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A. STATEMENT OF THE PROBLEM

1. Identical particles: definition

]I —_—

ol Two particles are said to be identical if all their intrinsic properties (mass, spin,
| xclusion

. particles

culation

i

| An important consequence can be deduced from this definition : when
! can be

aphysical system contains two identical particles, there is no change in its properties
or its evolution if the roles of these two particles are exchanged.

COMMENT :
Note that this definition is independent of the experimental conditions.
Even if, in a gjven experiment, the charges of the particles are not measured,

an electron and a positron can never be treated like identical particles,

1371




CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

2. ldentical particles in classical mechanics

In classical mechanics, the presence of identical particles in a system poses
no particular problems. This special case is treated just like the general cage
Each particle moves along a well-defined trajectory, which enables us to distinguish
it from the others and “follow” it throughout the evolution of the system.

To treat this point in greater detail, we shall consider a system of two identicy}
particles. At the initial time ¢, the physical state of the system is defined by specifying
the position and velocity of each of the two particles; we denote this initial data
by { ro, o } and { ry, vg }. To describe this physical state and calculate its evolution,
we number the two particles:r,(¢) and v,(r) denote the position and velocity of
particle (1) at time ¢, and r,(¢) and v,{r), those of particle (2). This numbering has ng
physical foundation, as it would if we were dealing with two particles having
different natures. It follows that the initial physical state which we have Just defined

may, in theory, be described by two different “mathematical states” as we can set,
either :

ri(tg) =1y r,(t) = g

vilte) = v, vo(to) = vg (A-1)
or:

r (t) = 1y rllg) =14

vilte) = vy va{te) = v, (A-2)

Now, let us consider the evolution of the system. Suppose that the solution of
the equations of motion defined by initial conditions (A-1) can be written

) =r) () =) (A-3)

where r(s) and r'(t} are two vector functions. The fact that the two particles are
identical implies that the system is not changed if they exchange roles. Consequently,
the Lagrangian Z1r,, v,; r,, v,) and the classical Hamiltonian #(r,, p,; r,, p,) are
invariant under exchange of indices 1 and 2. It follows that the solution of the
equations of motion corresponding to the initial state (A-2)is:

r{t)=r) ry(f) = r() | (A4)

where the functfons r() and r'(r) are the same as in {A-3).

The two possible mathematical descriptions of the physical state under consi-
deration are therefore perfectly equivalent, since they lead to the same physical
predictions. The particle which started from { r,, v, } at 7, is at r{¢) with the velocity
v{t) = dr/dt at time 7, and the one which started from {rj, v; } is at r'(¢) with the
velocity v'(z) = dr’/dr (fig. 1). Under these conditions, all we need to do is choose,
at the initial time, either one of the two possible “mathematical states” and ignore
the existence of the other one. Thus, we treat the system as if the two particles were

actually of different natures. The numbers (1) and (2), with which we label them
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A. STATEMENT OF THE PROBLEM

arbitrarily at ¢, then act like intrinsic pro
Since we can follow each particle step-by-ste
we can determine the locations of the particl

perties to distinguish the two particles.
p along its trajectory {arrows in figure | )X
€ numbered (1) and the one numbered (2)

at any time.
poses
case.
guish {ro.7% }« + {0, w9
: ﬂthal
¢ ifyin .o " o
1§at§ e v, ) — — {re), vio)
l_mon’ Initial state State at the instant ¢
Lty of
FIGURE |
1aS No
1aving _ Position and velocity of each of the two particles at the initial time ¢, and at time ;.
- efined
S 11 set,
: 3. Identical particles in quantum mechanics:
the difficulties of applying the general postulates
(A-1) a. QUALITATIVE DISCUSSION OF A FIRST SIMPLE EXAMPLE

space, their subsequent evolution may mix them. We then “lose track™ of the
(A-2) particles; when we detect one particle in-a region of space in which both of them
have a non-zero position probability, we have no way of knowing if the i

L XCept In special cases
don of = for example, when the two wave packets never overlap — the numbering of the
wo particles becomes ambiguous when their positions are measured, since, as we

(A-3) shall see, there exist several distinct “paths” taking the system from its initial state

: 4 (othestate found in the measurement.
“les are ¥

To investigate this point in greater detail, consider a concrete example
ently, collision bet“{ecn two identical particles in their center of mass frame (fig. 2)
p,) are Before the collision, we have two completely separate wave packets, directed towards
- of the her (fig. 2-a). We can agree, for example, to denote by (1) the particle on the

left and by (2), the one on the right. During the collision (fig. 2-b), the two wave
i the collision, the region of space in which the probability
density of the two particles is non-zero* looks like 2 spherical shell whose radjus
increases over time (fig. 2-c). Suppose that 2 detector placed in the direction which
akesan an gle @ with the initial velocity of wave packet (1) detects a particle. Itis then
Itain (because momentum is conserved in the collision) that the other particle is
I gaway in the opposite direction. However, itis impossible to know if the particle
ted at D is the one initially numbered (1) or the one numbered (2). Thaus, there



CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

a b c
FIGURE 2

Collision between two identical particles in the center of mass frame : schematic representation
of the probability density of the two particles.

Before the collision (fig. a), the two wave packets are clearly separated and can be labeled,
During the collision (fig. b), the two wave packets overlap. After the collision (fig. c), the Probabilicy
density is non-zero in a region shaped like a spherical shell whose radius increases over time,
Because the two particles are identical, it is impossible, when a particle is detected at D, o
know with which wave packet, (1) or (2), it was associated before the collision,

are two different “paths”™ that could have led the system from the initial state shown
m figure 2-a to the final state found in the measurement. These two paths are repre-
sented schematically in figures 3-a and 3-b. Nothing enables us to determine which
one was actually followed.

A fundamental difficulty then arises in quantum mechanics when using the
postulates of chapter III. In order to calculate the probability of a given measurement
result it is necessary to know the final state vectors associated with this result.
Here, there are two, which correspond respectively to figures 3a and 3b. These
two kets are distinct (and, furthermore, orthogonal). Nevertheless, they are

D D
X @
) / 0
g Q) - @)
2 / )
a b

FIGURE 3

Schematic representation of two types of “paths” which the system could have followed in going
from the initial state to the state found in the measurement. Because the two particles are
identical, we cannot determine the path that was actually followed.
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i A. STATEMENT OF THE PROBLEM

associated with a single physical state since it is impossible to imagine a more
complete measurement that would permit distinguishing between them. Under these
conditions, should one calculate the probability using path 3a, path 3b or both ?
In the latter case, should one take the sum of the probabilities associated with each
path, or the sum of their probability amplitudes {and in this case, with what sign)?
These different possibilities lead, as we shali verify later, to different predictions.

The answer to the preceding questions will be given in §D after we have stated
the symmetrization postulate. Before going on, we shall study another example
which will aid us in understanding the difficulties related to the indistinguishability
of two pafticles.

b. ORIGIN OF THE DIFFICULTIES: EXCHANGE DEGENERACY

In the preceding example, we considered two wave packets which, initialty;
did not overlap, which enabled us to Iabel each of them arbitrarily with a nuimber,
(1) or (2). Ambiguities appeared, however, when we tried to determine the mathe-
matical state (or ket) associated with a given result of a position measurement.
Actually, the same difficulty arises in the choice ‘of the mathematical ket used to
describe the initial physical state. This type of difficulty is related to the concept of
“exchange degeneracy” which we shall introduce in this section. To simplify the
reasoning, we shall first consider a different example, so as to confine ourselves to
a finite-dimensional space. Then, we shall generalize the concept of exchange

degeneracy, showing that it can be generalized to all quantum mechanical systems
containing identical particles.

«.  Exchange degeneracy for a System of two spin 1/2 particles

Let us consider a system composed of two identical spin ! /2 particles,
confining ourselves to the study of its spin degrees of freedom. As in §A-2, we shall
distinguish between the physical state of the system and its mathematical description
(a ket in state space). :

It would seemn natural to suppose that, if we made a complete measurement
of each of the two spins, we would then know the physical state of the total system
perfectly. Here, we shall assume that the component along Oz of one of them is
equal to + /2 and that of the other one, — fi/2 (this is the equivalent for the two
spins of the specification of { r,, Vo }and {ry, v }in §A-2). . '

To describe the system mathematically, we number the particles: .S, and S,
denote the two spin observables, and { l €1, €, > } (where &, and g, can be equal
0 + or —)is the orthonormal basis of the state space formed by the common eigen-
kets of S|, (eigenvalue &,h/2) and §,, {eigenvalue &, h/2).

_ Just as in classical mechanics, two different “mathematical states™ could be
associated with the same physical state. Either one of the two orthogonal kets -

ey = +,6, = — > : (A-5-a)
,81_= — &=+ : . (A"S'b)

, a priori, describe the physical state considered here.

“These two kets span a two-dimensional subspace whose normalized vectors
f the form:;

afE =D+ -y o (A-6)
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CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

with:

lof + 18] = 1 (A7)

By the superposition principle, all mathematical kets (A-6) can represent the same
physical state as (A-5-a) or (A-5-b) (one spin pointing up and the other one pointing
down). This is called “exchange degeneracy”.

