translations are

Pt = /TOi dPx = —/waiqs d3w, (2.19)

and we naturally interpret this as the (physical) momentum carried by the
field (not to be confused with the canonical momentum).

2.3 The Klein-Gordon Field as Harmonic Oscillators

We begin our discussion of quantum field theory with a rather formal treat-
ment of the simplest type of field: the real Klein-Gordon field. The idea is to
start’ with a classical field theory (the theory of a classical scalar field gov-
erned by the Lagrangian (2.6)) and then “quantize” it, that is, reinterpret the
dynamical variables as operators that obey canonical commutation relations.
We will then “solve” the theory by finding the eigenvalues and eigenstates of
the Hamiltonian, using the harmonic oscillator as an analogy.

The classical theory of the real Klein-Gordon field was discussed briefly
(but sufficiently) in the previous section; the relevant expressions are given in
Egs. (2.6), (2.7), and (2.8). To quantize the theory, we follow the same pro-
cedure as for any other dynamical system: We promote ¢ and 7 to operators,
and impose suitable commutation relations. Recall that for a discrete system
of one or more particles the commutation relations are

[4i,p;] = i35
(4, 45] = [pi,ps] = 0.

tThis procedure is sometimes called second quantization, to distinguish the re-
sulting Klein-Gordon equation (in which ¢ is an operator) from the old one-particle
Klein-Gordon equation (in which ¢ was a wavefunction). In this book we never adopt
the latter point of view; we start with a classical equation (in which ¢ is a classical
field) and auantize it exactlv once.
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For a continuous system the generalization is quite natural; since w(x) is the
momentum density, we get a Dirac delta function instead of a Kronecker delta:

[p(x), 7n(y)] = 6@ (x ~¥);
[¢(x), ¢(¥)] = [r(x),7(¥)] = 0.

(For now we work in the Schrodinger picture where ¢ and 7 do not depend
on time. When we switch to the Heisenberg picture in the next section, these
“equal time” commutation relations will still hold provided that both opera-
tors are considered at the same time.)

The Hamiltonian, being a function of ¢ and , also becomes an operator.
Our next task is to find the spectrum from the Hamiltonian. Since there is
no obvious way to do this, let us seek guidance by writing the Klein-Gordon
equation in Fourier space. If we expand the classical Klein-Gordon field as

By
— px t
o) = [ g e 6(0.)
(with ¢*(p) = ¢(—p) so that ¢(x) is real), the Klein-Gordon equation (2.7)
becomes

(2.20)

|2+ (ol 422)| o.1) =0 (2:21)

This is the same as the equation of motion for a simple harmonic oscillator

with frequency
wp = V/|p|2 +m?. (2.22)

The simple harmonic oscillator is a system whose spectrum we already
know how to find. Let us briefly recall how it is done. We write the Hamiltonian

as
1.2 1 2.2
Hgno = 5p° + 3w ¢"

To find the eigenvalues of Hspo, we write ¢ and p in terms of ladder operators:

1 . jw
b= ard)  p=ciyfla—d) (2.23)

The canonical comnuitation relation [¢, p| = ¢ is equivalent to
[a,al] =1. (2.24)
The Hamiltonian can now be rewritten

Hgpo = w(aTa + %)

The state |0) such that a|0) = 0 is an eigenstate of Il with eigenvalue tw,
the zero-point energy. Furthermore, the commutators

[Hsmo, a'] = wd', [Hsuo,a] = ~wa

make it easy to verify that the states

N 7 T\ Iny
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are eigenstates of Hgpo with eigenvalues (n + %)w These states exhaust the
spectrum.

