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14 15 Non-Abelian Gauge Theories

where 7, is the non-tensor
1 1
7’ + — (RV — =8 R> ,
p=Tu 8nG 27 " ) NONLINEAR
analogous to #,". Like #,’, ¥, is conserved in the ordinary sense

avaﬂ - O
and may be regarded as the current of energy and momentum:
P, = / ’coﬂ Px
It contains a purely gravitational term, because gravitational fields carry
energy and momentum; without this term, t*, could not be conserved.
Similarly, #! contains a gauge-field term (the first term on the right
in Eq. (15.3.3)) because for non-Abelian groups (those with C! 7é 0) the
gauge fields carry the quantum numbers with which they 1nteract Because
7, is conserved in the ordinary sense, it can be regarded as the current

of these quantum numbers, with the symmetry generators given by the
time-independent quantities

T, = / 0P . (153.10)

(Also, the homogeneous equations (15.3.9) involve covariant derivatives,
just as do the Bianchi identities of general relativity.) In contrast, none of
these complications arises in quantum electrodynamics, because photons
do not carry the quantum number electric charge, with which they
interact.

15.4 Quantization

We now proceed to quanﬁze the gauge theories described in the previous
two sections. The Lagrangian density is taken in the form (15.3.1):

P =— 1 FynF” + Ly, D) , (15.4.1)
with
Fauv = aoncv - avAoc,u + CocByAﬁuAyv s

We cannot immediately quantize this theory by setting commutators equal
to i times the corresponding Poisson brackets. The problem is one of
constraints. In the terminology of Dirac, described in Section 7.6, there is
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a primary constraint that
_ o

Heo = 55040 =

and a secondary constraint provided by the field equation for 49:

0¥ 0¥ '
—0 = 0, F,"° + F*0 Jo
k3@ ud) + GA, e + Fy" CrapApy + Jo

= O IL," + 11,5 Cpupdpr + 7.0 =0,  (154.3)

where TIK = 0.9/0(00Ay) = FX° is the ‘momentum’ conjugate to Ay,
with k running over the values 1,2,3. The Poisson brackets of Il,, and
o1, +H Cya[;Aﬁ k7.0 vanish (because the latter quantity is independent
of A 0), so these are first class constraints, which cannot be dealt with by
- replacing Poisson brackets with Dirac brackets.

~As in the case of electrodynamics, we deal with these constraints by
choosmg a gauge. The Coulomb gauge adopted for electrodynamics would
lead to painful complications here,” so instead we will work in what is
. known as axial gauge, based on the condition

A =0. (15.4.4)

The canonical variables of the gauge field are then A,;, with i now running
over the values 1 and 2, together with their canonical conjugates

. 0%
n,=-——— = _F0% — 0;A CoprAgoAy; . 15.4.5
oa‘ a(a()Aw) F aOAou iAo + ofy<1p0Ayi . ( )
The field 4,9 is not an independent canonical variable, but rather is
defined in terms of the other variables by the constraint (15.4. 3) To see

thls note that the ‘electric’ field strengths F,*0 are

F° =T, F> =04, (1546)

so the constraint (15.4.3) reads

— (0504} = Ol + Ty CropApi + 10, (154)

which can easily be solved (with ; reasonable boundary condltlons) to give
A4,9 as a functional of IT,; , Aﬁl, and J,°. (We are us1ng a summation

*In addition to purely algebraic complications, Coulomb gauge (like many other
gauges) has a problem known as the Gribov ambiguity:’ even with the condition
that A, vanishes at spatial infinity, for each solution of the Coulomb gauge condition
V- A, = 0 there are other solutions that differ by finite gauge transformations. The
Gribov ambiguity will not bother us here, because we quantize in axial gauge where
it is absent, and we shall use other gauges hke Lorentz gauge only to generate a
perturbation series.

