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Warning: these notes have been translated from the normal metric to the
Peskin metric (+,−,−,−).

Example: Feynman’s propagator for a spinless quantum field φ(x) of
mass m is

4F (x) =
∫

exp(−ikx)
−k2 +m2 − iε

d4k

(2π)4
(0.1)

where

kx ≡ − k · x + k0x0 (0.2)

x0 = ct, and all physical quantities are in natural units (c = ~ = 1). The
tiny imaginary term − iε makes 4F (x− y) proportional to the mean-value
in the vacuum state |0〉 of the time-ordered product

T {φ(x)φ(y)} ≡ θ(x0 − y0)φ(x)φ(y) + θ(y0 − x0)φ(y)φ(x) (0.3)

of the fields φ(x) and φ(y) in which θ(a) = (a+ |a|)/(2|a|) is the Heaviside
step function. The exact formula is

〈0|T {φ(x)φ(y)} |0〉 = −i4F (x− y). (0.4)

P&S’s DF is 〈0| T {φ(x)φ(y)} |0〉

DF (x− y) = − i4F (x− y) = 〈0| T {φ(x)φ(y)} |0〉

=
∫
e−ikx i

k2 −m2 + iε

d4k

(2π)4
. (0.5)

Example—The Feynman Propagator: Adding ±iε to the denomina-
tor of a pole term of an integral formula for a function f(x) can slightly shift
the pole into the upper or lower half plane, causing the pole to contribute
if a ghost contour goes around the UHP or the LHP. The choice of ghost
contour often is influenced by the argument x of the function f(x). Such
iε’s impose boundary conditions on Green’s functions.

The Feynman propagator ∆F (x) is a Green’s function for the Klein-
Gordon differential operator (Weinberg, 1995, pp. 274–280)

(2 +m2)∆F (x) = δ4(x) (0.6)

in which x = (x0,x) and

2 =
∂2

∂t2
−4 =

∂2

∂(x0)2
−4 (0.7)

is the four-dimensional version of the laplacian 4 ≡ ∇·∇. Here δ4(x) is the
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four-dimensional version of Dirac’s delta function

δ4(x) =
∫

d4q

(2π)4
exp[±i(q · x− q0x0)] =

∫
d4q

(2π)4
e±iqx (0.8)

in which qx = q0x0 − q · x is the Lorentz-invariant inner product of the
4-vectors q and x. There are many Green’s functions that satisfy Eq.(0.6).

Feynman’s propagator ∆F (x) is the one that satisfies certain boundary
conditions which will become evident when we analyze the effect of its iε

∆F (x) =
∫

d4q

(2π)4
exp(−iqx)
−q2 +m2 − iε

. (0.9)

The quantity Eq =
√

q2 +m2 is the energy of a particle of mass m and
momentum q in natural units with the speed of light c = 1. Using this
abbreviation and setting ε′ = ε/(2Eq), we may write the denominator as

−q2 +m2− iε = q ·q−
(
q0
)2 +m2− iε =

(
Eq − iε′ − q0

) (
Eq − iε′ + q0

)
+ε′2

(0.10)
in which ε′2 is negligible. We now drop the prime on the ε and do the q0

integral

I(q) = −
∫ ∞
−∞

dq0

2π
e−iq0x0 1

[q0 − (Eq − iε)] [q0 − (−Eq + iε)]
. (0.11)

The function

f(q0) = e−iq0x0 1
[q0 − (Eq − iε)] [q0 − (−Eq + iε)]

(0.12)

has poles at Eq − iε and at −Eq + iε, as shown in Fig. 0.1. If x0 > 0, then
we can add a ghost contour that goes cw around the LHP, and we get

I(q) = ie−iEqx0 1
2Eq

x0 > 0. (0.13)

If x0 < 0, we add a ghost contour that goes ccw around the UHP, and we
get

I(q) = ieiEqx0 1
2Eq

x0 < 0. (0.14)

Using Heaviside’s step function

θ(x) =
x+ |x|

2
, (0.15)

we may combine the last two equations into

− iI(q) =
1

2Eq

[
θ(x0) e−iEqx0

+ θ(−x0) eiEqx0
]
. (0.16)
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Figure 0.1 In Eq. (0.12), the function f(q0) has poles at ±(Eq − iε), and
the function exp(−iq0x0) is exponentially suppressed in the LHP if x0 > 0
and in the UHP if x0 < 0. So we can add a ghost contour in the LHP if
x0 > 0 and in the UHP if x0 < 0.

