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= —iAp(z —y). (5.224)

Feynman put i¢ in the denominator of the Fourier transform of his propa-
gator to get this result.

Example 5.2 (The Abel-Plana Formula) Suppose the function f(2) is
analytic and bounded for n1 < Rz < ny. Let C+ be a contour that runs
counter-clockwise along the rectangle with vertices n1, ng, ng & 400, n1 % i0o
indented with tiny semi-circles and quarter-circles so as to avoid the integers
z=mn1,n1+1,n1+2, ..., ny while keeping +3z > 0 (and n1 < Rz < ng).
Then the contour integrals

eFomiz _ |

T. = /C _J@ (5.225)

vanish by Cauchy’s theorem (5.20) since the poles of the integrand lie outside
the indented rectangles.

The absolute value of the exponential exp(—2niz) is arbitrarily large on
the top of the upper rectangle C+ where 8z = 00, and so that leg of the con-
tour integral 7, vanishes. Similarly, the bottom leg of the contour integral
Z_ vanishes. Thus we can separate the difference Z_. — 7, into a term T}
due to the integrals near the z-axis between nj and ng, a term T3 involving
integrals between n; and n; £i0c0, and a term 75 involving integrals between
ng and ng % 00

0=24 -I_=1T,+1T1 + 15 (5.226)

The term T3, consists of the integrals I, along the segments of the z-axis
from ny to ng and also a sum S over the tiny integrals along the semi-circles
and quarter circles that avoid the integers from ny to ng

Ty = Iy + S. (5.227)

Elementary algebra simplifies the integral I to

n2 1 1 ng
Im = /n f(:I?) |:e—27rim -1 + et2miz _ 1] dz = - /,;1 f(CL’) da. (5'228)

1

The sum S is over the semi-circles that avoid n; + 1,...,n2 — 1 and over
the quarter-circles that avoid ny and ny. For any integer ny < n < ng, the
integral along the semi-circle of C; minus that along the semi-circle of C_,
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both around n, contributes to S the quantity

i R N
On = /SCnJr e 2miz ] dz S0, _ e2miz ] dz
- /(z) /()
B /SCnJr Wdz - /SCH_ Sami(—n) 1 dz  (5.229)

since exp(+2min) = 1. The first integral is clockwise in the upper half plane,
the second clockwise in the lower half plane. So if we make both integrals
counter-clockwise, inserting minus signs, we find as the radii of these semi-
circles shrink to zero

Sp = —Ji(—zl——dz = f(n). (5.230)

27i(z — n)

One may show (problem 8) that the quarter-circles around n; and ng con-
tribute (f(n1) + f(n2))/2 to the sum S. Thus the term T is

no—1

Ty = =f(m) + Z f(n) + fng / f(z (5.231)

n=ni+1

Since exp(—2mini) =1, the term T3 is (problem 9)

11:[T’ _fe) dm~AM%w—iQLJ@ (5.232)

Lo € —27mz -1 . e2mz -1
f(n +iy) = f(n1 —dy)
/ LA dy. (5.233)

Similarly, since exp(—2ming) = 1, the term T5 is (problem 10)

15_./WTHW-—i§Q—~dz-:[jz 1&g, (5.234)

—2miz __ 1 y—ico e2mz -1
fng +iy) — f(na —dy)
/ - dy. (5.235)

Putting together (5.226), (5.231), and (5.233-5.235), we obtain the Abel-
Plana formula (Whittaker and Watson, 1927, p. 145)

ng—1

fon)+ Y f)+5m) ~ [ o) (5.230)
n=ni-+1 1
[ f(ny +1y) — flng —iy) — fng +iy) + f(ng —dy)
:Z/O 1 1 ) 2 2 dy

(Niels Abel, 1802-1829, and Giovanni Plana, 1781-1864).
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In particular, if f(z) = z, the integral over y vanishes, and the Abel-Plana,
formula (5.236) gives

1 el 1 ng
-ny + Z n 4+ -ng = / xdz (5.237)
2 2 n
n=ni+1 i
which is an example of the trapezoidal rule. -

Example 5.3 (The Casimir Effect) The hamiltonian for the electromag-
netic field in empty space usually is taken to be a sum over two polarizations
and an integral over all momenta

Ho = Zl / hw(kz)% (ol (B)as (k) + au(R)al (k)] d* (5.238)

of the annihilation and creation operators as(k) and al(k) which satisfy the
commutation relations

[as(k), al, (K')] = 65y 6(k — k') and [as(k), ag (k)] =0 (5.239)

the commutator of two creation operators also vanishing. The vacuum state
|0) has no photons, and so on it as(k)|0) = 0 (and (Olal(k) = 0). Bus
because the operators in Hy are symmetrically ordered, the energy Eqy of
the vacuum as given by (17.130) is not zero; instead it is quarticly divergent

2 31
Ey = (0|Hy|0) = fwklaod%zv hw(k d'k 5.240
po 2 (2m)3
in which we used the delta-function formula
5k — k) = [eFiterra €T 5.241
( ) - € (27_‘_)3 ( . )

to identify 6(0) as the volume V of empty space divided by (27)3. Since
photon has no mass, its (angular) frequency w(k) = c|k|, and so the energy
density Ey/V is