Exchange degeneracy creates fundamental difficulties, since application of the
postulates of chapter {II to the various kets (A-6) can lead to physical predictions
which depend on the ket chosen. Let us determine, for example, the probability of
finding the components of the two spins along Ox both equal to + A/2. With this
measurement result is associated a single ket of the state space. According to
formula (A-20) of chapter IV, this ket can be written:

1
V2
1

L R R R R R B T

(e, = +> +leg = —21®@—=[le; = +> +]|eg; = — D]

Si=

Consequently, the desired probability, for the vector {(A-6), is equal to:

i 2

56+ (A9

This probability does depend on the coefficients o« and §. It is not possible, therefore,
to describe the physical state under consideration by the set of kets (A-6) or by any
one of them chosen arbitrarily. The exchange degeneracy must be removed. That is,
we must indicate unambiguously which of the kets (A-6) is to be used.

COMMENT:

In this example, exchange degeneracy appears only in the initial state,
since we chose the same value for the components of the two spins in the final
state. In the general case {for example, if the measurement result corresponds
to two different eigenvalues of S ), exchange degeneracy appears in both the
initial and the final state.

B.  Generalization

The difficulties related to exchange degeneracy arise in the study of all systems
containing an arbitrary number N of identical particles (N > 1}.

Consider, for example, a three-particle system. With each of the three particles,
taken separately, are associated a state space and observables acting in this space.
Thus, we are led to number the particles: &(1), £(2) and &(3) will denote the three
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B. PERMUTATION OPERATORS

one-particle state spaces, and the corresponding observables will be tabeled by the
same indices. The state Space of the three-particle system is the tensor product :

¢ =6(1)® £02) ® &(3) (A-10)

Now, consider an observable B(1), mnitially defined in €(1). We shall assume
that B(1) alone constitutes aCS8.C.0.in &(1) [or that B(1) actually denotes several
observables which form a C.S.C.0.]. The fact that the three particles are identical
implies that the observables B(2) and B(3) exist and that they constitute C.S.C.0.%
in £(2) and £(3) respectively. B(1), B(2) and B(3) have the same spectrum,
{bsn=12 . }- Using the bases which define these three observables in &(1),

#(2) and &£(3), we can construct, by taking the tensor product, an orthonormal basis
of &, which we shall denote by:

{1 :b,-;2:.bj;3:bk);i,j,k= ,2,..} (A-11)
The kets |'1 : b,; 2 - ;53 1 b, > are common eigenvectors of the extensions of B(1),

J
B(2) and B(3) in &, with respective eigenvalues by b; and b,
Since the three particles are identical, we cannot measure B(1} or B(2) or B(3),

]I:b,,,Z:bp;3 b, > |1 b.;2:5b;3 b,>, [1:1;,,;2 b;3:8,),
1105226053 :8,5, [1:8,52:0,.3.:8) 5, |1:6;52:5,:3:5 %
(A-12)

Therefore, q complete measiirement on each of the particles dpes not permit the
determination of q unique ket of the state space of the system.

COMMENT:

" Before stating the additional postulate which enables us to remove the inde-
tnacy related to exchange degeneracy, we shall study certain operators, defined




CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

1. Two-particle systems

a. DEFINITION OF THE PERMUTATION OPERATOR P,

Consider a system composed of two particles with the same spin s. Here it i
not necessary for these two particles to be identical; it is sufficient that their individyg)
state spaces be isomorphic. Therefore, to avoid the problems which arise whep
the two particles are identical, we shall assume that they are not: the numbers {1
and (2) with which they are labeled indicate their natures. For example, (1} wii]
denote a proton and (2), an electron. _

We choose a basis, { | u; > }, in the state space &(1) of particle (1). Since the
two particles have the same spin, €(2) is isomorphic to &(1), and it can be spanned
by the same basis. By taking the tensor product, we construct, in the state space & of
the system, the basis:

{I1iu; 24} (B-1)
Since the order of the vectors 1s of no importance in a tensor product, we have:
[2iup o> =1 w3200 (B-2)

However, note that:
[Uiup2iud> # | iu; 200> 0f Q%) (B-3)

The permutation operator P, is then defined as the linear operator whose
action on the basis vectors is given by:

Pyl liu 2w =2 us i) = |1u;2 0 (B-4)
Its action on any ket of & can easily be obtained by expanding this ket on the
basis (B-1)*. -

i

COMMENT

If we choose the basis formed by the common eigenstates of the position
observable R and the spin component S, (B-4) can be written:

Pyllime; 2 0,8 )={1:r¢;2:r,¢) (B-5)

Anjr ket | ¢ > of the state space & can be represented by a set of (2s + 1)? functions of
six variables:

l¥>=2 jfr A, )| 1ire 20,8 ) (B4 i

with:

Voo r)={line2:0,8 ¢ (-7

* It can easily be shown that the operator P,, so defined does not depend on the { | «; > } bass
chosen.
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8. PERMUTATION OPERATORS

We then have:

P21,'11>=Z d3rd3r'¢£'£,(r,r’)]l:r’,s’;2:r £)

s (B-8)
By changing the names of the dummy variables :
E <3¢
r <> (B-9}
we transform formula (B-8) into:
Puly>=Y fd:“r &ry,. g, NDlire2:v ¢ (B-10)
Consequently, the functions:
Vool t') = (1,652, &Py ) (B-11)

which represent the ket [ > =Py, [¥ > can be obtained from the functions (B-7)

which represent the ket ¢ > by inverting (r, ¢) and ', e):
Y, ) = ¥ . (r, 1)

(B-12)
b. PROPERTIES OF Py
We see directly from definition (B-4) that:
(Py)* =1 (B-13)
The operator P, is its OWR inverse.
It can easily be shown that Py, is Hermitian:
Pl =Py, (B-14)
The matrix elements of Pyinthe {|1:u,;2: u; ) } basis are:
{1 :u,-.;2:uj.lP21’1 :u‘-;2:uj> = {1 :u‘-.;Z:u_,..'l T2 u
5,5, (B-15)

Those of p} 1 are, by definition-

{1 :u,-.;Z:uj,,Pz‘lll:u,.;2:uj>=((l:ui;Z:uj]Pu_[l:u!.,;Z:uj,>)*
——~(<l:u,-;2:uj[l TUp 2w, H)E

- y = 0;;. 6, (B-16)

P

_ 1 1s therefore equal to the corresponding matrix element of Py,
kads to relation (B-14). :

It follows from (B-13) and (B-14) that Py, is also unitary:

E"'-"“':-P;IPzi = PZIP;I =1 (B-”)
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CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

c. SYMMETRIC AND ANTISYMMETRIC KETS.
SYMMETRIZER AND ANTISYMMETRIZER

According to (B-14), the eigenvalues of P,, must be real. Since, according g
{B-13), their squares are equal to 1, these eigenvalues are simply + 1 and — 1. The
eigenvectors of P,, associated with the eigenvalue + | are called symmetric, those
corresponding to the eigenvalue — 1, antisymmetric:

Pyuls>=|ds> = | Yg > symmetric
Pyt > =— ¥4 == |, > antisymmetric (B-18)
Now consider the two operators:
1
S =5(1 + Py (B-19-a)
1
A=3(1—= Py (B-19-b)

These operators are projectors, since (B-13) implies that:

S$?=S (B-20-a)

A* = 4 (B-20-b)
and, in addition, (B-14) enables us to show that:

St BN (B—Zl-a)

At =4 (B-21-b)

S and A are projectors onto orthogonal subspaces, since, according to (B-13):
SA = AS =0 (B-22)
These subspaces are supplementary, since definitions (B-19) yield:
S+A4=1 (B-23)

It | ¥ > is an arbitrary ket of the state space &, S | ¥ > is a symmetric ket and
A} ), an antisymmetric ket, as it is easy to see, using (B-13) again, that:

Py Siy>=S[y>

P21Al1/1>=—A|g[J> (B-24)

For this reason, S and A4 are called, respectively, a symmetrizer and an antisymme-
trizer.

COMMENT:

The same symmetric ket is obtained by applying Sto R,, | > ortoj¥)

itself:

SP ¥ =8| (B-25):

For the antisymmetrizer, we have, similarly:

APy > =— 4|y {B-26) 5
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B. PERMUTATION OPERATORS

d. TRANSFORMATION OF OBSERVABLES BY PERMUTATION

Consider an observable B(1), initially defined in €(1)and then extended into &.

- ccording to It is always possible to construct the {|u;> } basis in &(1) from eigenvectors of B(1)
'd — 1. The (the corresponding eigenvalues will be written b;). Let us now calculate the action of
etric, these the operator P,, B(1)P!, on an arbitrary basis ket of &:
Py BPY |1 2wy 2 Upp =Py B() |1 15200,
=b;Py |1 Tup 2w (B-27)
(B-18)

=bj|1:ui;2:uj>

We would obtain the same result by applying the observable B(2) directly to the basis
ket chosen. Consequently:

(B-19-a)
Py B(1)P;, = B(2) (B-28)
(B-19-b) The same reasoning shows that -
PZlB(Z)PZtI = B(1) (B~29)
(B-20-a) In &, there are also observables, such as B{1) + C(2) or B(1)C(2), which
(B-20-b) mmvolve both indices simultaneously. We obviously have :
Pou[B(1) + CQ)IP}, = B(2) + 1) (B-30)
(B-21-a) imilar] . ) )
: (B-21-b) Similarly, using (B-17), we find -
B-13): szB(I)C(Z)P;.l = P21B(1)P2'1szc(2)‘o;.1
o (B-13): = B)c(1) (B-31)
(B-22) . L .
These results can be generalized to all observables in & which can be expressed in
terms of observables of the type of B(1) and C(2), to be denoted by (1, 2):
(B-23)

P,,0(1,2)P}, = 0(2, 1 B-32)
1

5 etric ket and

! hat 0(2, 1)is the observable obtained from@(1, 2) by exchanging indices | and 2 through-
' that :

-out.
An observable 041, 2) is said to be Ssymmetric if :

(B-24) 052, 1) = 01, 2) (B-33)

- e— . s .
. 0 aniisymin According to (B-32), all symmetric observables satisfy:

- a1, 2) = 041, 2)p,, (B-34)
tha is

-t@s([, 2),P,]=0 (B-35)

k> or t'io']' ¥

-25) : . . .
(B-25) mmetric observables commute with the permutation operator.