We can find the spectrum of the Klein-Gordon Hamiltonian using the
same trick, but now each Fourier mode of the field is treated as an independent
oscillator with its own a and af. In analogy with (2.23) we write

b(x) = / % ﬁ (ape™ +afeP); (2.25)
7w(x) = /ng—})}-g (—1) % (apeip'x - a;f)e_'ip"‘). (2.26)

The inverse expressions for ap and a;f, in terms of ¢ and 7 are easy to derive
but rarvely needed. In the calculations below we will find it useful to rearrange
(2.25) and (2.26) as follows:

609 = [l (ay + ) (221

CRERVeN
d® Wp D
0 = [ G 5 (o o (2.29)

The commutation relation (2.24) becomes

lap,al,] = (2m)%6® (p - p"), (2.29)

from which you can verify that the commutator of ¢ and 7 works out correctly:

3, 3,0 ,
609,500 = [ G5 5\ (ftam] = Lol )15

=i (x — x'). (2.30)

(If computations such as this one and the next are unfamiliar to you, please
work them out carefully; they are quite easy after a little practice, and are
fundamental to the formalism of the next two chapters.)

We are now ready to express the Hamiltonian in terms of ladder operators.
Starting from its expression (2.8) in terms of ¢ and 7, we have

d3pd3p/ i Nox WpWp!
H= /dS;U/We (p+p’) {ﬁ@(% —al Yap: — al )

P

-p-p +m?
T2 ) e+ p/)}

WpWp/
d3p
= /—(%)3 wp (a;f)ap + £ ap, aL]) (2.31)

The second term is proportional to §(0), an infinite c-number. It is simply
the sum over all modes of the zero-point energies wp/2, so its presence is
completely expected, if somewhat disturbing, Fortunately, this infinite energy
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shift cannot be detected experimentally, since experiments measure only en-
ergy differences from the ground state of H. We will therefore ignore this
infinite constant term in all of our calculations. 1t is possible that this en-
ergy shift of the ground state could create a problem at a deeper level in the
theory; we will discuss this matter in the Epilogue.

Using this expression for the Hamiltonian in terms of ap and CLL, it is easy
to evaluate the commutators

[H,a})] =wpab;  [H,ap] = ~wpap. (2:32)

We can now write down the spectrum of the theory, just as for the harmonic
oscillator. The state |0) such that ap |0) = 0 for all p is the ground state or
vacuum, and has F = 0 after we drop the infinite constant in (2.31). All other
energy eigenstates can be built by acting on |0) with creation operators. In
general, the state aLaJ{l -+-|0) is an eigenstate of H with energy wp +wq+ -
These states exhaust the spectrum.

Having found the spectrum of the Hamiltonian, let us try to interpret its
eigenstates. From (2.19) and a calculation similar to (2.31) we can write down
the total momentum operator,

3

P= —/d3m m(x)Vh(x) = /(—;l—7£—3 palap. (2.33)

So the operator a;f) creates momentum p and energy wp = /|p|? +m?. Sim-
ilarly, the state CLLCLL‘ ++]0) has momentum p+qg+--- It is quite natural to
call these excitations particles, since they are discrete entities that have the
proper relativistic energy-momentum relation. (By a particle we do not mean
something that must be localized in space; aL creates particles in momentum
eigenstates.) From now on we will refer to wp as Ep (or simply E), since it
really is the energy of a particle. Note, by the way, that the energy is always
positive: Ep = ++/|p|? +m?.

This formalism also allows us to determine the statistics of our particles.
Consider the two-particle state a;f)ag |0). Since (IL and a}; commute, this state
is identical to the state aga;[, |0) in which the two particles are interchanged.
Moreover, a single mode p can contain arbitrarily many particles (just as a
simple harmonic oscillator can be excited to arbitrarily high levels). Thus we
conclude that Klein-Gordon particles obey Bose-Einstein statistics.

