Warning: these notes have been translated from the normal metric to the Peskin metric (+, -, -, -).

Example: Feynman's propagator for a spinless quantum field $\phi(x)$ of mass m is

$$\Delta_F(x) = \int \frac{\exp(-ikx)}{-k^2 + m^2 - i\epsilon} \frac{d^4k}{(2\pi)^4}$$
(0.1)

where

$$kx \equiv -\mathbf{k} \cdot \mathbf{x} + k^0 x^0 \tag{0.2}$$

 $x^0 = ct$, and all physical quantities are in **natural units** ($c = \hbar = 1$). The tiny imaginary term $-i\epsilon$ makes $\Delta_F(x-y)$ proportional to the mean-value in the vacuum state $|0\rangle$ of the **time-ordered product**

$$\mathcal{T}\left\{\phi(x)\phi(y)\right\} \equiv \theta(x^0 - y^0)\phi(x)\phi(y) + \theta(y^0 - x^0)\phi(y)\phi(x) \tag{0.3}$$

of the fields $\phi(x)$ and $\phi(y)$ in which $\theta(a) = (a + |a|)/(2|a|)$ is the Heaviside step function. The exact formula is

$$\langle 0|\mathcal{T}\left\{\phi(x)\phi(y)\right\}|0\rangle = -i\,\Delta_F\,(x-y).\tag{0.4}$$

P&S's D_F is $\langle 0 | \mathcal{T} \{ \phi(x) \phi(y) \} | 0 \rangle$

$$D_F(x-y) = -i \Delta_F (x-y) = \langle 0 | \mathcal{T} \{ \phi(x)\phi(y) \} | 0 \rangle$$

=
$$\int e^{-ikx} \frac{i}{k^2 - m^2 + i\epsilon} \frac{d^4k}{(2\pi)^4}.$$
 (0.5)

Example—The Feynman Propagator: Adding $\pm i\epsilon$ to the denominator of a pole term of an integral formula for a function f(x) can slightly shift the pole into the upper or lower half plane, causing the pole to contribute if a ghost contour goes around the UHP or the LHP. The choice of ghost contour often is influenced by the argument x of the function f(x). Such $i\epsilon$'s impose boundary conditions on Green's functions.

The Feynman propagator $\Delta_F(x)$ is a Green's function for the Klein-Gordon differential operator (Weinberg, 1995, pp. 274–280)

$$(\Box + m^2)\Delta_F(x) = \delta^4(x) \tag{0.6}$$

in which $x = (x^0, \boldsymbol{x})$ and

$$\Box = \frac{\partial^2}{\partial t^2} - \triangle = \frac{\partial^2}{\partial (x^0)^2} - \triangle$$
 (0.7)

is the four-dimensional version of the laplacian $\Delta \equiv \nabla \cdot \nabla$. Here $\delta^4(x)$ is the

four-dimensional version of Dirac's delta function

$$\delta^4(x) = \int \frac{d^4q}{(2\pi)^4} \exp[\pm i(\boldsymbol{q} \cdot \boldsymbol{x} - q^0 x^0)] = \int \frac{d^4q}{(2\pi)^4} e^{\pm iqx}$$
(0.8)

in which $qx = q^0 x^0 - \boldsymbol{q} \cdot \boldsymbol{x}$ is the Lorentz-invariant inner product of the 4-vectors q and x. There are many Green's functions that satisfy Eq.(0.6).

Feynman's propagator $\Delta_F(x)$ is the one that satisfies certain boundary conditions which will become evident when we analyze the effect of its $i\epsilon$

$$\Delta_F(x) = \int \frac{d^4q}{(2\pi)^4} \frac{\exp(-iqx)}{-q^2 + m^2 - i\epsilon}.$$
 (0.9)

The quantity $E_{\mathbf{q}} = \sqrt{\mathbf{q}^2 + m^2}$ is the energy of a particle of mass m and momentum \mathbf{q} in natural units with the speed of light c = 1. Using this abbreviation and setting $\epsilon' = \epsilon/(2E_q)$, we may write the denominator as

$$-q^{2} + m^{2} - i\epsilon = \mathbf{q} \cdot \mathbf{q} - (q^{0})^{2} + m^{2} - i\epsilon = (E_{q} - i\epsilon' - q^{0}) (E_{q} - i\epsilon' + q^{0}) + \epsilon'^{2}$$
(0.10)

in which ϵ'^2 is negligible. We now drop the prime on the ϵ and do the q^0 integral

$$I(\mathbf{q}) = -\int_{-\infty}^{\infty} \frac{dq^0}{2\pi} e^{-iq^0 x^0} \frac{1}{\left[q^0 - (E_{\mathbf{q}} - i\epsilon)\right] \left[q^0 - (-E_{\mathbf{q}} + i\epsilon)\right]}.$$
 (0.11)