(15.4.2) |
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convention, with indices i, j, etc. summed over the values 1 and 2.) It
should be noted that the canonical conjugate to the matter field vy is

B 0¥ _ 0L m
0(ops)  0Dowe)

so the time component of the matter current can be expressed in terms of
the canonical variables of the matter fields alone

U4

(15.4.8)

L 0Y .
10 = i gp i (temom = tr(ta)empm -~ (1549)

Hence Eq. (15.4.7) defines A0 at a given time as a functional of the
canonical variables ILy;, Agi, 7, and pp, at the same time.

Now that we have identified the canonical variables in this gauge, we
can proceed to the construction of a Hamiltonian. The Hamiltonian

density 1s |
H = 1150040 + Tz 00Ys — 4
= Ty (Fooi + 0ida0 — CopyApoAyi) + medope
— 4 FyoiFa0i + 5 FoijFoij + L FasFoi
— L Fy3Fus — L (15.4.10)
Using Eqgs. (15.4.4) and (15.4.6), this is

H =Hm+ Hoci(aiAocO — CocﬁyABOAyi) + % IMyilly
+ L FyijFuij + 4 034010340 — 10340003400 ,  (154.11)

‘where # ) is the matter Hamiltonian density:
%M = Ty aou)/ _ gM . (15412)

Following the general rules derived in Section 9.2, we can nOw use this
Hamiltonian density to calculate matrix elements as path integrals over
Ay, Ty, we, and mg, with we@ghting factor exp(il ), where

I= / 4 [[Laidodus + medorpe = # + € terms| , (15.4.13)

in which the ‘e terms’ serve only to supply the correct imaginary infinites-
imal terms in propagator denominators. (See Section 9.2.) We note that
Egs. (15.4.7) and (15.4.9) give A9 as a functional of the canonical variables,
linear in Ty and 7. Inspection of Eq. (15.4.11) shows then (assuming
Zu to be no more than quadratic in D,p) that the integrand of the
complete action (15.4.13) is no more than quadratic in Il and 7. We
could therefore carry out the path integral over these canonical ‘momenta’
by the usual rules of Gaussian integration. The trouble with this proce-
dure is that the coefficients of the terms in Eq. (15.4.13) of second order
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in I1,; are functions of the Agi, SO the Gaussian integral would yield an
awkward field-dependent determinant factor. Also, the whole formalism
at this point looks hopelessly non-Lorentz-invariant.

Instead of proceeding in this way, we will apply a trick like that used
in the path integral formulation of eélectrodynamics in Section 9.6. Note
that if for a moment we think of 4,9 as an independent variable, then
the action (15.4.13) is evidently quadratic in A4,g, with the coefficient of
the second-order term Aqo(x)Apo(y) equal to the field-independent kernel
(03)26*(x — y). As we saw in the appendix to Chapter 9, the integral
of such a Gaussian over A,p(x) is, up to a constant factor, equal to the -
value of the integrand at the stationary ‘point’ of the argument of the
exponential. But the variational derivative of the action here is

ol oA 0

S~ A T T + CpmTlpidyi = B

so the stationary ‘point’ of the action is the solution of the constraint equa-
tion (15.4.7). Hence, instead of using for A4,y the solution of Eq. (15.4.7),
we can just as well treat it as an independent variable of integration.

With Ay, now regarded as an independent variable, the Hamiltonian
f dxH# is evidently quadratic in IT,;, with the coefficient of the second-
order term Il (x)ITg;(y) given by the field-independent kernel 16%(x —
¥)dij. Assuming that the same is true for the matter variable n;, we can
evaluate path integrals over m, and Il up to a constant factor by simply

setting n, and IT,; at the stationary ‘points’ of the action corresponding
to Eq. (154.1):

ol 0H m

0= — = —
ol

0= = 0pdy; — Iy — 0iAq0 + CocﬂyAﬁOAyi = Foo; — Iy .