We naturally choose to normalize the vacuum state so that (0]0y = 1.
The one-particle states |p) o« a‘Lp |0} will also appear quite often, and it is
worthwhile to adopt a convention for their normalization. The simplest nor-
malization (p|q) = (2m)36®) (p — q) (which many books use) is not Lorentz
invariant, as we can demonstrate by considering the effect of a boost in the
3_direction. Under such a boost we have ply = y(ps -+ BE), E' = y(E + Bp3).
Using the delta function identity

S(F() — Fla)) = ——§(x — @), (2.34)
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we can COlnpute
/
60 (p — q) = 6O (p' — o) - 2
dps
dE
= 6O (0’ — (1485
dps

= 5@ (p' — o) L(B + Bps)

E
/
=5 — )

The problem is that volumes are not invariant under boosts; a box whose

7k
volume is V in its rest frame has volume V/v in a boosted frame, due to
Lorentz contraction. But from the above calculation, we see that the quantity

Ep6®) (p — q) is Lorentz invariant. We therefore define

Ip) = /2B, al, |0}, (2.35)
so that
(pla) = 2B, (2m)36®) (p — q). (2.36)

(The factor of 2 is unnecessary, but is convenient because of the factor of 2 in
Eq. (2.25).)
On the Hilbert space of quantum states, a Lorentz transformation A will

be implemented as some unitary operator U(A). Our normalization condition
(2.35) then implies that

U(A) |p) = |Ap). (2.37)

If we prefer to think of this transformation as acting on the operator a;f), we

can also write
|E
t -1 . Ap 1
U(A) a, U (A) =, ———Ep app- (2.38)

With this normalization we must divide by 2/, in other places. For ex-
ample, the completeness relation for the one-particle states is

(1)1-particle = /z% |p> ﬁ <p| ) (239)

where the operator on the left is simply the identity within the subspace of
one-particle states, and zero in the rest of the Hilbert space. Integrals of this
form will occur quite often; in fact, the integral

d® 1 4
/ (sz)sE - / (377;4(%)5@2 —?)| (2.40)

is a Lorentz-invariant 3-momentum integral, in the sense that if f(p) is
Lorentz-invariant, so is [ d3p f(p)/(2E}). The integation can be thought of
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p° > 0 branch
p

p° < 0 branch

Figure 2.2. The Lorentz-invariant 3-momentum integral is over the upper

branch of the hyperboloid p? = m2.

as being over the p® > 0 branch of the hyperboloid p? = m? in 4-momentum
space (see Fig. 2.2).

Finally let us consider the interpretation of the state ¢(x) |0). From the
expansion (2.25) we see that

40910 = [ éﬁjﬂg}@— p) (2.41)

is a linear superposition of single-particle states that have well-defined mo-
mentum. Except for the factor 1/2E}, this is the same as the familiar nonrel-
ativistic expression for the eigenstate of position |x); in fact the extra factor
is nearly constant for small (nonrelativistic) p. We will therefore put forward
the same interpretation, and claim that the operator ¢(x), acting on the vac-
uum, creates a particle at position x. This interpretation is further confirmed

when we compute

01616} = 01 | 55— (aw e e ) 2P0

= P, (2.42)

We can interpret this as the position-space representation of the single—parti(‘:le
wavefunction of the state |p), just as in nonrelativistic quantum mechanics
(x|p) o< e’P* is the wavefunction of the state Ip).
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2.4 The Klein-Gordon Field in Space-Time

In the previous section we quantized the Klein-Gordon field in the Schrodinger
picture, and interpreted the resulting theory in terms of relativistic particles.
In this section we will switch to the Heisenberg picture, where it will be easier
to discuss time-dependent quantities and questions of causality. After a few
preliminaries, we will return to the question of acausal propagation raised in
Section 2.1. We will also derive an expression for the Klein-Gordon propagator,
a crucial part of the Feynman rules to be developed in Chapter 4.