In terms of the Lorentz-invariant function

∆+(x) =
1

(2π)3

∫
d3q

2Eq
exp[i(q · x− Eqx

0)] (0.17)

and with a factor of −i, the Feynman propagator is

− i∆F (x) = θ(x0) ∆+(x) + θ(−x0) ∆+(x,−x0). (0.18)
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But the integral (0.17) defining ∆+(x) is insensitive to the sign of q, and so

∆+(−x) =
1

(2π)3

∫
d3q

2Eq
exp[i(−q · x + Eqx

0)] (0.19)

=
1

(2π)3

∫
d3q

2Eq
exp[i(q · x + Eqx

0)] = ∆+(x,−x0).

Thus we arrive at the standard form of the Feynman propagator

− i∆F (x) = θ(x0) ∆+(x) + θ(−x0) ∆+(−x). (0.20)

The Lorentz-invariant function ∆+(x−y) is the commutator of the positive-
frequency part

φ+(x) =
∫

d3p

(2π)3
√

2p0
exp[i(p · x− p0x0)] a(p) (0.21)

of a scalar field φ = φ+ + φ− with its negative-frequency part

φ−(y) =
∫

d3q

(2π)3
√

2q0
exp[−i(q · y − q0y0)] a†(q) (0.22)

where p0 = Ep =
√

p2 +m2 and q0 = Eq. For since the annihilation
operators a(q) and the creation operators a†(p) satisfy the commutation
relation

[a(q), a†(p)] = (2π)3 δ3(q − p) (0.23)

we have

[φ+(x), φ−(y)] =
∫

d3p d3q

(2π)6
√

2q02p0
e−ipx+iqy [a(p), a†(q)]

=
∫

d3p

(2π)32p0
e−ip(x−y) = ∆+(x− y) (0.24)

in which px = p0x0 − p · x, etc.
Incidentally, at points x that are space-like

x2 = (x0)2 − x2 ≡ − r2 < 0 (0.25)

the Lorentz-invariant function ∆+(x) depends only upon r = +
√
− x2 and

has the value (Weinberg, 1995, p. 202)

∆+(x) =
m

4π2r
K1(mr) (0.26)
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in which the Hankel function K1 is

K1(z) = −π
2

[J1(iz) + iN1(iz)] =
1
z

+
z

2j + 2

[
ln
(z

2

)
+ γ − 1

2j + 2

]
+ . . .

(0.27)
where J1 is the first Bessel function, N1 is the first Neumann function, and
γ = 0.57721 . . . is the Euler-Mascheroni constant.

The Feynman propagator arises most simply as the mean value in the
vacuum of the time-ordered product of the fields φ(x) and φ(y)

T {φ(x)φ(y)} ≡ θ(x0 − y0)φ(x)φ(y) + θ(y0 − x0)φ(y)φ(x). (0.28)

Since the operators a(p) and a†(p) respectively annihilate the vacuum ket
a(p)|0〉 = 0 and bra 〈0|a†(p) = 0, the same is true of the positive- and
negative-frequency parts of the field: φ+(z)|0〉 = 0 and 〈0|φ−(z) = 0. Thus,
the mean value in the vacuum of the time-ordered product is proportional
to the Feynman propagator −i∆F (x− y)

〈0|T {φ(x)φ(y)} |0〉 = 〈0|θ(x0− y0)φ(x)φ(y) + θ(y0− x0)φ(y)φ(x)|0〉
= 〈0|θ(x0− y0)φ+(x)φ−(y) + θ(y0− x0)φ+(y)φ−(x)|0〉
= 〈0|θ(x0− y0)[φ+(x), φ−(y)]

+θ(y0− x0)[φ+(y), φ−(x)]|0〉
= θ(x0 − y0)∆+(x− y) + θ(y0 − x0)∆+(y − x)

= −i∆F (x− y) (0.29)

in the last step of which we used (0.20). Feynman put iε in the denominator
of the Fourier transform of his propagator to get this result.
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