0 1—Ioci _
Inserting these back into Eq. (15.4.13) gives

I ='/d4x [$M+ 3 Fooi Fooi
5 FOCI]FO(lJ 63Aotla3AO(l —I_ %(83140(0)2
- / i, (15.4.14)

where & is the Lagrangian (15.3.1) with which we started! In other words,

we are to do path integrals over ys(x) and all four components of Aqu(x),

with a manifestly covariant weighting factor exp(il) given by Egs. (15.4.14)

and (15.3.1), but with the axial-gauge condition enforced by inserting a
|

4
|
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factor

g (Aas*(x)) . ‘ (15.4.15)

As long as 04,0p - are gauge-invariant, we have

(T{040B " })yacuum /[Hdw(x)} {H dAom(x)}
£,x .

Oy X

% 0405 exp{il + e terms} [ [ 8 (4w(®)) , (15.4.16)
X0

with Lorentz- and gauge-invariant action I given by Eq. (15.4.14).

® ok kK

For future reference, we note that the volume element [, dAqu(x)
for the integration over gauge fields in (15.4.16) is gauge-invariant, in the
sense that

TT ddn o) = T dAun¥) > (15.4.17)

TR TR

where A4 (%) is the result of acting on Aqyu(x) with a gauge transformation
having transformation parameters Aq(x). It will be enough to show that
this is true for transformations near the identity, say with infinitesimal
transformation parameters Aq(x). In this case,

Al = Al 4 02 + Capy A‘éiv ,
so the volume elements are related by

H dA; ocu(x) = Det(A) H dAau(x) ’
EATR o, fh,X

where A" is the ‘matrix’ :'

_ 04, om(x)

JVocux,ﬂvy = 5Aﬁv(y) = 54()6 - y) 5; [&xﬁ + Cocﬁy/lv(x)] .

The determinant of ./ is unity to first order in 1, because the trace Cooy
vanishes.

In this chapter we shall assume that the volume element [T, dwn(x)
for the integration over matter fields is also gauge-invariant. There are
important subtleties here, to which we shall return in Chapter 22, but
as shown there this assumption turns out to be valid in our present
non-Abelian gauge theories of strong and electroweak interactions.




15.5 The De Witt—Faddeev—Popov Method 19
15,5 The De Witt—-Faddeev—Popov Method

Our formula (15.4.16) for the path integral was derived in a gauge that is
convenient for canonical quantization, but the Feynman rules that would
be derived from this formula would hide the underlying rotational and
Lorentz invariance of the theory. In order to derive manifestly Lorentz-
invariant Feynman rules, we need to change the gauge.

We first note that Eq. (15.4.16) is (up to an unimportant constant factor)
a special case of a general class of functional integrals, of the form:

5= [Hd«pn(x)} 991 B[f[4]] Det#[g],  (1551)

where ¢,(x) are a set of gauge and matter fields; [], , d¢n(x) is @ volume
element; and %[¢] is a functional of the ¢,(x), satisfying the gauge-
invariance condition:

i

91031 [T dunt) = 9161 [ de), (155.2)

where ¢,,(x) is the result of operating on ¢ with a gauge transformation
having parameters 4,(x). (Usually when this is satisfied both the functional
% and the volume element are separately invariant, but Eq. (15.5.2) is
all we need here.) Also, f,[¢;x] is a non-gauge-invariant ‘gauge-fixing
functional’ of these fields that also depends on x and «; B[f] is some
numerical functional defined for general functions f,(x) of x and «; and
Z 1is the ‘matrix’: :
| O falga; ]

F uxpylP] = “5750) lico” . (15.5.3)

(In accordance with our usual notation for functionals of functions or
of functionals, B [f [c{)]] is understood to depend on the values taken by

fuld;x] for all values of the undisplayed variables « and x, with the
displayed variable, the function ¢,(x), held fixed.) Eq. (15.5.1) does not
represent the widest possible generalization of Eq. (15.4.16); we will see
in Section 15.7 that there is a further generalization that is needed for
- some purposes. We start here with Eq. (15.5.1) because it will help to
motivate the formalism of Section 15.7, and it is adequate for dealing with
non-Abelian gauge theories in the most convenient gauges.

