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e-terms which modify the Dirac propagators
/ X(21) . x(w2n) @909 Dy* Dy

/ eiSO [X,E] DX*DX

OIT [(a1) ... (a2n)] [0) = (17.227)

We now as in (17.144) introduce a Grassmann external current {(z) and
define a fermionic analog of Zy[j]

/eszX+DZC d4£l,‘e1:So [X’E]DX*DX

Zol¢] = (0| T [eid ¥+ ‘“] l0) = (17.228)

/ 5000 Dy Dy

17.14 Application to Non-Abelian Gauge Theories

The action of a (fairly) generic non-abelian gauge theory is
S = / — inu,,Fg‘” — P (y*D, +m) e diz (17.229)
in which the Maxwell field is
Foyy = 04 Ay — 0y Apy + g focd Acy Aav (17.230)
and the covariant derivative is

Dy = 0u9 —igty Apu 9. (17.231)

Here 4" is a gamma matrix (9.267), g is a coupling constant, fyq is a
structure constant (9.62), and ¢, is a generator (9.56) of the Lie algebra
(9.15) of the gauge group.

One may show (Weinberg, 1996, pp. 14-18) that the analog of equation
(17.172) for quantum electrodynamics is

/(91 ... On €5 §|Ays] DA Dy

QT [01...0,] 1) = - (17.232)
/ €' §]Ays] DA Dy
in which the functional delta-function
§[Ass] = [ [ 6(Ass(=)) (17.233)

z,b

enforces the axial-gauge condition, and D1 stands for Dy* D).
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Initially, physicists had trouble computing non-abelian amplitudes beyond
the lowest order of perturbation theory. Then DeWitt showed how to com-
pute to second order (DeWitt, 1967), and Faddeev and Popov, using path
integrals, showed how to compute to all orders (Faddeev and Popov, 1967).

17.15 The Faddeev-Popov Trick

The path-integral tricks of Faddeev and Popov are described in (Weinberg,
1996, pp. 19-27). We start with some gauge-fixing functions f3(z) which
depend upon a set of non-abelian gauge fields AZ(w). One might have
fo(z) = A3(z) in an axial gauge or fy(z) = i, A} (z) in a Lorentz-invariant
gauge.

Under an infinitesimal gauge transformation

Ap, = Ay + 80 + g Foed M Acy (17.234)

the gauge fields change, and so the gauge-fixing functions fy(z), which de-
pend upon them, also change. The jacobian J of that change is

L A CONY I o)
7 et (&bc(y)) amo DA

which typically involves the delta-function 64(z — y).
Let B[f] denote any functional of the gauge-fixing functions fy(z) such as

B(f] = [[6(£s(=)) = ] ] 6(43(=)) (17.236)
z,b z,b

(17.235)

A=0

in an axial gauge, or

i

Bifj=ewp |1 [ ()" o) =exo | - § [ (0uat()? o] arsm)

in a Lorentz-invariant gauge.
Now let’s consider a functional integral like (17.232)

/ol...oneiSB[f]JDAqu

(QIT[O:...0,]|) = (17.238)

/eiSB[f]JDADw

in which the operators O, the action functional S[A] and the differentials
DA and D1 are gauge invariant. The axial-gauge formula (17.232) is a
simple example in which B[f] = §[As3] enforces the axial-gauge condition
Aps(z) = 0 and the determinant J = det (6,.0,6(z — y)) is a constant, which
cancels.
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If we translate the gauge fields by a gauge transformation A, then the
ratio (17.244) does not change

/ ON ... OB ¢iS* BfA JA D AN Dy

QT [0:...0,]|0) = (17.239)

/ " B[fA] JM DAA Dyt

~any more than [f(y)dy is different from [f(z)dz. Since the operators

O, the action functional S[A], and the differentials DA and Dt are gauge
invariant, most of the A-dependence goes away

/(91 .0, B[f* JA DADy
QT [0, 119) (17.240)

/ 'S B[f")J* DA Dy

If AX is the gauge transformation A followed by the gauge transformation
), then the jacobian J? is a determinant of a product of matrices which is
the product of their determinants