(B-26),
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CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

2. Systems containing an arbitrary number of particles

In the state space of a system composed of N particles with the same spin
(temporarily assumed to be of different natures), V! permutation operators can be
defined (one of which is the identity operator). If N is greater than 2, the properties
of these operators are more complex than those of P,,. To have an idea of the changes
involved when N is greater than 2, we shall briefly study the case in which'N =3,

a. DEFINITION OF THE PERMUTATION OPERATORS

Consider, therefore, a system of three particles which are not necessarily
identical but have the same spin. As in § B-1-a, we construct a basis of the state space
of the system by taking a tensor product:

{|1ius2 053 004 (B-36)
"In this case, there exist six permutation operators, which we shall denote by:
P1231 P312'-‘ P23l’ P132’ P213= P32£ (B'?’”

By definition, the operator P, (where n, p, q is an arbitrary permutation of the
numbers 1, 2, 3) is the linear operator whose action on the basis vectors obeys:

Pogllius2ius3iud=|niu;pru;qiu (B-38)
For example:

Poy |1 w2 u; 3> =203 us1 i)
= |1 w2 w30y (B-39)

P, ,, therefore coincides with the identity operator. The action of P, on any ke
of the state space can easily be obtained by expanding this ket on the basis (B-36).

The N! permutation operators associated with a system of N particles with ;

the same spin could be defined analogously.

b. PROPERTIES

o The set of permutation operators constitutes a group
This can easily be shown for the operators {B-37):
(i) P,,, is the identity operator.

(i) The product of two permutation operators is also a permutation operator. We ca
show, for example, that:

P312P132 = Pyy; | (B'w!

To do so, we apply the left-hand side to an arbitrary basis ket:
P312P132|1:u,-;?.:uj;3:uk>=P312]1 cus 3w 2D
=Pyl us2:u:3:4;)

=|3:u;liu; 2 u)

=1{1iu;2:u;53 0w
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B. PERMUTATION OPERATORS

The action of P,,, effectively leads to the same result:
Pogy | 1iu;2 053 0 = [3:ui;2:uj; Iiu
=1 u;2:u;3:u) (B-42)
(iif} Each permutation operator has an inverse, which is also a permutation operator.
Reasoning as in (if), we can easily show that:
Py = Py,s; Py = Py P35y = Py,

Pfalz = Py Pz_xls = P33, Pa_zll = Py, (B-43)

Note that the permutation operators do not commute with each other.
For example:

P132P312 = P213 (3“44)

which, compared to (B-40), shows that the commutator of P35 and Py, is not zero.

B.  Transpositions. Parity of a permutation operator

A transposition is a permutation which simply exchanges the roles of two of
the particles, without touching the others. Of the operators (B-37), the last three
are transposition operators*. Transposition operators are Hermitian, and each
of them is the same as its inverse, so that they are also unitary-[the proofs of these
properties are identical to those for (B-14), (B-13) and (B-17)].

Any permutation operator can be broken down into a product of transposition
operators. For example, the second operator (B-37) can be written:

P:uz = P132P213 = P3'21P132 = P213P321 = P132P213(P132)2 = .. (B'45)

This decomposition is not unique. However, for a given permutation, it can be
shown that the parity of the number of transpositions into which it can be broken
down is always the same : it is called the parity of the permutation. Thus, the first
three operators (B-37) are even, and the last three, odd. For any N, there are
always as many even permutations as odd ones.

Y. Permutation operators are unitary

Permutation operators, which are products of transposition operators, all
of which are unitary, are therefore also unitary. However, they are not necessarily
Hermitian, since transposition operators do not generally commute with each
other. :

Finally, note that the adjoint of a given permutation operator has the same

- -parity as that of the operator, since it is ¢qual Lo the product of the same transposition
_operators, taken in the opposite order:

* Of course, for N = 2, the only permutation possible is transposition.
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c. COMPLETELY SYMMETRIC OR ANTISYMMETRIC KETS.
SYMMETRIZER AND ANTISYMMETRIZER

Since the permutation operators do not commute for ¥ > 2, it is not possible
to construct a basis formed by common eigenvectors of these operators,
Nevertheless, we shall see that there exist certain kets which are simultaneously
eigenvectors of all the permutation operators.

We shall denote by P, an arbitrary permutation operator associated with
a system of N particles with the same spin; o represents an arbitrary permutation
of the first N integers. A ket | yrg > such that:

B s> =|¥s> (B-46)

for any permutation P, is said to be completely symmetric. Similarly, a completely
antisymmetric ket |y, > satisfies, by definition*:

Plvad>=¢e|v4d (B-47)
where:

g, = + 1 if P;is an even permutation

g = — 1 if P, is an odd permutation (B-48)

The set of completely symmetric kets constitutes a vector subspace & of the state
space & ; the set of completely antisymmetric kets, a subspace & .
Now consider the two operators:

1

S =1L P (B-49)
1

A=rZep, (B-50)

where the summations are performed over the N! permutations of the first N
integers, and ¢, is defined by (B-48). We shall show that §' and 4 are the projectors
onto & and &, respectively. For this reason, they are called a symmetrizer and an

antisymmelrizer.
S and 4 are Hermitian operators:
St=38 (B-51)
A' = A (B-52)

The adjoint P! of a given permutation operator is, as we saw above (cf- §B-2-b-y), another
permutation operator, of the same parity (which coincides, furthermore, with P, 1). Taking the
adjoints of the right-hand sides of the definitions of S and A therefore amounts simply to changing
the order of the terms in the summations (since the set of the P, ! is again the permutation group).

* According to the property stated in § B-2-b-B, this definition can also be based solely on the
transposition operators : any transposition operator leaves a completely symmetric ket invariant and
transforms a completely antisymmetric ket into its opposite.
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.'B. PERMUTATION OPERATORS
 Also, if F,, is an arbitrary permutation operator, we have:
PSS = SP, =8 (B-53-a)
ot possible P,A= AP, =, 4 (B-53-b)
. operators. _
- 1itaneously " 'This is due to the fact that PPy is also a permutation operator-
siated with P by = Py (B-54)
: ermutation such that:
(B46) & = &,F, {B-55)
If, for P,_fixed, we choose successively for P, all the permutations of the group, we see that the P,
completely are each identical to one and only one of these- permutations (in, of course, a different order).
Consequently:
(B-47) 1 1
PoS == Z PP, = ﬁ§ P,=§ (B-56-a)
1 1
P.A4= N 2 &P, P, = N S 2 e8Py =¢,4 (B-56-b)
(B-48) - ’
Similatly, we could prove analogous relations in which S and A are multiplied by P, from the
. of the state right.
| From {B-53), we see that:
S =49
(B-49) A2 = 4 (B-57)
(B-50) ; and, moreover:
| , AS =84 =0 (B-58)
" the first N : This is because:
e p[()jeCtOl’S '
“ rrizer and an SZ=—1— PS=—-!—ZS=S
B N! * N!
I A2=—-1— sPA=—-1-—ZezA=A {B-59)
(B-51) N1&ftel S G L e
(B-52) : -
i _3s each summation includes N lerms; furthermore
- b-y), another Casetyipslow _
"\ Taking the 45 == ¥ e P.S = NiSZe=0 (B-60)
x ply to changing

| utation group). ce half the ¢, are equal to + I and half equal to — | (¢f- § B-2-b-p).
' S and A4 are therefore projectors. They project respectively onto & and &,

» according to (B-53), their action on any ket | ¢ > of the state space yields

mpletely symmetric or completely antisymmetric ket -
‘sed solely on the .

et invariant a“d, (B-61-a)
| (B-61-b)
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COMMENTS:

(i) The completely symmetric ket constructed by the action of § on P, |y ),
where P, is an arbitrary permutation, is the same as that obtained from |y
since expressions (B-53) indicate that:

SP 4> =S|¥> (B-62)
As for the corresponding completely antisymmetric kets, they differ at most
by their signs :

AP | Y ) = gAY > (B-63)

(if) For N > 2, the symmetrizer and antisymmetrizer are not projectors onto
supplementary subspaces. For example, when N = 3, it is easy to obtain
[by using the fact that the first three permutations (B-37) are even and the
others odd ] the relation:

1
S+A=§(P123+P231 + Pyp,) # 1 (B-64)
In other words, the state space is not the direct sum of the subspace &4 of
completely symmetric kets and the subspace &, of completely antisymmetric

kets.

d. TRANSFORMATION OF OBSERVABLES BY PERMUTATION

We have indicated (§ B-2-b-B) that any permutation operator of an N-particle
system can be broken down into a product of transposition operators analogous
to the operator P,, studied in § B-1. For these transposition operators, we can
use the arguments of §B-1-d to determine the behavior of the various observables
of the system when they are multiplied from the left by an arbitrary permutation
operator P, and from the right by P].