We now must check that the path integral (15.4.16) is in fact a special
case of Eq. (15.5.1). In Eq. (15.4.16) the fields ¢,(x) consist of both A,,(x)
and matter fields y,(x), and

fald,p;x] = Aw(x), (15.5.4)
BIf] = JT5(fu®), (15.5.5)
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G[A,p] =exp{il +¢ terms } 040, (15.5.6)
[Td¢nx) = h—[dw(x)} {H dAfx‘(x)} : (15.5.7)
nx £ o, X

(We are now dropping the distinction between upper and lower indices
«f, ) Comparison of Eq. (15.4.16) with Egs. (15.5.1)—(15.5.3) shows
that these path integrals are indeed the same, aside from the factor
Det #[¢]. For the particular gauge-fixing functional (15.5.4), this factor
is field-independent: if A3(x) = 0, then the change in A3(x) under a gauge
transformation with parameters Ao(x) is

A0 = B3 1a(x) = [ &y 2a9) 086 =)
so that here Eq. (15.5.3) is the field-independent ‘matrix’

F ox,By [p] = daup 5354()6 - ).

The determinant in Eq. (15.5.1) is therefore also field-independent in
this gauge. As discussed in Chapter 9, field-independent factors in the
functional integral affect only the vacuum-fluctuation part of expectation
values and S-matrix elements, and so are irrelevant to the calculation of
the connected parts of the S-matrix.

The point of recognizing the functional integral (15.4.16) for non-
Abelian gauge theories as a special case of the general path integral (15.5.1)
s that in this form we may freely change the gauge. Specifically, we have
a theorem, that the integral (15.5.1) is actually independent (within broad
limits) of the gauge-fixing functional fuld;x], and depends on the choice of
the functional B[f] only through an irrelevant constant factor.

Proof: Replace the integration variable ¢ everywhere in Eq. (15.5.1) with
a new integration variable ¢4, with A%(x) any arbitrary (but fixed) set of
gauge transformation parameters: ‘

5= [H dmn(x)] 9[pa1B[f191| Det Fpal . (15.538)

(This step is a mathematical triviality, like changing an integral [%, f(x)dx
to read [ f(y)dy, and does not yet make use of our assumptions regard-
ing gauge invariance.) Now use the assumed gauge invariance (15.5.2) of
the measure IId¢ times the functional ¢[¢] to rewrite this as

5= {H dqsn(x)} %[$1Bf[¢a]] Det F[pal (15.59)

Since A%(x) was arbitrary, the left-hand side here cannot depend on it.
Integrating over A%(x) with some suitable weight-functional p[A] (to be
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chosen below) thus gives

s | [HdA“(x)} pin = | [H d%(x)} G9ICel, (15510

where

cil= | {H dA“(x)} pIAIB[f[gn] |Det #gal.  (155.11)

X

Now, Eq. (15.5.3) gives

0fs )
F ax,By [pa] = ! gﬁ?})}; . =0 .

We are assuming that these transformations form a group; that is, we may
write the result of performing the gauge transformation with parameters
A%(x) followed by the gauge transformation with parameters 1%(x) as

the action of a single ‘product’ gauge transformation with parameters
A¥(x; A, A),

(15.5.12)

(PA)r = ‘751”\(1\,,1) . (15.5.13)
Using the chain rule of partial (functional) differentiation, we have then
F ux,pylda] = / Fuxyzls AR 5, [A]d*z (15.5.14)
where
5fa[¢f\;x] 5foc[¢A;x]
N == = 15.5.15
S T e (15519
and ,
SAY(z; A, /l)l
Ry Al = —7—~—| - 15.5.16
PN =500 | (15:5.16)
It follows that
Det #[¢p] = Det Z[p,A] Det Z[A] . (15.5.17)

We note that Det #[¢, A] is nothing but the Jacobian of the transforma-
tion of integration variables from the A%(x) to (for a fixed ¢) the fy[¢a; x].
Hence, if we choose the weight-function p(A) as

p(A) =1 / Det Z[A] (15.5.18)
then

cwl= [ [H dA“(x)} Det #[¢,A] B[f[$a]]

=/ {dem} B [f]

]

c, (15.5.19)
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which is clearly independent of ¢. (Eq. (15.5.18) may be recognized by
the reader as giving the invariant (Haar) measure on the space of group
parameters.) We have then at last

cf[nn,; dpn(x)|419]
S = .
J [ TLx dA%(0)| pIA]

This is clearly independent of our choice of fu[¢;x], which has been
reduced to a mere variable of integration, and it depends on B[f] only
through the constant C, as was to be proved.