E 5 dk K* ke 1
Bo _po i3k _, B he 1 242
1% hc/ k 272 he 82 8n2 d4 (5.242)

in which we cut off the integral at some short distance d = K~! below
which the hamiltonian (17.130) and the commutation relations (5.239) are
no longer valid. But the energy density of empty space is

hic 1
Qape = QA3HS /871G ~ —
ape = A3Hy [81G ~ o B T

(5.243)
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which corresponds to a distance scale d of 28 micrometers. Since quantum
electrodynamics works well down to about 107!8 m, this distance scale is
too big by a factor of 103,

If we imagine the universe to be inside an enormous, perfectly conducting,
metal cube of side L, then we’d require the tangential electric and normal
magnetic field to vanish on the surface of the cube

Ey(r,t) = 0= By(r,t). (5.244)

The available wave-numbers of the electromagnetic field inside the cube then
would be k,, = 2m(n1,ng,n3)/L, and the energy density would be

E 27rhc
VO = Z Vn2, (5.245)

The Casimir effect exploits the difference between the continuous (5.242)
and discrete (5.245) energy densities for the case of two metal plates of area
A separated by a short distance £ < v/A. As far as I know, it is the only
evidence for the reality of the zero-point energies.

If the plates are good conductors, then at low frequencies the boundary
conditions (5.244) will hold, and the tangential electric and normal magnetic
field will vanish on the surfaces of the metal plates. At high frequencies,
above the plasma frequency wy, of the metal, these boundary conditions will
fail because the relative electric permittivity of the metal

)12 (1 - i) (5.246)

has a positive real part. Here 7 is the mean time between electron collisions.
The modes that satisfy the low-frequency boundary conditions (5.244)
are (Bordag et al., 2009, p. 30)

wiki,n) = /K2 + (7;”)2 (5.247)

where 1 - k| = 0. The difference between the zero-point energies of these
modes and those of the continuous modes in the absence of the two plates
per unit area would be

E(f) whe °°ludkl ML 00 mi ekl
o=, Z = | tatds

(5. 248)
if the boundary conditions (5.244) held at all frequencies. We will represent
the failure of these boundary conditions at the plasma frequency w, by




5.15 Cauchy’s Principal Value 209

means of a cut-off function such as ¢(n) = (1+n/n,)™* where n, = w,f/mc.
In terms of this cut-off function, the energy difference per unit area is

2O _ %/prdp [Zc(n)m_ | e aEan - g}

n=0
(5.249)
Since c(n) falls off as (n,/n)* for n > n,, we may neglect terms in the sum

and integral beyond some integer M that is much larger than n,

E() 72hc [ M M D
—Z =" pdp Zc(n)\/p2+n2—/ c(z)Vp? +22dz — = .
A T2, P 0 2

(5.250)
The function

f(2) = c(2)Vp? + 22 = Y i (5.251)

(1+ 2/np)*

is analytic in the right half-plane ®z = z > 0 (problem 11) and tends to
zero as Rz = — oo

lim |f(z +4y)| — 0. (5.252)
T—00

So we can apply the Abel-Plana formula (5.236) with ny; = 0 and ng = M
to the term in the square brackets in (5.250) and get

%12_) _ 7r22€f;c /Ooopdp { 0_(2_4) JETIE (5.253)
+i [ [ VF T W - i)V
— (M + iy)V/p? + (M +iy)?

+e(M —iy)\/p? + (M —iy)Q] il }

emy — 1

in which the infinitesimal ¢ reminds us that the contour lies inside the right
half-plane.

We now take advantage of the properties of the cut-off function c(z). Since
M > ny, we can neglect the term ¢(M)+/p? + M?/2. And the denominator

exp(27y)—1 allows us also to neglect the terms Fc(M Fiy)\/p? + (M F iy)2.
We are left with

2 00
E(Z)_whc/pd
0

A 2B

<i [ [eli) VT W i ]

e?my —1°

(5.254)
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Since the y integration involves the factor 1/(exp(27y) — 1), we can neglect
the detailed behavior of the cut-off functions c(iy) and c¢(—iy) for y > ny
where they differ appreciably from unity. The energy now is

B 2hc/ / AP+ (e+iy)? — /P2 + (e —iy)? dy. (5.255)

ey — 1

A 2
When y < p, the square-roots with the €’s cancel. But when y > p, they are
Vp? — y? £ 2iey = +iv/y? — p2. (5.256)

Their difference is 2i1/y? — p?, and so E({) is

) zhc/ / —2¢/y2 — p?0(y — P) 4y (5.257)

243 e2my — 1

in which the Heaviside function 6(z) = (x+|z|)/(2|z|) enforces the condition
y>p

- 27ry

E. th/ / VYo _p (5.258)

The p-integration is elementary, and so the energy difference is

2 o ,3 2 2
B o« hc/ y’dy  mhc By  mhe (5.259)
0

AT BB Jy w1 3B 8 7208
in which Bj is the second Bernoulli number (4.86). The pressure forcing the
plates together then is

18E()  whe
A o 24048

a result due to Casimir (Hendrik Brugt Gerhard Casimir, 1909-2000).
Although the Casimir effect is very attractive because of its direct connec-
tion with the symmetric ordering of the creation and annihilation operators
in the hamiltonian (17.130), the reader should keep in mind that neutral
atoms are mutually attractive, which is why most gases are diatomic, and
that Lifshitz explained the effect in terms of the mutual attraction of the
atoms in the metal plates (Lifshitz, 1956; Milonni and Shih, 1992) (Evgeny
Mikhailovich Lifshitz, 1915-1985). O

(5.260)

5.16 Dispersion Relations

In many physical contexts, functions occur that are analytic in the upper
half plane (UHP). Suppose for instance that f(t) is a transfer function that