In particular, the observables O(1, 2, ..., N), which are completely symmetric
under exchange of the indices 1, 2, ..., N, commute with all the transposition
operators, and, therefore, with all the permutation operators:

[041,2,..,N),P,] =0 (B-65)

C. THE SYMMETRIZATION POSTULATE

1. Statement of the postulate

When a system includes several identical particles, only certain kets
of its state space can describe its physical states. Physical kets are, depending
on the nature of the identical particles, either completely symmetric or
completely antisymmetric with respect to permutation of these particles.
Those particles for which the physical kets are symmetric are called bosons,
and those for which they are antisymmetric, fermions.
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C. THE SYMMETRIZATION POSTULATE
—_— T RE

the particles are bosons or fermions.

From the point of view of this postulate, particles existing in nature are
divided into two categories. All currently known particles obey the following
empirical rule*: particles of half-integrat spin {electrons, positrons, protons, neu-

trons, muons, etc.) are fermions, and particles of integral spin (photons,
mesons, etc.) are bosons.

18 necessarily integral in the first case and half-integral in the second one (chap. X, § C-3-c).
They therefore obey the rule just stated. For example, atomic nuclei are known to be
composed of neutrons and protons, which are fermijons (spin 1/2), Consequently, nuclei
whose mass number 4 (the total number of nucleons} is even are bosons, and those whose
mass number is odd are fermions, Thus, the nucleus of the 3He isotope of helium is
a fermion, and that of the *He isotope, a boson.

2. Removal of exchange degeneracy

We shall begin by examining how this NEW postulate removes the exchange
degeneracy and the torresponding difficulties.

The discussion of § A can be summarized mn the following way. Let u> be
a ket which can mathematically describe 3 well-defined physical state of a system
containing N identical particles. For any permutation operator P, P lud can
describe this physical state as well as |4 ). The same is true for any ket belonging
to the subspace &, spanned by fu) and all its permutations P, |y ). Depending

on the ket Jud chosen, the dimension of &, can vary between | and N If this
dimension is greater than 1, several mathematical kets correspond to the same

' ,physical state: there is then an exchange degeneracy.

2. * The “spin-statistics theorem™, proven in qQuantum field theory, makes jt possible to consider
s tule to be a consequence of very general hypotheses. However these hypotheses may not all be




CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

The new postulate which we have introduced considerably restricts the clasg
of mathematical kets able to describe a physical state : these kets must belong
to & for bosons and to &, for fermions. We shall be able to say that the difficulties
related to exchange degemeracy are eliminated if we can show that &, containg
a single ket of & or a single ket of & .

To do so, we shall use the relations S = SP, or A = ¢,AP,, proven in (B-53).
Weobtain :

S|lud>=SP |u) {(C-1-a)
Alud = e AP, |u) (C-1-b)
These relations express the fact that the projections onto & and &, of the various
kets which span &, and, consequently, of all the kets of &, are collinear. The
symmetrization postulate thus unambiguously indicates (to within a constant

factor) the ket of &, which must be associated with the physical state considered :
S| u) for bosons and A4 | u ) for fermions. This ket is called the physical ket.

COMMENT:

1t is possible for all the kets of &, to have a zero projection onto & , {or &),
In this case, the symmetrization postulate excludes the corresponding physical
state. Later (§§3-b and 3-c), we shall see examples of such a situation when
dealing with fermions.

3. Construction of physical kets

a. THE CONSTRUCTION RULE

The discussion of the preceding section leads directly to the following

rule for the construction of the unique ket {the physical ket) corresponding to a _
given physical state of a system of N identical particles: ; |

(/) Number the particles arbitrarily, and construct the ket | u > corresponding k
to the physical state considered and to the numbers given to the particles. 5
(ii) Apply S or A to |u ), depending on whether the identical particles are
bosons or fermions.
(¢ii) Normalize the ket so obtained.
. : S . C
We shall describe some simple examples which illustrate this rule. s
&
b. APPLICATION TO SYSTEMS OF TWO IDENTICAL PARTICLES }‘
£
Consider a system composed of two identical particles. Suppose that one ¢ pl

them is known to be in the individual state characterized by the normal%zc
ket | ¢ >, and the other one, in the individual state characterized by the normalized
ket | x >-
First of all, we shall envisage the case in which the two kets, | @ » and | x? -
are distinct. The preceding rule is applied in the following way: “he

1388



the class
't belong
fficulties
contains

n (B-53).

(C-1-a)
(C-1-b)

2 various
car. The
constant

1sidered :

' ket.

> lor &5).
-3 physical
- ion when

- following
ding to a

esponding

“articles are

hat one of
normalized
nortnaliZCd

>and |17

C. THE SYMMETRIZATION POSTULATE

() We label with the number 1, for example, the particle in the state [,
and with the number 2, the one in the state | ¥ >. This gives:

lud>=]1:0;2:9> (C-2)
(i) We symmetrize | u ) if the particles are bosons:

1
Slud=501:0;2:1> +]1:1:2: 9] (C-3-a)

We antisymmetrize | u } if the particles are fermions:
1 .
Alu>=§[|1:¢;21x>-ll:x;2:rp>] (C-3-b)

(iii) The kets (C-3-a) and (C-3-b), in general, are not normalized. If we
assume | @ > and | y ) to be orthogonal, the normalization constant is very simple
to calculate. All we have to do to normalize S [udord|udis replace the factor {/2

appearing in formulas (C-3)by 1 /'\/5. The normalized physical ket, in this case, can
therefore be written:

i
lfp;x>=$[l1:¢;2:x>+elltx;2:fp>] (C-4)
with ¢ = + 1 for bosons and — | for fermions.

We shall now assume that the two individyal states, | @ > and |y ), are
identical :

lo>=]x> (C-5)
(C-2} then becomes:
Iu)=[1:go;2:qo) (C-6)

| u ) is already symmetric. If the two particles are bosons, (C-6) is then the physical
ket associated with the state in which the two bosons are in the same individual
state [ @ »>. If, on the other hand, the two particles are fermions, we see that:

A|u)=—;—[]1:qo;2:qo>—ll:(p;Z:\(p)]:O (C-7)

Consequently, there exists no ket of &, able to describe the physical state in which

‘Iwo fermions are in the same individual state | ¢ >. Such a physical state is therefore
~excluded by the symmetrization postulate. We have thus established, for a special
~fase, a fundamental result known as “Pauli’s exclusion principle” : two identical

lermions cannot be in the same individual state. This result has some very important
sical consequences which we shall discuss in § D-1.

GENERALIZATION TO AN ARBITRARY NUMBEH OF PARTICLES

These ideas can be generalized to an arbitrary number N of particles. To see
W this can be done, we shall first treat the case N = 3. :
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CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

Consider a physical state of the system defined by specifying the three
individual normalized states | ¢ >, | x > and | w >. The state | u ) which enters into
the rule of § a can be chosen in the form:

lud=|1:9;2:2:3:0) (C-8)

We shall discuss the cases of bosons and fermions separately.

ot. The case of bosons

The application of S to | u ) gives:
1
Sluy =5, L Pl ud

=%[|1:qo;2:x;3:m> Hlrw:2:9;3:x) Hl1ixi2:iw33:0)
+ilie;2 ;30> 12053 0>+ [ 11w 2: 1353 :0)]
(c9)
It then suffices to normalize the ket (C-9).

First of all, let us assume that the three kets | ¢ ), | ¥ > and | @ > are orthogonal.
The six kets appearing on the right-hand side of (C-9) are then also orthogonal.

To normalize (C-9), all we must do isteplace the factor 1/6 by 1/V6.

If the two states | ¢ » and | y > coincide, while remaining orthogonal to | w ),
only three distinct kets now appear on the right-hand side of (C-9). It can easily
be shown that the normalized physical ket can then be written: :

i
|<p;<p~;w>=z[|1:¢;2:fp;3:w>
+1:@;2:0;3:90> +|1:w:2:9;3:905] (C-10)
Finally, if the three states | ¢ >, | x >, | ¢ > are the same, the ket:
[ud=|1:0;2:0;3:0>
is already symmetric and normalized.

B.  The case of fermions

The application of 4 to | u ), gives:

1 '
A]u)z—j—!-ZsmPa|1:qo;2:x;3:w> (C-12

The signs of the various terms of the sum (C-12) are determined by the same ru
as those of a 3 » 3 determinant. This is why it is convenient to write Alu
in the form of a Slater determinant :

Il:(p) [1:g> |1:a)>
A|u>=—3——!12:(p> [2:4> |2:@)
[3:0> [3:2)> [3:w)
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C. THE SYMMETRIZATION POSTULATE
three A [u ) is zeto if two of the individual states | ¢ 3, [x>or|w> colncide, since
'Is into the determinant (C-13) then has two identical columns. We obtain Pauli’s exclusion
: principle, already mentioned in §C-3-b : the Same quantum mechanical State cannot
-be simultaneously occupied by several identical fermions.
(C-8) Finally, note that if the three states [ 3, [y, lo> are orthogonal, the
six kets appearing on the right-hand side of (C-12) are orthogonal. All we must then
do to normalize 4 [u> is replace the factor 1/3! appearing in (C-12) or (C-13)
by 1A/ 3!