The function

 $\mathbf{2}$

$$f(q^{0}) = e^{-iq^{0}x^{0}} \frac{1}{\left[q^{0} - (E_{\mathbf{q}} - i\epsilon)\right]\left[q^{0} - (-E_{\mathbf{q}} + i\epsilon)\right]}$$
(0.12)

has poles at $E_{\mathbf{q}} - i\epsilon$ and at $-E_{\mathbf{q}} + i\epsilon$, as shown in Fig. 0.1. If $x^0 > 0$, then we can add a ghost contour that goes cw around the LHP, and we get

$$I(\mathbf{q}) = ie^{-iE_{\mathbf{q}}x^{0}} \frac{1}{2E_{\mathbf{q}}} \quad x^{0} > 0.$$
 (0.13)

If $x^0 < 0$, we add a ghost contour that goes ccw around the UHP, and we get

$$I(\boldsymbol{q}) = i e^{i E_{\mathbf{q}} x^0} \frac{1}{2E_{\mathbf{q}}} \quad x^0 < 0.$$
 (0.14)

Using Heaviside's step function

$$\theta(x) = \frac{x+|x|}{2},\tag{0.15}$$

we may combine the last two equations into

$$-iI(\mathbf{q}) = \frac{1}{2E_{\mathbf{q}}} \left[\theta(x^0) e^{-iE_{\mathbf{q}}x^0} + \theta(-x^0) e^{iE_{\mathbf{q}}x^0} \right].$$
(0.16)

Figure 0.1 In Eq. (0.12), the function $f(q^0)$ has poles at $\pm (E_{\mathbf{q}} - i\epsilon)$, and the function $\exp(-iq^0x^0)$ is exponentially suppressed in the LHP if $x^0 > 0$ and in the UHP if $x^0 < 0$. So we can add a ghost contour in the LHP if $x^0 > 0$ and in the UHP if $x^0 < 0$.

In terms of the Lorentz-invariant function

$$\Delta_{+}(x) = \frac{1}{(2\pi)^{3}} \int \frac{d^{3}q}{2E_{\mathbf{q}}} \exp[i(\boldsymbol{q} \cdot \boldsymbol{x} - E_{\mathbf{q}}x^{0})]$$
(0.17)

and with a factor of -i, the Feynman propagator is

$$-i\Delta_F(x) = \theta(x^0)\,\Delta_+(x) + \theta(-x^0)\,\Delta_+(\mathbf{x}, -x^0).$$
(0.18)

But the integral (0.17) defining $\Delta_+(x)$ is insensitive to the sign of q, and so

$$\Delta_{+}(-x) = \frac{1}{(2\pi)^{3}} \int \frac{d^{3}q}{2E_{\mathbf{q}}} \exp[i(-\boldsymbol{q}\cdot\boldsymbol{x} + E_{\mathbf{q}}x^{0})] \qquad (0.19)$$
$$= \frac{1}{(2\pi)^{3}} \int \frac{d^{3}q}{2E_{\mathbf{q}}} \exp[i(\boldsymbol{q}\cdot\boldsymbol{x} + E_{\mathbf{q}}x^{0})] = \Delta_{+}(\mathbf{x}, -x^{0}).$$

Thus we arrive at the standard form of the Feynman propagator

$$-i\Delta_F(x) = \theta(x^0)\,\Delta_+(x) + \theta(-x^0)\,\Delta_+(-x).$$
(0.20)