N 510 (2) 5Ma(2)
I = det ( ) ) N (/ VAN d4z>

A=0
- (53], o (57
d\% A=0 c A=0
B SFM(x) SANg(2) _ DfA DA
—det<5Abd(z)> det( 6Aclzy) ) = BE DA, (17.241)

Now we integrate over the gauge transformation A with weight function
p(A) = (DAXN/DA|,_,) ! and find, since the ratio (17.240 is A-independent

/01...onei53[ff\] D—]X\DADADv,b

QT [0:...0,] | = DfE
/ is B[fA]  DADADY

/01 ... Op eiSB[fA] DfADA Dy

/eiSB[fA] DfADADy

/01...c9nei5 DA Dy
= : — (17.242)
/ e® DA Dy
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Thus, the mean-value in the vacuum of a time-ordered product of gauge-
invariant operators is a ratio of path integrals over all gauge fields without
any gauge fixing. No matter what gauge condition f or gauge-fixing func-
tional B[f] we use, the resulting gauge-fixed ratio (17.244) is equal to the
ratio (17.242) of path integrals over all gauge fields without any gauge fixing.
All gauge-fixed ratios (17.244) give the same time-ordered products, and so
we can use whatever gauge condition f or gauge-fixing functional B[f] is
most convenient.
The analogous formula for the euclidean time-ordered product is

/(91...0ne—5e DADy
QT [01...0,] 1) =

(17.243)
/ eS¢ DA D)

where the euclidean action S, is the space-time integral of the energy density.
This formula is the basis for lattice gauge theory.

The path-integral formulas (17.176 & 17.243) derived for quantum elec-
trodynamics therefore also apply to non-abelian gauge theories.

17.16 Ghosts

Faddeev and Popov were interested in showing how to do perturbative com-
putations in which one does fix the gauge. To continue our description of
their tricks, we return to gauge-fixed expression (17.232) for the time-ordered
product

/(91...(9nei53[f]JDAD¢
QT [01...0,]1Q) =

(17.244)
/eiSB[f] JDA Dy

set
fo(z) = i0, A} (2) (17.245)

and use (17.237) as the gauge-fixing functional B{f]

B[f] = exp [% / (fo(2))? d4m] = exp [— %/ (GMAZ"(:I;))2 d%] . (17.246)
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This functional adds to the action density the term — (8, 4})?/2 which leads
to a gauge-field propagator like the photon’s (17.179)

b (5) AC e iAoy = —i [l gy AT
O [A@A450)] 10 = ~ibula—v) = ~i [ Jutte e 24

(17.247)
What about the determinant J7? Under an infinitesimal gauge transfor-
mation, the gauge field becomes

Ay = vy + 820 + g frea Aa Acy (17.248)
and so fl;\ is
£ = 10" Ay, = i0" (A + Oy + g fode Ne Ady) - (17.249)
The jacobian J then is the determinant (17.235) of the matrix
<5fb(w)>
Ae(y)

that is

= 05, O 64(113 —y) + 19 fode 8;2“ [Ag(x)54(m — y)] (17.250)

A=0

J =det (z’dbc O 54(;5 — ) + @9 fode % [A5(2)6*(z — y)]) . (17.251)

But we've seen (17.208) that a determinant can be written as a fermionic
path integral

n
det A = / e~ A0 T avtdoy. (17.252)
k=1

Thus we can write the jacobian J as
J = /exp (= twf Owp + i0,wi g foae Ajwe d4a:) Dw*Dw (17.253)

which contributes the terms — 8 wyotwy and d,wf g fode Agwc to the action
density.
Thus, we can do perturbation theory by using the modified action density

L= — Py Fy" — % (auAg)Z — 0w}y O*wp + 0wy g fode Ajwe — 2 (P +m) ¢
(17.254)
in which p = v*D,, = v*(0u — 19focaApy). The ghost field w is a mathe-
matical device, not a physical field describing real particles, which would be
spinless fermions violating the spin-statistics theorem (example 9.3).