If, now, the system being considered contains more than three identical
particles, the situation actually remains similar to the one just described. It can be
shown that, for N identical bosons, it is always possible to construct the physical
state S |u > from arbitrary individual states [©> |x>, ... On the other hand, for
fermions, the physical ket 4 [#) can be written in the form of an N x N Slater

3:9) determinant ; this excludes the case in which two individual States coincide (the
P ket A [u ) is then zero ). This shows, and we shall return to this in detail in §D, how
S )] different the consequences of the new postulate can be for fermion and boson
tems.
(C-9) SYs
" gonal d. CONSTRUCTION OF A BASIS IN THE PHYSICAL STATE space
o .
igonal. Consider a system of N identical particles. Starting with a basis, {|u, > ’s
. in the state space of a single particle, we can construct the basijs:
e, {]I:u_i;2:uj;...;N:up>}
- easily ‘
| in the tensor product space &. However, since the physical state space of the system
g is not &, but, rather, one of the subspaces, &sor & ,, the problem arises of how to
- determine a basis in this physical state Space.
: 10 By application of § (or 4) to the various kets of the basis:

{11 :ui;Z:uj;...;N:up)}

We can obtain a set of vectors spanning & (or &, ). Let | © > be an arbitrary ket
of &5, for example (the case in which o> belongs to &, can be treated in the same
way). | ¢ >, which belongs to &, can be expanded in the form-

]go):_z a; . p[l:ui;2:uj;...N:up> (C-14)

(C-11)

ince | ¢ 3, by hypothesis, belongs to &, we have § lo> = @), and we simply
-apply the Operator S to both sides of (C-14) to show that | @ > can be expressed
1 the form of 4 linear combination of the various kets § [l w2 N tu, >

_ However, it must be noted that the various kets S| u;2: i3 N:u Sare
ependent. Let ys permute the roles of the varioys particles in one of the
Uis2iuy; N u, > of the initial ‘basis (before Symmetrization). On this
“application of S or 4 leads, according to (B-62) and (B-63), to the same

(en

i [ ﬂllc

we are led to introduce the concept of an occupation numper - by
for the ket Il :u;2: “j; -3 Nt u, >, the occupation number n, of the
al state | u, > is equal to the number of times that the state | 4, > appears in the
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CHAPTER XIV SYSTEMS OF {IDENTICAL PARTICLES o
sequence { | u; ), | ;> ... | u, > }, that is, the number of particles in the state | i, )
. ) app
we have, obviously, ) n, = N }. Two different kets | 1 1132 125 ... Nt uy ) for W0
which the occupation numbers are equal can be obtained from each other by the l(;c;t
action of a permutation operator. Consequently, after the action of the symmetrizer § nevé
(or the antisymmetrizer A), they give the same physical state, which we shalil denote 2, |
b}’ lnl’ nza--'s kot >- deﬁr
|n,, nyy oy 2 D : ]
=cS|liu; 2 uy;ong tugin, + 1 tuys om0y iy '
AN v J\ v r s
n, particles n, particles (C-15) app!
in the state | u, > in the state | u, > that
proc
For fermions, S would be replaced by 4 in (C-15) (¢ is a factor which permits the shall
normalization of the state obtained in this way*). We shall not study the states with
] Ay, Mgy -r Ay, ... » 0 detail here; we shall confine ourselves to giving some of their form
important propertics:
a.

(i) The scalar product of two kets | n,, n,, ..., 1, ... Y and | ny, ny, a0
is different from zero only if all the occupation numbers are equal (n, = n; for o
all k).

By using (C-15) and definitions (B-49}and (B-50) of S and A, we can obtain the expansion ket I
of the two kets under consideration on the orthonormal basis, { | 1 1u;;2 105 .. N 2w, ) |, must
It is then easy to see that, if the occupation numbers are not all equal, these two kets cannot on w
simultaneocusly have non-zero components on the same basis vector. chapi

with
. . . . 1 meas

(ii) If the particles under study are bosons, the kets | n,, n,, ..., i, ... ), inwhich in g

the various occupation numbers n, are arbitrary { with, of course Y n, = N), { terms
) o k 1 discu:
form an orthonormal basis of the physical state space.

Let us show that, for bosons, the kets |n1, Ry, ooy y, ... » defined by (C-15) are never .- Exami
zero. To do so, we replace S by its definition (B-49). There then appear, on the right-hand side et l
of (C-15), various orthogonal kets | [ 1u;;2 tu;; .3 N tu, ), all with positive coefficients. measy
| ny, Ay, ..., 1y, ... > cannot, therefore, be zero. meas

The | ny, n,, ..., #y, ... > form a basis in & since these kets span &', are all non-zero, and obtair
are orthogonal to each other.

(iii} If the particles under study are fermions, a basis of the physical stat¢ '

space &, is obtained by choosing the set of kets | n,, n,. ..., i, ... > in which all the SySteﬁ
- obsery

1

occupation numbers are equal either to I or to 0 { again with Z n, = N).
k

ina th

* A simple calculation yields : ¢ = \/N‘/n tn,!.. for bosons and \/Nf for fermions.
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C._THE SYMMETRIZATION POSTULATE
The preceding proof is not applicable to fermiong because of the minus signs which
itate ] U ) appear before the odd permutations in definition (B-SO) of 4. Furthermore, We saw in §c that
tu, ) for two identical fermjong €annot occupy the same individual quantum state : if any one of the
occupation numbers is greater than [, the vector defined by (C-15)} is zero. On the other hand,
1er by the it is never zero if all the occupation numbers are equal to one or zero, since two particles are then
metrizer § never in the same individyaj quantum state, so that the kets I UG 2iug LGN 4, > and
all denote Poll:iu;2: Ui s Niu, > are always distinct and orthogonal. Relation (C-15) therefore
defines a non-zero physical ket in this case. The rest of the proof is the same as for bosons
4. Application of the other postulates
? It remains for us to show how the general postulates of chapter I can be
{C-15) applied in light of the Symmetrization postulate introduced in § C-1, and to verify
that no contradictions arise. More precisely, we shall see how measurement
processes can be described with kets belonging only to ejther Es or €,, and we
ermits the shall show that the time evolution brocess does not take the ket | () > associa.ted
: the states with the state of the System out of this subspace. Thus, all the quantum mechanica]
* ne of their formalism can be applied inside either &5 or &,
; & MEASUREMENT POSTULATES
=nf1:;fo>r «.  Probability of Sinding the System in a given physical state
% _
Consider a measurement performed on g system of identica] particles. The
. ket |(r) > describing the quantum state of the System before the measurement
€ eXpansion . . .
Ntu ) must, according to the Symmetrization postulate, bf:long to&sorto & 1 depending
kets canmol on whether the system jg formed of bosons or fermions. To apply the postulates of
5 chapter I1I concerning measurements, we must take the scalar product of [ ¥(e) >
with the ket [u) Corresponding to the physical state of the system after the
] | Measurement. This ket [u> is to be constructed by applying the rule given
>, in which i in §C-3-a. The probability amplitude ¢ 4 | ¥(2) > can therefore be expressed in
n, = N), t  terms of two vectors, both belonging either to &g or to & 4- In §D-2, we shall
=} discuss a certain number of €xamples of such calculations
If the measurement envisaged js g “complete” measurement (yielding, for
5y are never 1 Spin components S, for all the particles), the physical
N and side 0 the other hand, if the
: cocfficients. ment of the spins only, or a
rthogonal physical kets are
. m-zero, and en be summed.

Physical observables : in variance of &5 and & 4

) em-of' ident; ivi icit expression of the corresponding

~ Position of the center of mass R, total momentum P and tota] angular

Cntum [ -
©ans.
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R, = %(RI +R, +Rj) (C-19 i‘
P =P, +P, +P, (C-17 "
L =L, +L, +L, {C-1g) et
— Electrostatic repulsion energy: . 0
2 l | |

v= 4150 (|R1 — Ry * R, — R * IRy — Rll) (G (t)
— Total spin:

S=8,+85,+8S, (C-20)

etc.

It 1s clear from these expressions that the observables associated with the
physical quantities considered involve the various particles symmetrically. This
important property follows directly from the fact that the particles are identical, (i)
In (C-16), for example, R, R, and R; have the same coefficient, since the three
particles have the same mass. It is the equality of the charges which is at the basis
of the symmetrical form of (C-19). In general, since no physical properties are
modified when the roles of the N identical particles are permuted, these N particles
must play a symmetrical role* in any actually measurable observable. Mathema-
tically, the corresponding observable G, which we shall call a physical observable,
must be invariant under all permutations of the N identical particles. It must
therefore commute with all the permutation operators P, of the N particles
(¢f. § B-2-d):

[G.P]=0 forall P, (C-21)
For a system of two identical particles, for example, the observable R, — R,
(the vector difference of the positions of the two particles), which is not invariant
under the effect of the permutation P,, (R, — R, changes signs) is not a physical
observable; indeed, a measurement of R, — R, assumes that particle (I) canbe ] .
distinguished from particle (2). On the other hand, we can measure the distance

between the two particles, that is, v (R, — R,)? which is symmetrical.

. ob:
Relation (C-21) implies that & and &, are both invariant under the action - of
of a physical observable G. Let us show that, if | ¢ > belongs to &,, G | ¢ > also e

belongs to &, (the same proof also applies, of course, to &). The fact that | ¢ )"
belongs to &, means that:

Pl =¢l¥> (G2 -
Now let us calculate P,G |y >. According to (C-21) and (C-22), we have: bec
PG|y> =GP ly)=¢eGly> (C-B ob

. . . . m
* Note that this reasoning is valid for fermions as well as for bosons. i
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D. DBIscussion

Since the permutation P is arbitrary, (C-23) €Xpresses the fact that G I s
completely antisymmetric and therefore belongs to & 4

All operations normally performed on an observable — ip particular, the
determination of eigenvalues and eigenvectors — cap therefore be applied to G
entirely within one of the subspaces, sor &,. Only the eigenkets of G belonging
to the physical subspace, and the corresponding eigenvalues, are retained.