In the Heisenberg picture, we make the operators ¢ and 7 time-dependent
in the usual way:

¢(T) = ¢)(X> t) = ethng(x)e*th, (2‘43)
and similarly for w(2) = 7(x,t). The Heisenberg equation of motion,
.0
za(’) = [0, H], (2.44)

allows us to compute the time dependence of ¢ and «:
_61 _ B!l L2 1 / 2 01,2420/
i 000, 1) = [(x,1), [ da' {377 (X 8) + 5 (Ve(x', 1) + 5m*d* (X', 1)
= /dga:/ <i5(3) (x— X/)ﬂ‘(X/,t))

=im(x,t);
’%”(X’ t) = [x,0) / ! {52 () + o(x, 1) (=2 4 m?)p(x', ) }|

= /d3x’ (-ié(g) (x—x)(-V*+ m2)¢(x’,t))
= —i(=V? + m?)$(x, 1).
Combining the two results gives
92
a2
which is just the Klein-Gordon equation.

We can better understand the time dependence of ¢(x) and 7 (x) by writ-
ing them in terms of creation and annihilation operators. First note that

o= (V2 —m?)¢, (2.45)

Hap = aP(H - EP))

and hence
H"ap = ap(H — Ep)",

for any n. A similar relation (with — replaced by +) holds for aL. Thus we
have derived the identities

tHt e-—th —

—iBpt iHt, t —iHt _ _t iEpt
e ay ape Pt e"“tale = ale™P’, (2.46)
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which we can use on expression (2.25) for ¢(x) to find the desired expression
for the Heisenberg operator ¢(z), according to (2.43). (We will always use the
symbols ap and a;f) to represent the time-independent, Schrédinger-picture
ladder operators.) The result is

d3p 1 —ipz ipx
o) = [ s (owe™" o)

m(x,t) = %qﬁ(x, t).

Tt is worth mentioning that we can perform the same manipulations with
P instead of H to relate ¢(x) to ¢(0). In analogy with (2.46), one can show

—iP-x iPx _ ipx —iPx 1t iPx _ t —ipx
e ape”™ * = ape®™, e abe™ ™ = age ) (2.48)

0

pr=Pe (2.47)

and therefore
d(z) = ei(Ht—P~X)¢(0)e—z‘(Hth-x)

2.49
— 6iP‘m¢(0)e—iP-rv, ( )

where P* = (H,P). (The notation here is confusing but standard. Remember
that P is the momentum operator, whose eigenvalue is the total momentum of
the system. On the other hand, p is the momentum of a single Fourier mode
of the field, which we interpret as the momentum of a particle in that mode.
For a one-particle state of well-defined momentum, p is the eigenvalue of P.)

Equation (2.47) makes explicit the dual particle and wave interpretations
of the quantum field ¢(). On the one hand, ¢(x) is written as a Hilbert space
operator, which creates and destroys the particles that are the quanta of field
excitation. On the other hand, ¢(x) is written as a linear combination of solu-
tions (e?”® and e~%?) of the Klein-Gordon equation. Both signs of the time
dependence in the exponential appear: We find both e~ "t and e“pot, al-
though p° is always positive. If these were single-particle wavefunctions, they
would correspond to states of positive and negative energy; let us refer to
them more generally as positive- and negative-frequency modes. The connec-
tion between the particle creation operators and the waveforms displayed here
is always valid for free quantum fields: A positive-frequency solution of the
field equation has as its coefficient the operator that destroys a particle in
that single-particle wavefunction. A negative-frequency solution of the field
equation, being the Hermitian conjugate of a positive-frequency solution, has
as its coefficient the operator that creates a particle in that positive-energy
single-particle wavefunction. In this way, the fact that relativistic wave equa-
tions have both positive- and negative-frequency solutions is reconciled with
the requirement that a sensible quantum theory contain only positive excita-
tion energies.
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Causality

Now let us return to the question of causality raised at the beginning of this
chapter. In our present formalism, still working in the Heisenberg picture, the
amplitude for a particle to propagate from y to z is (0] ¢(z)d(y) |0). We will
call this quantity D(z — y). Each operator ¢ is a sum of a and a! operators,
but only the term (0| apaf; [0) = (2m)363) (p — q) survives in this expression.
It is easy to check that we are left with

dp 1

Dl = 9) = 0100 0 = [ 5 o

ey, (2.50)
We have already argued in (2.40) that integrals of this form are Lorentz in-
variant. Let us now evaluate this integral for some particular values of © — y.