Before proceeding with the applications of this theorem, we should
pause to note a tricky point in the derivation. The integrals in the
numerator and denominator of Bq. (15.5.20) are both ill-defined for the
same reason. Since %[¢)] is assumed to be gauge-invariant, its integral over
¢ cannot possibly converge; the integrand is constant along all ‘orbits,
obtained by sending ¢ into ¢, with all possible A*(x). Likewise, the
integrand in the denominator is divergent, because p(A)IIdA is nothing
but the usual invariant volume element for integrating over the group,
and this is also constant along ‘orbits’ A — A(A, 2). This divergence can
be eliminated in both the numerator and denominator of Eq. (15.5.20)
by formulating the theory on a finite spacetime lattice, in which case the
yolume of the gauge group is just the volume of the global Lie group itself
times the number of lattice sites. Because the gauge-fixing factor B[f]
eliminates this divergence in the original definition (15.5.1) of the left-hand
side of Eq. (15.5.20), we may presume that, as the number of lattice sites
goes to infinity, it cancels between the numerator and denominator of the
right-hand side of Eq. (15.5.20).

Now to the point. We have seen that the vacuum expectation value
(15.4.16) in axial gauge is given by a functional integral of the general
form (15.5.1). Armed with the above theorem, we conclude then that

(T{0408 - })v o /{H dw(x)} {H dA#oc(x):\
%

04, X

(15.5.20)

% 0405 exp{il + e terms} B[f[A,w]]Detgr[A,w] (15.5.21)

for (almost) any choice of fo[4,¥; x] and B[f]. We are now therefore free
to use Eq. (15.5.21) to derive the Feynman rules in a more convenient
gauge.

The path integrals that we understand how to calculate are of Gaussians
times polynomials, so we will generally take

BIf) = exp (55 [ €' o)) (15522)
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with arbitrary real parameter £. With this choice, the effect of the factor
B in Eq. (15.5.21) is just to add a term to the effective Lagrangian

1
28

The simplest Lorentz-invariant choice of the gauge-fixing function f, is
the same as in electrodynamics:

fa = 0,4". (15.5.24)

The bare gauge-field propagator can then be calculated just as in quantum
electrodynamics. The free-vector-boson part of the effective action can be
written

PrrF =L — —fufs. (15.5.23)

Iog = — / d*x [%(a,qucv - avAocu)(aqucv - avAoc#)

L1
2¢

1
-2 / d*x Doyx,pvy Aot (X) A" (),

(0,44")(0vA,") + € terms

where

52 .
Dopx,pvy = Ny W 54()6 —)

_(1_1) O s4x—y) + e terms
£) axray OV Y

= (2n)™* / d*p [n,w(pz —i€) — (1 - %) Pupv} Py

Taking the reciprocal of the matrix in square brackets, we find the prop-
agator:

Aagupv(%,¥) = (D apun, vy
_ ip(x—y)
I , pupv] €*
= [ [+ - 02| S

This is a generalization of both Landau and Feynman gauges, which
are recovered by taking & = 0 and ¢ = 1, respectively. For ¢ — 0, the
functional (15.5.22) oscillates very rapidly except near f, = 0, so this
functional acts like a delta-function imposing the Landau gauge condition
0,A* = 0, leading naturally to a propagator satisfying the corresponding
condition d#Ay, gy = 0. For non-zero values of ¢ the functional B[f] does
not pick out gauge fields satisfying any specific gauge condition on the
field Ay, but it is common to refer to the propagator (15.5.25) as being in
a ‘generalized Feynman gauge’ or ‘generalized £-gauge’. It is often a good

(15.5.25)
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strategy to calculate physical amplitudes with & left arbitrary, and then at
the end of the calculation check that the results are ¢-independent.