COMMENTS:

(/)  All the eigenvalues of G which exist in the total space & are not necessarily
found if we restricy ourselves to the subspace & (or €4)- The effect of the
Symmetrization postulate on the spectrum of a Symmetric observable G may
therefore be to abolish certain eigenvalues. On the other hand, it adds

(and the corresponding observables for the ¥ and z coordinates). However, this point
of view is rather formal. Rather thap trying to write the expressions for the observables
n all cases, it ig sitapler to follow the method used jn § o, in which we confined ourselves
to using the physical eigenkets of the measurement.

b. TIME-EVOLUTION POSTULATES

The Hamiltonjan of a system of identical particles must be a physical
observable, We shall write, for example, the Hamiltonian describing the motion

of the two electrons of the helium atom about the nucleus, assumed to be
‘Motionlesg*-

| P2 2027 g2 e’
HL2) =51 p "2 260 2% 2 y
(t.2) I, Im, TR TR R, =R, (€-24)

first two terms represent the kinetic energy of the system ; they are symmetrical
Use the two masses are equal. The next two terms are due to the attraction
“nucleys (whose charge is twice that of the proton). The electrons are
usly equally affected by this attraction. Finally, the last term describes

‘Here, we shaj cousider only the most important terms of this Hamiltonian. See comple-
v for a more detajled study of the helium atom,
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CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

the mutua! interaction of the electrons. It is also symmetrical, since neither of
the two electrons is in a privileged position. It is clear that this argument can be
generalized to any system of identical particles. Consequently, all the permutation
operators commute with the Hamiltonian of the system:

[H.p]=0 (C-25)

Under these conditions, if the ket | y(ty) > describing the state of the sysiem
at a given time ¢, is a physical ket, the same must be true of the ket | () > oblained
from | ¥(z,) > by solving the Schrodinger equation. According to this equation:

e + > = (1455 1) w0 (2

Now, applying P, and using relation (C-25):
- dt |
P (e +d0)> = (1 + H)Pa 0> )

If | y(t) S is an eigenvector of P, | y(¢ + df) ) is also an eigenvector of P, with

the same eigenvalue. Since | y(z,) >, by hypothesis, is a completely symmetric or-

completely antisymmetric ket, this property is conserved over time.

The symmetrization postulate is therefore also compatible with the postulate
which gives the time evolution of physical systems : the Schrodinger equation does
not remove the ket | y(t) > from &5 or £ ,.

D. DISCUSSION

In this final section. we shall examine the consequences of the symmetn-
zation postulate on the physical properties of systems of identical particles. First
of all, we shall indicate the fundamental differences introduced by Pauli’s exclusion
principle between systems of identical fermions and systems of identical bosons.

Then, we shall discuss the implications of the symmetrization postulate concerning

the calculation of the probabilities associated with the various physical processes.

1. Differences between bosons and fermions.
Pauli's exclusion principle

In the statement of the symmetrization postulate, the difference between.
bosons and fermions may appear insignificant. Actually, this simple sign differen
in the symmetry of the physical ket has extremely important consequences
As we saw in §C-3 the symmetrization postulate does not restrict the individu
states accessible to a system of identical bosons. On the other hand, it requir
fermions to obey Pauli’s exclusion principle : two identical fermions cannot 0ccup
the same quantum mechanical state.

The exclusion principle was formulated initially in order to explain the
properties of many-electron atoms (§D-1-a below and complement Ay ) iy o2
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e D. DISCUSSION
neither of now be seen to be more tha

b n a principle applicable only to electrons: it is a
- ent can be consequence of the Symmetrization postulate, valid for a| Systems of identical

ermutation fermions. Predictions based on this principle, which are often spectacular, have
always been confirmed ¢Xperimentally, We shall give some examples of them
(C-25)
‘ the system a. GROUND STATE OF A SYSTEM oF INDEPENDENT IDENTICAL PARTICLES
)ob.tained The Hamiltonian of 3 system of identical particles (bosons or fermions) is
. quation: always symmetrical with Tespect to permutations of these particles (§ C-4). Consider
such a system in which the various particles are independent, that is, do not
(C-26) interact with each other (at least in a first approximation). The corresponding
Hamiltonian is then a sum of one-particle operators of the form:
H(1,2, .., N) = A1) + A(2) + ... + h(N) (D-1)
(C-27) h(1) is a function only of the observables associated with the particle numbered (I);
__g the fact that the particles are identical [which Implies a symmetrical Hamiltonjan
£ P with H(L, 2, .., N)] requires this function 4 to be the same in the N terms of expres-
(O £y W1 sion (D-1). In order to determine the eigenstates and eigenvalues of the total
 mmetric or Hamilionian H(1, 2, .| N) we simply calculate those of the individual

e postulate Hamiltonian 4(j) in the state space €(j) of one of the particles:

 1ation does W len> =eo,>: g, 5ee() (D-2)

For the sake of simplicity, we shall assume that the spectrum of h(j) is discrete
and non-degenerate. - '

If we are considering a system of- identical bosons, the physical eigenvectors
of the Hamiltonian H(L, 2, .., N) can be obtained by symmetrizing the tensor

symmetri- | Products of & arbitrary individual states | ¢, >:
| s |
Sovion | B = e SR 2i0 g s D

+ cal bosons. .
© concerning
| TOCesses.

where the cotresponding energy is the sum of the N individial energies:

El’ll,nz,--.,ﬂN = efll + eﬂz + e + en'N': (D-4)

:[_it can easily be shown that each of the kets appearing on the right-hand side
of(D-3)is an eigenket of H with the eigenvalue (DD-4); this is also true of their sum].
_fﬁ_ln particular, if €, is the smallest eigenvalue of h(j), and o, is the associated

A tweel tigenstate, the ground state of the system is obtained when the N identical bosons
ce be ,. i 3 !
!y difference Are all in the state @, ). The energy of this round state is therefore:
+ 1 diff ¥ 1 g
1sequers® Ein,n =N € (D-5)
it requir nd its state vector js:
not ocCy] -
I(P?}I ..... 1>=jl3¢1;2:¢’1;---;N3¢’1> {D-6)
‘XP;a‘I‘; th - Now, suppose that the N identical particles considered are fermions. It is no
xiv) Onger

Possible for these N particles all to be in the individual state | @, >. To obtain
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CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES
the ground state of the system, Pauli’s exclusion principle must be taken intg deter!
account. If the individual energies ¢, are arranged in increasing order: and, i
g < €< .. <, <eg < e, < .., (D-?)
ticles
the ground state of the system of N identical fermions has an energy of: actual
state
Eis..n=¢ +e + .. +ey (D-3) distim
. - . . . ] partic
and it 1s described by the normalized physical ket:
[1:0,> Jlig@yd> |1y Lnt‘t)hi'
1 12:(91> 123(P2>---|2:(PN> by-
|08 > == | (g | e
B \/Eﬂ symumn
’ same 1
IN(P1> IN(pz>]N(PN> CH.“Yd
numbe
The highest individual energy ¢, found in the ground state is called the Ferm fermio
energy of the system. ~ proper
Pauli’s excluston principle thus plays a role of primary importance in all statisti
domains of physics in which many-electron systems are involved, such as atomic T
and molecular physics (¢f. complements Ay, and By,y) and solid state physics identic:
(¢f. complement Cy ), and in all those in which many-proton and many-neutron at low
systems are involved, such as nuclear physics*. individ:
condens
COMMENT: principi
fuidity
In most cases, the individual energies e, are actually degenerate. Each {¢f. con
of them can then enter into a sum such as {D-8) a number of times equal
to its degree of degeneracy.
2. TI
ol
b. QUANTUM STATISTICS
in
The object of statistical mechanics is to study systems composed of a very large are expr.
number of particles (in numerous cases, the mutual interactions between these or matri
~ particles are weak enough to be neglected in a first approximation). Since we do no Or antisy
know the microscopic state of the system exactly, we content ourselves wit systemns
describing it globally by its macroscopic properties (pressure, temperature see how |
density, etc.). A particular macroscopic state corresponds to a whole set 0 identical
microscopic states. We then use probabilities : the statistical weight of a macroscopt . we shall
state is proportional to the number of distinct microscopic states which correspond
to it, and the system, at thermodynamic equilibrium, is in its most probab[
macroscopic state {with any constraints that may be imposed taken into account} a  INT
To study the macroscopic properties of the system, it is therefore essential 10 . p
re
the
* The ket representing the state of a nucleus must be antisymmetric both with respect 10 lh‘ Cor
set of protons and with respect to the set of neutrons. ‘ the indiv
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D. DISCUSSION

determine how many different microscopic states possess certain characteristics
and, in particular, a given energy.

In classical statistical mechanics {Maxwell-Boltzmann statistics ), the N par-
ticles of the system are treated as if they were of different natures, even if they are
actually identical. Such a microscopic state is defined by specifying the individual
state of each of the N particles. Two microscopic states are considered to be
distinct when these N individual States are the same but the permutation of the
particles is different.