First consider the case where the difference @ — y is purely in the time-
direction: 20 — % = ¢, x —y = 0. (If the interval from y to z is timelike, there
is always a frame in which this is the case.) Then we have

oo
D(z—y) = n /dp ¥ e~ VPiHmit
2 2
J 2/ p*+m

(2m)?
- % dE/ E? —m2e ™t (2:51)
v
m
~ e—imt
t—00 ’

‘Next consider the case where x —y is purely spatial: 2°—9% = 0, x—y =r.
The amplitude is then

d® 1,
D(w—y) = / DL cip

(2m)? 2B,
B ot /d pZ eipr . e~ip7‘
(2m)3 ) P 2E;, ipr
—1 7 perr

SRS N S
2(2m)?r g V/p? +m?

The integrand, considered as a complex function of p, has branch cuts on the
imaginary axis starting at +im (see Fig. 2.3). To evaluate the integral we

push the contour up to wrap around the upper branch cut. Defining p = —ip,
we obtain
1 oo
: pe B
dp ~ e 2.52
47r27*/ /m?Z — p? oo (2.52)

m
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m
> _—
push
—im contour

Figure 2.3. Contour for evaluating propagation amplitude D(z — y) over a
spacelike interval.

So again we find that outside the light-cone, the propagation amplitude is
exponentially vanishing but nonzero.

To really discuss causality, however, we should ask not whether particles
can propagate over spacelike intervals, but whether a measurement performed
at one point can affect a measurement at another point whose separation from
the first is spacelike. The simplest thing we could try to measure is the field
#(z), so we should compute the commutator [#(2), p(y)]; if this commutator
vanishes, one measurement cannot affect the other. In fact, if the commu-
tator vanishes for (z — y)2 < 0, causality is preserved quite generally, since
commutators involving any function of ¢(z), including 7(z) = ¢ /ot, would
also have to vanish. Of course we know from Eq. (2.20) that the commutator
vanishes for 20 = y°; now let’s do the more general computation:

dSp 1 d3q 1
[¢(a')a¢(y)] :/(27'()3 \/E/ (27r)3 \/Q—E;
v [(ape—ip'm + al‘)eip.m), (aqe—iq-y + ageiq‘y)]
d3 1 —ip(z—y ip-(z—y
= e )
= D(z —y) - D{y —2). (2.53)

When (2 — y)? < 0, we can perform a Lorentz transformation on the second
term (since each term is separately Lorentz invariant), taking (z — y) —
—(x —y), as shown in Fig. 2.4. The two terms are therefore equal and cancel
to give zero; causality is preserved. Note that if (z — y)? > 0 there is no
continuous Loventz transformation that takes (z—y) — —(x—y). In this case,
by Eq. (2.51), the amplitude is (fortunately) nonzero, roughly (e~¥m — &™)
for the special case x — v = 0. Thus we conclude that no measurement in the
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Figure 2.4, When z — y is spacelike, a continuous Lorentz transformation
can take (z —y) to —(z —y).

Klein-Gordon theory can affect another measurement outside the light-cone.
Causality is maintained in the Klein-Gordon theory just as suggested at
the end of Section 2.1. To understand this mechanism properly, however, we
should broaden the context of our discussion to include a complez Klein-
Gordon field, which has distinct particle and antiparticle excitations. As was
mentioned in the discussion of Eq. (2.15), we can add a conserved charge to
the Klein-Gordon theory by considering the field ¢(z) to be complex- rather
than real-valued. When the complex scalar field theory is quantized (see Prob-
lem 2.2), ¢(z) will create positively charged particles and destroy negatively
charged ones, while #'(z) will perform the opposite operations. Then the com-
mutator [¢(z), ¢ (y)] will have nonzero contributions, which must delicately
cancel outside the light-cone to preserve causality. The two contributions have
the spacetime interpretation of the two terms in (2.53), but with charges at-
tached. The first term will represent the propagation of a negatively charged
particle from y to xz. The second term will represent the propagation of a
positively charged particle from z to y. In order for these two processes to
be present and give canceling amplitudes, both of these particles must exist,
and they must have the same mass. In quantum field theory, then, causality
requires that every particle have a corresponding antiparticle with the same
mass and opposite quantum numbers (in this case electric charge). For the
real-valued Klein-Gordon field, the particle is its own antiparticle.