With one qualification, the Feynman rules are now obvious: the contri-
butions of vertices are to be read off from the interaction terms in the orig-
inal Lagrangian %, with gauge-field propagators given by Eq. (15.5.25),
and matter-field propagators calculated as before. To be specific, the
trilinear interaction term in %

— % Caﬁy(aﬂAav - avAa#)AﬂuAyv

corresponds to a vertex to which are attached three vector boson lines. If
these lines carry (incoming) momenta p, g,k and Lorentz and gauge-field
indices ua,vp, py, then according to the momentum-space Feynman rules,
the contribution of such a vertex to the integrand is

i(27t)454(p +q+k)[—i Cozﬁy] [pvrlul — Py T DMy — dutva + k,u”l/lv - kv’?/lu] .
(15.5.26)
Also, the A* interaction term in %,

— % Ceaﬁceyé AomA[?vAyuAév s

corresponds to a vertex to which are attached four vector boson lines.
If these lines carry (incoming) momenta p,q,k,#, and Lorentz and gauge
indices uc, vf, py, and ¢, then the contribution of such a vertex to the
integrand is

i(2n)454(p +q+k+72) X [;“ Ceup Ceyé("]/lp"]va - nuanvp)

—Ceocy Ceéﬁ(”lua”lpv — nuvnap) — Ceas Ceﬁy("],uv”lpa - nupﬂav)] .
(15.5.27)

(Recall that the structure constants Cyg, contain coupling constant factors,
so the factors (15.5.26) and (15.5.27) are respectively of first and second
order in coupling constants.)

The one complication in the Feynman rules with which we have not
yet dealt is the presence in Eq. (15.5.21) of the factor Det &, which for
general gauges is not a constant. We now turn to a consideration of this
factor.

15.6 Ghosts
Z1
We now consider the effect of the factor Det & in Eq. (15.5.22) on the
Feynman rules for a non-Abelian gauge theory. In order to be able to treat
this effect as a modification of the Feynman rules, recall that as shown in
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Section 9.5, the determinant of any matrix %, s, may be expressed as a
path integral

Det 7 o / [Hdw;(x)} [H dcoa(x)} exp(ilcr) (15.6.1)

where
IIGH = /d4x d4y a);(x) a)ﬁ(y) focx,ﬁy . (15.6.2)

Here w; and w, are a set of independent anticommuting classical variables,
and the constant of proportionality is field-independent. (We have to
choose the w, and w; field variables to be fermionic in order to reproduce
the factor Det % ; had we chosen these field variables to be bosonic,
the path integral (15.6.1) would have been proportional to (Det %#)~1)
The fields w, and w, are not necessarily related by complex conjugation;
indeed, in Section 15.7 we shall see that for some purposes we need to
assume that w; and w, are independent real variables. The whole effect
of the factor Det & is the same as that of including Igy(w,®") in the
full effective action, and integrating over ‘fields’ @ and w*. That is, for
arbitrary gauge-fixing functionals fy(x),

(T{O4})v o /[Hdwn(x)} [H dA (% }

R
X {Hdwa(x)dco;(x)} exp <i1M0D[w,A,w,CO*]) O4-++, (15.6.3)
0, ‘

where Inop is a modified action

Inop = /d4 [3— = fafa] + Iy . (15.6.4) |

The fields w, and w, are Lorentz scalars (at least in covariant gauges)
but satisfy Fermi statistics. The connection between spin and statistics is
not really violated here, because there are no particles described by these
fields that can appear in initial or final states. For that reason, w, and
w, are called the fields of ‘ghost’ and ‘antighost’ particles. Inspection of
Eq (15.6.2) shows that the action respects the conservation of a quantity
known as ‘ghost number,” equal to +1 for w,, —1 for w}, and zero for all
other fields.