In quantum statistical mechanics, the symmetrization postulate must be taken
into account. A microscopic state of a system of identical particles is characterized
by the enumeration of the N individual states which form it, the order of these states
being of no importance since their tensor product must be symmetrized or anti-
symmetrized. The numbering of the microscopic states therefore does not lead to the
same result as in classical statistical mechanics. In addition, Pauli’s principle radi-
cally differentiates systems of identica] bosons and systems of identical fermions: the
number of particles occupying a given individual state cannot exceed one for
fermions, while it can take on any value for bosons (cf. § C-3). Different statistical
properties result : bosons obey Bose-Einstein statistics and fermions, Fermi-Dirgc
statistics. This is the origin of the terms © bosons” and “fermions”.

The physical properties of systems of identical fermions and systems of
identical bosons are very different. These differences can be observed, for example,
at low temperatures. The particles then tend to accumulate in the lowest-energy
individual states, as is possible for identical bosons (this phenomenon is called Bose
condensation), while identical fermions are subject to the restrictions of Pauli’s
principle. Bose condensation is at the origin of the remarkable properties (super-
fluidity) of the *He isotope of helium, while the *He isotope, which is a fermion
(¢f. comment of § C-1 ) does not possess the same properties.

2. The consequences of particle indistinguishability
on the calculation of physical predictions

In quantum mechanics, all the predictions concerning the properties of a system
are expressed in terms of probability amplitudes (scalar products of two state vectors)

Or matrix elements of an operator. It is then not surprising that the symmetrization
Or antisymmetrization of state vectors causes special interference effects to appear in
Systems of identical particles. First, we shail specify these effects, and then we shall

$ee how they disappear under certain conditions {the particles of the system, although

1dentical, then behave as if they were of different natures ). To simplify the discussion,
‘e shall confine ourselves to systems containing only two identical particles.

INTERFERENCES BETWEEN DIRECT AND EXCHANGE PROCESSES

Predictions COncerning a measurement on a system of identical particles -
the direct term and the exchange term

. Consider a system of two identical particles, one of which is known to be in
-Individual state | > and the other, in the individual state |y >. We shall
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CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

assume | ¢ ) and | x ) to be orthogonal, so that the state of the system is describeg
by the normalized physical ket [¢f. formula (C-4}]:

1
l¢;x>=:E[1+fPuN1:¢ﬂ:x> (D-19)
where:
e= +1 if the particles are bosons
= — 1 if the particles are fermions (D-11y

With the system in this state, suppose that we want to measure on each of the
two particles the same physical quantity B with which the observables B(1)
and B(2) are associated. For the sake of simplicity, we shall assume that the
spectrum of B is entirely discrete and non-degenerate :

Blu;> =b;|u; (D-12)

What is the probability of finding certain given values in this measurement (b, for
one of the particles and b,. for the other one)? We shall begin by assuming b, and b_.
to be different, so that the corresponding eigenvectors | u, > and | u,. > are orthogonai.
Under these conditions, the normalized physical ket defined by the result of this
measurement can be written:

L

un;un’> =\/E

which gives the probability amplitude associated with this result:

[l +eP, Q] liu;2:u, > (D-13)

1
(un;un,|qo;x>=§<1:un;2:u".|(1 +ePi )1 +ePyy)il ;2

(D-14
Using properties (B-13) and (B-14) of the operator P,,, we can write:
%(r-+-epgix1 +eP,) =1 +eP,, (D-19)
(D-14) then becomes:
Sttt |@s2> =< Vi 2 iu, |(U+ 6Pyl i@;2:10 (Dlﬁ)

Letting 1 + &P,, act on the bra, we obtain:

Cugsup losad =<1 iu; 200, ]1:@;2:0)
+£<l:un.;2:u,,|l|:go;2:x>
={liy|l:i@d><2u, [2:2>
o4+ edliuflio> 20, |21
= (| 0>t > + ey | @) |y (D)
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D. DISCUSSION

‘< described The numbering has disappeared from the probability amplitude, which is now
ns expressed directly in terms of the scalar products (u, | ¢ > ... ¢ u, | ¥ >. Also, the
probability amplitude appears either as a sum (for bosons) or a difference (for

(D-10) fermions) of two terms, with which we can associate the diagrams of figures 4-a and
) 4-b.
Cu, | « — o> {u,] lo>
(D-11)
" on each of the uy | — x> {u, | lx>
servables B(l)
sume that the a b
FIGURE 4
(D-12)

; Schematic representation of the direct term and the exchange term associated with a measurement
i performed on a system of two identical particles. Before the measurement, one of the particles is

@ rement (b,I for known to be in the state [ ¢ > and the other one, in the state |y >. The measurement result
" ming b, and b, obtained corresponds to a situation in which one particle is in the state | 4, > and the other one, in the
: \re ortl;ogonal state Ju,, >. Two probability amplitudes are associated with such a measurement; they are

represented schematically by figures a and b. These amplitudes interfere with a + sign for

2 result of this bosons and with a — sign for fermions,

-1
(-1 We can interpret result (D-17) in the following way. The two kets ] Q>
and | x > associated with the initial state can be connected to the two bras { u, |and
{ u,.| associated with the final state by two different “paths”, represented schema-
tically by figures 4-a and 4-b. With each of these paths is associated a probability
amplitude, (u, |9 > Cu, |x> or {u, o> <u, x>, and these mwo amplitudes
B 2.y (i) " interfere with a + sign for bosons and a — sign for fermions. Thus, we obtain the

answer to the question posed in § A-3-a above: the desired probability 2(b,; b,.)
is equal to the square of the modulus of (D-17):

W(bn;b,.é)=-I<u,,|<o><u,,.]x>+s<u,.r|<o><u,.lx>|2 (D-18)

One of the two terms on the right-hand side of {D-17), the one which corresponds,

forexample, to path 4-a, is often called the direct term. The other term is called the
exchange term.

ite:

HEGE | . COMMENT

Let us examine what happens if the two particles, instead of being iden-
. tical, are of different natures. We shall then choose as the initial state of the
8ystem the tensor product ket:

lw>=|1:<pi2:x> (D-19)

‘Now, consider a measurement instrument which, although the two particles,
1) and (2), are not identical, is not able to distinguish between them. If it
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CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

yields the results b, and b,,., we do not know if b, is associated with particle (1)
or particle (2) (for example, for a system composed of a muon u~ and ap
electron e, the measurement device may be sensitive only to the charge of the
particles, giving no information about their masses) The two eigenstates
|1 :u,;2:u,>and |1 :u,;2 :u,> (which, in this case, represent differen —_
physical states) then correspond to the same measurement result. Since they
are orthogonal, we must add the corresponding probabilities, which gives:

Pbyibyy =K1 w200, 10,270
+|<l:u".;2:ur"|l:(,0;2:;()[2
= Ko |00 K |10 + Kuw {0 K Jx0F (D20

Comparison of (D-18) with (D-20} clearly reveals the significant difference
in the physical predictions of quantum mechanics depending on whether the
particles under consideration are identical or not.

Now consider the case in which the two states | u, » and |, > are the same,
When the two particles are fermions, the corresponding physical state is excluded
by Pault’s principle, and the probability 2(b,; b,) is zero. On the other hand, if the
two particles are bosons, we have:

b, > = |1ty 2 i, D {D-21)

m?

and, consequently:
l
Cugsul@sn =$<l:un;2:un|(l + Py g2y
= V2Cu, o> Cuyl 1) (D-22)

which gives:

Plb,; b)) =2 u, Lo {u, |1 (D-23)

COMMENTS .

(i}  Let us compare this result with the one which would be obtained in the case, |
already considered above, in which the two particles are different. We must 2 co
: nc
then replate | @; x Dby |1 :@;2 :x >and |u,;u, >by |1 10,52 1 u, ), whi W0 id.
gives the value for the probability amplitude: here v
Ctg @) i f 2> (D-24 when -
: ' 3 HOWC\
and, consequently: and th
Pbys ba) = Kua | o> Cup | 2O (D-25
*
be
(i)  For a system containing N identical particles, there are, in general, N! distinct exchang H;::?;,
terms which add (or subtract) in the probability amplitude. For example. consider Spin-dep,
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Woidentica) particles in their center of mass frame*
fete we must take into account the evolution of the
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_D. Discussion

system of three identical particles in the individual states [ >, [ y > and @ >. and the
probability of finding, in Mmeasurement, the results b, b, and b,.. The possibie * paths”
are then shown in figure 5. There are six such paths (all different if the three eigenvalues,

Cyla—— 10> Cu,f [o) Cu, | o>
Ctty [ e— s [ 1> {u, | (x> <uf x>
<“n"’<———>,w> I<u,,~! ICD) <un"’ lw>
+ + +
Y PN Cu, | le>  <u, lo)
Cuiy | x> <u,| x> <u (x>
<uu"‘ IC!J) <un", l(t)) <un'l‘__‘_>lw>
& £ £
FIGURE 5

Schematic representation of the six probabili

identical particles, Before the measurement, one particle is known to be in the state | ¢ 5, another,
in the state { x>, and the last one, in the state | @ >. The result obtained Corresponds to a situation
in which one particle is in the sfate lu, >, another, in the state [ 4, >, and the last one, in the

state |u .5, The six amplitudes interfere with a sige which is shown beneath each one
(e = +1 for bosons, — | for fermions).