The Klein-Gordon Propagator

Let us study the commutator [é(z),¢(y)] a little further. Since it is a
c-number, we can write [¢(z), ¢(y)] = (0] [¢(z), ¢(y)] |0). This can be rewritten
as a four-dimensional integral as follows, assuming for now that 2% > y%

d®p 1

0 [¢(@), e 10) = | 557

(ewizr(m—y) — eip-(w—y))
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:/ d’p 1 e~ (z—y)
(2m)3 | 2Ep

pOZEp
—ip-(z—y)
+ _2Ef‘pe PO:_EP}
_ dp [dp® -1 o P (@=y) (2.54)
050 J (2m)3 ) 2mi p? —m? ' '

In the last step the p° integral is to be performed along the following contour:

~ |~

—Ep +Ep

Yo
y s

For 2% > ° we can close the contour below, picking up both poles to obtain
the previous line of (2.54). For 2° < 3° we may close the contour above,
giving zero. Thus the last line of (2.54), together with the prescription for
going around the poles, is an expression for what we will call

Di(w - ) = (= — 1) (0] [$(a), #(»)] [0) - (2.55)
To understand this quantity better, let’s do another computation:

(0* +m®)Dg(x —y) = (9%0(2° — y°)) (0] [p(x), ¢(y)]0)
+2(9,6(2° — ¢°)) (0" {0l [¢(=), ¢(»)]10))
+0(2® —y°) (9% +m?) (0] [$(x), ¢(y)] 10)
= —6(2® — y°) (0] [r(2), $(1)] 10)
+28(2° = y%) (0] [ (), ¢(y)]0) + 0
= —i6W(x —y). (2.56)
This says that Dr(z —y) is a Green’s function of the Klein-Gordon operator.
Since it vanishes for 2% < 9%, it is the retarded Green’s function.

If we had not already derived expression (2.54}, we could find it by Fourier
transformation. Writing :

Dz —y) = / (3;1;4 e @Y Dp(p), (2.57)

we obtain an algebraic expression for D r(p):
(—p? -+ m?) Dg(p) = —i.
Thus we immediately arrive at the result

d*p i (e
DR(:L‘ — y) = m m € ip (= y). (2.58)
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The p°-integral of (2.58) can be evaluated according to four different con-
tours, of which that used in (2.54) is only one. In Chapter 4 we will find that
a different pole prescription,

. O ‘ O\,

is extremely useful; it is called the Feynman prescription. A convenient way
to remember it is to write

d*p i
y) = 1,2 21
(2m)t p? —m? + e

since the poles are then at p® = +(E,—ie), displaced properly above and below
the real axis. When 2° > 4% we can perform the p° integral by closing the
contowr below, obtaining exactly the propagation amplitude D(z —y) (2.50).
When 20 < y% we close the contour above, obtaining the same expression but
with 2 and y interchanged. Thus we have

Dp(x — em @y (2.59)

v [ D@—y) fora®>qy°
Dr(v—y) = {D(y —x) for 2% <4

= 0(z° —3°) (0] (x)(y) [0) + 0(3° — @) (0] $(x) () 0)
= (0] T(2)d(y)[0) (2:60)

The last line defines the “time-ordering” symbol 7', which instructs us to
place the operators that follow in order with the latest to the left. By applying
(02 +m?) to the last line, you can verify directly that D is a Green’s function
of the Klein-Gordon operator.