The Lorentz-invariant function $\Delta_+(x-y)$ is the commutator of the positive-frequency part

$$\phi^{+}(x) = \int \frac{d^{3}p}{(2\pi)^{3}\sqrt{2p^{0}}} \exp[i(\boldsymbol{p}\cdot\boldsymbol{x} - p^{0}x^{0})] a(\boldsymbol{p})$$
(0.21)

of a scalar field $\phi=\phi^++\phi^-$ with its negative-frequency part

$$\phi^{-}(y) = \int \frac{d^3q}{(2\pi)^3 \sqrt{2q^0}} \exp[-i(\boldsymbol{q} \cdot \boldsymbol{y} - q^0 y^0)] a^{\dagger}(\boldsymbol{q})$$
(0.22)

where $p^0 = E_{\mathbf{p}} = \sqrt{\mathbf{p}^2 + m^2}$ and $q^0 = E_{\mathbf{q}}$. For since the annihilation operators $a(\mathbf{q})$ and the creation operators $a^{\dagger}(\mathbf{p})$ satisfy the commutation relation

$$[a(\boldsymbol{q}), a^{\dagger}(\boldsymbol{p})] = (2\pi)^3 \,\delta^3(\boldsymbol{q} - \boldsymbol{p}) \tag{0.23}$$

we have

$$\begin{aligned} [\phi^+(x), \phi^-(y)] &= \int \frac{d^3 p \, d^3 q}{(2\pi)^6 \sqrt{2q^0 2p^0}} \, e^{-ipx + iqy} \left[a(\mathbf{p}), a^{\dagger}(\mathbf{q}) \right] \\ &= \int \frac{d^3 p}{(2\pi)^3 2p^0} \, e^{-ip(x-y)} = \Delta_+(x-y) \end{aligned} \tag{0.24}$$

in which $px = p^0 x^0 - \mathbf{p} \cdot \mathbf{x}$, etc.

Incidentally, at points x that are space-like

$$x^{2} = (x^{0})^{2} - \mathbf{x}^{2} \equiv -r^{2} < 0 \qquad (0.25)$$

the Lorentz-invariant function $\Delta_+(x)$ depends only upon $r = +\sqrt{-x^2}$ and has the value (Weinberg, 1995, p. 202)

$$\Delta_{+}(x) = \frac{m}{4\pi^{2}r} K_{1}(mr) \qquad (0.26)$$

in which the Hankel function K_1 is

$$K_1(z) = -\frac{\pi}{2} \left[J_1(iz) + iN_1(iz) \right] = \frac{1}{z} + \frac{z}{2j+2} \left[\ln\left(\frac{z}{2}\right) + \gamma - \frac{1}{2j+2} \right] + \dots$$
(0.27)

where J_1 is the first Bessel function, N_1 is the first Neumann function, and $\gamma = 0.57721...$ is the Euler-Mascheroni constant.

The Feynman propagator arises most simply as the mean value in the vacuum of the **time-ordered product** of the fields $\phi(x)$ and $\phi(y)$

$$\mathcal{T}\{\phi(x)\phi(y)\} \equiv \theta(x^0 - y^0)\phi(x)\phi(y) + \theta(y^0 - x^0)\phi(y)\phi(x).$$
(0.28)

Since the operators $a(\mathbf{p})$ and $a^{\dagger}(\mathbf{p})$ respectively annihilate the vacuum ket $a(\mathbf{p})|0\rangle = 0$ and bra $\langle 0|a^{\dagger}(\mathbf{p}) = 0$, the same is true of the positive- and negative-frequency parts of the field: $\phi^{+}(z)|0\rangle = 0$ and $\langle 0|\phi^{-}(z) = 0$. Thus, the mean value in the vacuum of the time-ordered product is proportional to the Feynman propagator $-i\Delta_{F}(x-y)$

$$\langle 0|\mathcal{T}\{\phi(x)\phi(y)\}|0\rangle = \langle 0|\theta(x^{0}-y^{0})\phi(x)\phi(y) + \theta(y^{0}-x^{0})\phi(y)\phi(x)|0\rangle = \langle 0|\theta(x^{0}-y^{0})\phi^{+}(x)\phi^{-}(y) + \theta(y^{0}-x^{0})\phi^{+}(y)\phi^{-}(x)|0\rangle = \langle 0|\theta(x^{0}-y^{0})[\phi^{+}(x),\phi^{-}(y)] + \theta(y^{0}-x^{0})[\phi^{+}(y),\phi^{-}(x)]|0\rangle = \theta(x^{0}-y^{0})\Delta_{+}(x-y) + \theta(y^{0}-x^{0})\Delta_{+}(y-x) = -i\Delta_{F}(x-y)$$
(0.29)

in the last step of which we used (0.20). Feynman put $i\epsilon$ in the denominator of the Fourier transform of his propagator to get this result.

References

Weinberg, S. 1995. The Quantum Theory of Fields. Vol. I Foundations. Cambridge, UK: Cambridge University Press.