b,, b,. and b, are diﬁ‘erent).'Some always contribute to the

probability amplitude with
4 + sign, others with ap & sign (+ for

bosons and — for fermions),

Example : elastic collision of two identical particles

To understand the physical meaning of the exchange term, let ys €xamine

that of the elastic collision of

- We ignore the spin of the two particles.
> the calculations of this section remain valid in the case in which the interactions are not
*ePendent ang the two particles are initially in the same spin state,
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CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

In the initial state of the system {fig. 6-a), the two particles are moving toward
each other with opposite momenta. We choose the Oz axis along the direction of
these momenta, and we denote their modulus by p. One of the particles thus POssesses
the momentum pe,, and the other one, the momentum — pe, (where e, is the ypj;

vector of the Oz axis). We shall write the physical ket | ¥, > representing this initia]
state in the form:

14> =%(1 +oPy) | 1 pe,;2: — pe.d (D-29

| ¥; > describes the state of the system at ¢, before the collision.

n
,/
//

//

rd
— P - - ,/,

> 0 <+ z ,//b z
I//
a / b
Initial state _ e Final state

’/

FIGURE 6

Collision between two identical particles in the center of mass frame : the momenta of the two
particles in the initial state (fig. a) and in the final state found in the measurement (fig. b} are
represented. For the sake of simplicity, we ignore the spin of the particles,

The Schrédinger equation which governs the time evolution of the system is
linear. Consequently, there exists a linear operator U(¢, '), which is a function of
the Hamiltonian H, such that the state vector at time ¢ is given by:

[¥(e}> = UG ) v > - (D-27)

(complement F,;,). In particular, after the collision, the state of the system at time ¢,
is represented by the physical ket:

() = Ulty, 1) | v (D-28)

Note that, since the Hamiltonian H is symmetric, the evolution operator U commutes
with the permutation operator:

[u@, ), P,,] =0 (D-29)

Now, et us calculate the probability amplitude of the result envisaged in § A-3-a,
in which the particles are detected in the two opposite directions of the On axis,
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D. DISCUSSION

of unit vector n (

fig. 6-b). We denote the physical ket associated with this final state
by:

l![/f>=%(l +ePy)|1ipn;2: — pnd (D-30)

The desired probability amplitude can therefore be written:

Cp|ap(e,) > = <'!’fl Ulty, to) | 9 )

|
=5<Lipn;2: — pa|(1 + &Pl )U(e,, £, )1 tePyy)[1:pe.;2: — pe
(D-31)
According to relation (D-29) and the properties of the operator P
¥, UG 1) | 4>
={l:ipn;2: —pn|(l + eP3 Ut 1) | 1 ipe,;2 1 — pe S
=<I:Pn;2: _pnlU(tivtO)Il:pez;Z: _pez>
+ed{l: = ;2 :pn| Uty t) |1 :pe.; 2 - ~pe, > (D-32)

211> we finally obtain:

The direct term corresponds, for example, to the process shown in figure 7-a, and the
exchange term is then represented by figure 7-b. Again, the probability amplitudes
associated with these two processes must be added or subtracted. This causes an

/ /
e i

Y
4

F

FIGURE 7

Collision between two identical particles in the center of mass frame : schematic representation
of the physical processes corresponding to the direct term and the exchange term. The scattering
amplitudes associated with these two processes.interfere with a + sign for bosons and a — sign
for fermions.

hterference term to appear when the square of the modulus of expression (D-32) is

ken. Note also that this expression is simply multiplied by ¢if n is changed to — n,

%0.that the corresponding probability is invariant under this change.
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CHAPTER XIV SYSTEMS OF {DENTICAL PARTICLES

b. SITUATIONS IN WHICH THE SYMMETRIZATION POSTULATE CAN BE IGNORED

If application of the symmetrization postulate were always indispensable, i
would be impossible to study the properties of a system containing a restricted
number of particles, because it would be necessary to take into account all the
particles in the universe which are identical to those in the system. We shall see
in this section that this is not the case. In fact, under certain special conditions,
identical particles behave as if they were actually different, and it 1s not necessary
to take the symmetrization postulate into account in order to obtain correct physical
predictions. It seems natural to expect, considering the results of §D-2.5
that such a situation would arise whenever the exchange terms introduced by the
symmetrization postulate are zero. We shall give two examples.

o.  Identical particles situated in two distinct regions of space

Consider two identical particles, one of which is in the individual state | ¢ )
and the other, in the state | y >. To simplify the notation, we shall ignore their spin.
Suppose that the domain of the wave functions representing the kets @ >and|y)
are well separated in space:

o) = (rl@> =0 if 1¢D | (D3

where the domains D and 4 do not overlap. The situation is analogous to the classical
mechanical one (§A-2): as long as the domains D and 4 do not overlap, each of the
particles can be “followed”; we therefore expect application of the symmetrization
postulate to be unnecessary.

In this case, we can envisage measuring an observable related to one
of the two particles. All we need is a measurement device placed so that it cannot
record what happens in the domain D, or in the domain 4. If it is D which is excluded
in this way, the measurement will only concern the particle in 4, an vice versa.

Now, imagine a measurement concerning the two particles simultaneously,
but performed with two distinct measurement devices, one of which is not sensitive

to phenomena occurring in 4, and the other, to those in D. How can the probability -

of obtaining a given result be calculated ? Let |u ) and | v ) be the individual states
associated respectively with the results of the two measurement devices. Since the.

two particles are identical, the symmetrization postulate must, in theory, be taken.

into account. In the probability amplitude associated with the measurement resu
the direct term is then { u | @ > { v | x ), and the exchange term is { u | x > (v | @
Now, the spatial disposition of the measurement devices implies that:

ur) = (rlud>=0 if red
vty ={rjo>=0 if reD (D-

According to {D-33) and (D-34), the wave functions u(r) and x{r) do not overlap

neither do o{r) and ¢(r), so that:
Culgdy =<olpy=0 (D3
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: o the probability
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 theory, be taken
| ysurement result,

uly><vler

+ hat:

(D-34)

| do not overlap;

(D-35)

D. DpIScussion

The exchange term is therefore zero. Consequently,
to use the symmetrization postulate. We obtain t
soning as if the particles were of different natures, labeling, for example, the ope in
the domain D with the number 1, and the one situated in A with the number 2.
Before the measurement, the state of the system is then described by the ket
1:9;2:%>, and with the measurement result envisaged is associated the ket
1 :u;2:v ). Their scalar product gives the probability amplitude < u X E [x).
This argument shows that the existence of identical particles does not prevent

the separate study of restricted Systems, composed of a small number of particles.

it is unnecessary, in this situation,
he desired result directly by rea-

COMMENT:

In the initial state chosen, the two particles are
of space. In addition, we have defined the state of the sys
states. We might wonder if, after the system has evolv
of the two particles and ignore the other one. For this
only that the two particles remain in two distinct reg
do not interact. Whether the particles are identical or no

correlations between them, and it is no longer possible
vector.

situated in two distinct regions
tem by specifying two individual
ed, it is still possible to study one
to be the case, it is necessary, not
ions of space, but also that they
t, an interaction always introduces
to describe each of them by a state

B. Particles which can be identified by the direction of their spins

Consider an elastic collision between two identical spin 1/2 particles (clectrons_,
for example), assuming that spin-dependent interactions can be neglected, so that
the spin states of the two particles are conserved during the collision. If these spin
states are initially orthogonal, they enable us to distinguish between the tw
at all times, as if they were not identical ; consequently,
should again have no effect here

O particles
the symmetrization postulate

L J
+
i
N

FIGURE §

Collision between two identical spin 1/2 particles in the center of
tation of  th

pins does not change during the collision. When the two
spin state before the collision (the case of the figure), it is possible
to determine the “path” followed by the system in arriving at a given final state.
the only scattering process which leads to the final state of figure b and which h
amplitude is of the type shown in figure 7-a.

For example,
as a non-zero
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CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

We can show this, using the calculation of §D-2-a-B. The initial physical ket
will be, for example (fig. 8-a):

1

H’i>=$

(where the symbol + or — added after each momentum indicates the sign of the
spin component along a particular axis). The final state which we are considering
(fig. 8-b) will be described by:

(1 —P,)fLl:pe,+;2:—pe,—> (D-36)

|"’f>=%(1_le)ll:P“a+;2:—Pn,—> (D-37)

Under these conditions, only the first term of {D-32) is different from zero, since the
second one can be written:

Cti=pn, —;2:pn, + | U(ty, o)) 1 pe,, +52: — pe,, — > (D-38)

This is the matrix element of a spin-independent operator (by hypothesis) between
two kets whose spin states are orthogonal; it is therefore zero. Consequently, we
would obtain the same result if we treated the two particles directly as if they were
different, that is, if we did not antisymmetrize the initial and final kets and if we
associated index 1 with the spin state | + » and index 2 with the spin state | — ),
Of course, this is no longer possible if the evolution operator U, that 1s, the
Hamiltonian H of the system, is spin-dependent.

References and suggestions for further reading:

The importance of interference between direct and exchange terms is stressed
in Feynman III (1.2), §3.4 and chap. 4.

Quantum statistics : Reif (8.4), Kittel (8.2).

Permutation groups: Messiah {1.17), app. D, §IV; Wigner (2.23), chap. 13;
Bacry (10.31), §§ 41 and 42.

The effect of the symmetrization postulate on molecular spectra: Herzberg (12.4),
Vol. I, chap. III, § 2f.

An article giving a popularized version: Gamow (1.27).
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