Equations (2.59) and (2.60) are, from a practical point of view, the most
important results of this chapter. The Green’s function Dp(x — y) is called
the Feynman propagator for a Klein-Gordon particle, since it is, after all, a
propagation amplitude. Indeed, the Feynman propagator will turn out to be
part of the Feynman rules: Dp(x—y) (or Dp(p)) is the expression that we will
attach to internal lines of Feynman diagrams, representing the propagation of
virtual particles.

Nevertheless we are still a long way from being able to do any real calcu-
lations, since so far we have talked only about the free Klein-Gordon theory,
where the field equation is linear and there are no interactions. Individual par-
ticles live in their isolated modes, oblivious to each others’ existence and to
the existence of any other species of particles. In such a theory there is no hope
of making any observations, by scattering or any other means. On the other
hand, the formalism we have developed is extremely important, since the free
theory forms the basis for doing perturbative calculations in the interacting
theorv,
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Particle Creation by a Classical Source

There is one type of interaction, however, that we are already equipped to
handle. Consider a Klein-Gordon field coupled to an external, classical source
field j(x). That is, consider the field equation

(0% +m*)(z) = j(x), (2.61)

where j(z) is some fixed, known function of space and time that is nonzero
only for a finite time 111telva1 If we start in the vacuum state, what will we
find after j(z) has been turned on and off again?

The field equation (2.61) follows from the Lagrangian

= 3(0.9)" — §m?¢” + j(@)¢(). (2.62)

But if j(2) is turned on for only a finite time, it is easiest to solve the problem
using the field equation directly. Before j(z ) is turned on, ¢(x) has the form

d3 1 —ip-x ipT
(bo(a}):/@?r];?’\/m(ape P 4 gle?®).

If there were no source, this would be the solution for all time. With a source,
the solution of the equation of motion can be constructed using the retarded
Green’s function:

o) = dola) +i / d'y Dr(z — )i(y)

dBp 1
+'L/d4 /2W]32E CL‘O'*’yO)

x (e~ (@) — P @V i(y).  (2.63)

If we wait until all of j is in the past, the theta function equals 1 in the whole
domain of integration. Then ¢(x) involves only the Fourier transform of j,

j(p) = / d'y e®Vi(y),
evaluated at 4-momenta p such that p? = m?2. It is natural to group the

positive-frequency terms together with ap and the negative-frequency terms
with cff this yields the expression

o(z) = /Z%—\/;:E:;{ (ap + ——Q—iE—pj(p))e*ip'm + h.c.}. (2.64)

You can now guess (or compute) the form of the Hamiltonian after F163)
has acted: Just replace ap with (ap +i7(p)/ /2E}) to obtain
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The energy of the system after the source has been turned off is

(0| H 10) = /(;l 1)73 ;J( )2 (2.65)

where |0) still denotes the ground state of the free theory. We can interpret
these results in terms of particles by identifying |7(p)|*/2E, as the probability
density for creating a particle in the mode p. Then the total number of particles

produced is
dBp 1
/ dN = / Ol (2.66)
P

Only those Founel components of j(z) that are in resonance with on-mass-
shell (i.e., p?> = m?) Klein-Gordon waves are effective at creating particles.
We will return to this subject in Problem 4.1. In Chapter 6 we will study

the analogous problem of photon creation by an accelerated electron (brems-
strahlung).

Problems

2.1 Classical electromagnetism (with no sources) follows from the action
S = /d4:v (—%F'WF‘“’), where Fj,, = 0, A, — 9, Ay,

(a) Derive Maxwell’s equations as the Euler-Lagrange equations of this action, treat-
ing the components A, (x) as the dynamical variables. Write the equations in
- standard form by identifying B = —F0% and ¢k Bk = —pid,

(b) Construct the energy-momentum tensor for this theory. Note that the usual
procedure does not result in a symmetric tensor. To remedy that, we can add to
TH & term of the form 9y K MY where K ¥ is antisymmetric in its first two
indices. Such an object is automatically divergenceless, so

THY = THY 1 9\ K MY

is an equally good energy-momentum tensor with the same globally conserved
energy and momentum. Show that this construction, with

KMV = pRApY

leads to an energy-momentum tensor 7" that is symmetric and yields the standard
formulae for the electromagnetic energy and momentum densities:

£=41(E*+B?); S=ExB.