The Feynman rules for the ghosts are simplest in the case in which the
‘matrix’ # may be expressed as

F =Fo+F1, (15.6.5)

where & is field-independent and of zeroth order in coupling constants,
while # is field-dependent and proportlonal to one or more coupling
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constant factors. In this case, the ghost propagator is just

Aaﬂ(xa y) = (gal)ax,ﬁy (15.6.6)
and the ghost vertices are to be read off from the interaction term
Ié}H = / d4x d4y (D;(X) wﬁ(y)(ﬁl)ocx,ﬁy . (1567)

For instance, in the generalized &-gauge discussed in the previous sec-
tion, we have

fo=20,4" (15.6.8)
and for infinitesimal gauge parameters A,, Eq. (15.1.9) gives:

so that
F vy = 60,45, (x)
ox,fy = T, N
T o400 lao
0
=0 6%(x — y) + Corp 5z [Ag(x) 54(x — y)] . (1569)
This is of the form (15.6.5), with
(ggO)ocx,ﬁy = 554(36 — ) 506/3 s (15.6.10)
0
(F Duspy = —Capy 5 | A5(2)3*x = )] - (15.6.11)
From Egs. (15.6.6) and (15.6.10), we see that the ghost propagator is
Bag(x,9) = 8@y [ d'p ( —ie ! P, (156.12)

so in this gauge the ghosts behave like spinless fermions of zero mass,
transforming according to the adjoint representation of the gauge group.
Using Egs. (15.6.7) and (15.6.11) and integrating by parts, we find that the
ghost interaction term in the action is now

 dwt
Iy = / dx Copy 5t Ak g (15.6.13)

This interaction corresponds to vertices to which are attached one outgoing
ghost line, one incoming ghost line, and one vector boson line. If these
lines carry (incoming) momenta p, ¢, k respectively and gauge group indices
«, B,y respectively, and the gauge field carries a vector index u, then the

contribution of such a vertex to the integrand is given by the momentum-
space Feynman rules as

i2r)*6*(p +q +k) X ipyCyp, . (15.6.14)
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The ghosts propagate around loops, with single vector boson lines attached
at each vertex along the loops, and with an extra minus sign supplied for
each loop as is usual for fermionic field variables.

The extra minus sign for ghost loops suggests that each ghost field
@, together with the associated antighost field w; represents something
like a negative degree of freedom. These negative degrees of freedom
are necessary because in using covariant gauge field propagators we are
really over-counting; the physical degrees of freedom are the compo-
nents of Af(x), less the parameters A,(x) needed to describe a gauge
transformation.

In summary, the modified action (15.6.4) may be written in generalized
¢-gauge as

Iniop = / d*x Lrion (15.6.15)
with a modified Lagrangian density:
1 1
Zmop = Lm — 7 Fy" Fay — 72 (0nda)(0uA4,)
—0u0, 0¥y + Copy (0p0,) AL g . (15.6.16)

It is important that this Lagrangian is renormalizable (if the matter La-
grangian %y is), in the elementary sense that its terms involve products
of fields and their derivatives of total dimensionality (in powers of mass)
four or less. (The kinematic term —d,, 0w, in Eq. (15.6.16) fixes the
dimensionality of the fields w and w" to be mass to the power unity,
just like ordinary scalar and gauge fields.) However, there is more to
renormalizability than power counting; it is necessary also that there be
a counterterm to absorb every divergence. In the next section we shall
consider a remarkable symmetry that will be used in Section 17.2 to show
that non-Abelian gauge theories are indeed renormalizable in this sense,
and that can even take the place of the Faddeev—Popov—De Witt approach
that we have been following.

15,7 BRST Symmetry

Although the Faddeev—Popov—De Witt method described in the previous
two sections makes the Lorentz invariance of the theory manifest, it still
rests on a choice of gauge, and hence naturally it hides the underlying
gauge invariance of the theory. This is a serious problem in trying to
prove the renormalizability of the theory — gauge invariance restricts the
form of the terms in the Lagrangian that are available as counterterms to
absorb ultraviolet divergences, but once we choose a gauge, how do we