2.2 The complex scalar field. Consider the field theory of a complex-valued scalar
field obeying the Klein-Gordon equation. The action of this theory is

S = /d4$ (Oup* 0t — m?d*g).
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Tt is easiest to analyze this theory by considering ¢(z) and ¢* (), rather than the real
and imaginary parts of ¢(x), as the basic dynamical variables.

(a) Find the conjugate momenta to ¢(z) and ¢*(2) and the canonical commutation
relations. Show that the Hamiltonian is

H= /d% (77 + V¢* - Vo +m?¢*¢).

Compute the Heisenberg equation of motion for ¢(x) and show that it is indeed
the Klein-Gordon equation.

(b) Diagonalize H by introducing creation and annihilation operators. Show that
the theory contains two sets of particles of mass m.

(¢) Rewrite the conserved charge
Q= / dx 2(¢"n" —79)

in terms of creation and annihilation operators, and evaluate the charge of the
particles of each type.

(d) Consider the case of two complex Klein-Gordon fields with the same mass. Label
the fields as @,(z), where a = 1,2. Show that there are now four conserved
charges, one given by the generalization of part (c), and the other three given
by

Q"= /d?’@’ 5 (8a(0%)apmy — 7a(0")abPb),
where o? are the Pauli sigma matrices. Show that these three charges have the

commutation relations of angular momentum (SU(2)). Generalize these results
to the case of n identical complex scalar fields.

2.3 Evaluate the function

3 .
(0] p(z)p(y) |0) = D(z —y) = /Z%rl)%ie—zp-(m—y),

for (z — y) spacelike so that (z —y)? = —r?, explicitly in terms of Bessel functions.

Chapter 3

The Dirac Field

Having exhaustively treated the simplest relativistic field equation, we now
move on to the second simplest, the Dirac equation. You may already be
familiar with the Dirac equation in its original incarnation, that is, as a single-
particle quantum-mechanical wave equation.* In this chapter our viewpoint
will be quite different. First we will rederive the Dirac equation as a classical
relativistic field equation, with special emphasis on its relativistic invariance.
Then, in Section 3.5, we will quantize the Dirac field in a manner similar to
that used for the Klein-Gordon field.

3.1 Lorentz Invariance in Wave Equations

First we must address a question that we swept over in Chapter 2: What do
we mean when we say that an equation is “relativistically invariant”? A rea-
sonable definition is the following: If ¢ is a field or collection of fields and D
is some differential operator, then the statement “D¢ = 0 is relativistically
invariant” means that if ¢(z) satisfies this equation, and we perform a rota-
tion or boost to a different frame of reference, then the transformed field, in
the new frame of reference, satisfies the same equation. Equivalently, we can
imagine physically rotating or boosting all particles or fields by a common
angle or velocity; again, the equation D¢ = 0 should be true after the trans-
formation. We will adopt this “active” point of view toward transformations
in the following analysis.

The Lagrangian formulation of field theory makes it especially easy to
discuss Lorentz invariance. An equation of motion is automatically Lorentz
invariant by the above definition if it follows from a Lagrangian that is a
Lorentz scalar. This is an immediate consequence of the principle of least
action: If boosts leave the Lagrangian unchanged, the boost of an extremum
in the action will be another extremum.

*This subject is covered, for example, in Schiff (1968), Chapter 13; Baym (1969),
Chapter 23; Sakurai (1967), Chapter 3. Although the present chapter is self-contained,
we recommend that you also study the single-particle Dirac equation at some point.




