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The integral over q° here yields a delta function in time, so this is
equivalent to a correction to the interaction Hamiltonian V(t), of the

form
17 3. %8 2y, )
2/“/‘“’ dnjx —y]

This is just right to cancel the Coulomb interaction (8.4.25). Our result
is that the photon propagator can be taken effectively as the covariant
quantity

AL (x — y) = (2m)~4 / d4q-qz_’7f_"geif1'(x—y) (8.53)

with the Coulomb interaction dropped from now on. We see that the
apparent violation of Lorentz invariance in the instantaneous Coulomb
interaction is cancelled by another apparent violation of Lorentz invari-
ance, that as noted in Section 5.9 the fields a*(x) are not four-vectors,

view, the important point is that in the momentum space Feynman rules,
the contribution of an internal photon line is simply given by

) ony q_ii_,-‘g (8.5.9)

and the Coulomb interaction is dropped.

8.6 Feynman Rules for Spinor Electrodynamics

We are now in a position to state the Feynman rules for calculating the
S-matrix in quantum electrodynamics. For definiteness, we will consider
the electrodynamics of a single species of spin % particles of charge g = —¢
and mass m. We will calil these fermions electrons, but the same formalism
applies to. muons and other such particles. The simplest gauge- and
Lorentz-invariant Lagrangian for this theory is*

& = —}1 FuwF* — P (y*[0, +ie A,] + m) ¥, (8.6.1)
The electric current four-vector is then simply
0¥ -
e = = p 6.2
J oA, ie Wy g (8.6.2)

-—
*In Chapter 12 we will discuss reasons why more complicated terms are excluded from the
Lagrangian density.
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2T The interaction (8.4.23) in the interaction picture is here

V() = +ie / Bx (P67 9(%, 1)) (%, 1) + Veoult) - (8.6.3)

(There is N0 Vpauer here.) As we have seen, the Coulomb term Veour(t)
just serves to cancel a part of the photon propagator that is non-covariant
-and local in time.

Following the general results of Section 6.3, we can state the momentum
space Feynman rules for the connected part of the S-matrix in this theory
as follows:

(i) Draw all Feynman diagrams with up to some given number of vertices.
The diagrams consist of electron lines carrying arrows and photon lines
without arrows, with the lines joined at vertices, at each of which there is
one incoming and one outgoing electron line and one photon line. There
is one external line coming into the diagram from below or going upwards
out of the diagram for each particle in the initial or final states, respec-
tively; electrons are represented by external lines carrying arrows pointing
upwards into or out of the diagram, while positrons are represented by
lines carrying arrows pointing downwards into or out of the diagram.
There are also as many internal lines as are needed to give each vertex
the required number of attached lines. Each internal line is labelled with
an off-mass-shell four-momentum flowing in a definite direction along the
line (taken conventionally to flow along the direction of the arrow for
electron lines.) Each external line is labelled with the momentum and spin
z-component or helicity of the electron or photon in the initial and final
states.

(if) Associate factors with the components of the diagram as follows:

Vertices

Label each vertex with a four-component Dirac index o at the electron
P line with its arrow coming into the vertex, a Dirac index f at the electron
line with its arrow going out of the vertex, and a spacetime index p at the
photon line. For each such vertex, include a factor

Kp (2n)4e(vﬂ)gfa4(k —K+4q), (8.64)

where k and k' are the el_ectron: four-momenta entering and leaving the
' vertex, and g is the photon four-momentum entering the vertex (or minus
] o the photon momentum leaving the vertex).
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External lines -

Label each external line with the three-momentum p and $pin z-component
or helicity ¢ of the particle in the initial or final state. For each lige for an
electron in the final state running out of a vertex carrying a Dirac label 8

on this line, include a factor* .
| 0.0) { 865

(Zn )3/2
For each line for a positron in the final state running into a vertex carrying
a Dirac label « on this line, include a factor Y

Uy (ps 0)

P (8.6.6)

For each line for an electron in the initial state running into a vertex
carrying a Dirac label « on this line, include a factor

Uy (p, &)

Ry (8.6.7)

For each line for a positron in the initial state ranning out of a vertex
carrying a Dirac label £ on this line, include a factor

op(p, o) |

. 8.6.8

(2m)3/2 \}/ ( )
The us and vs are the four-component spinors discussed in Section 5.5,

For each line for a photon in the final state connected to a vertex carrying
a spacetime label u on this line, include a factor

e,(p, o)
(2m)3/2 /2p0 ) §7 M.
For each line for a photon in the initial state connected to a vertex carrying

(8.6.9)

a spacetime label u on this line, include a factor
. eﬂ(ps O') J\/\/\/\' (8.6 10)

(2m)3/2\/2p0 A

The e, are the photon polarization four-vectors described in the previous
section.
Internal lines:

For each internal electron line carrying a four-momentum k and running
from a vertex carrying a Dirac label B to another vertex carrying a Dirac

. AT matrixi f has been extracted from the interaction in (8.6.4), so that # and U appear instead of
ul and ¢t '
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K
f—

label «, include a factor -

—I [_I # + m]o:ﬁ
)t kK2 +m? —ie
(We are here using the very convenient ‘Dirac slash’ notation; for any
four-vector v#, p denotes y,v*.) For each internal photon line carrying
a four-momentum g that runs between two vertices carrying spacetime
labels 4 and v include a factor

(8.6.11)

—i Nuv NS
R

(iif) Integrate the product of all these factors over the four-momenta
carried by the internal lines, and sum over all Dirac and spacetime indices.

(iv} Add up the results obtained in this way from each Feynman diagram.

Additional combinatoric factors and fermionic signs may need to be
included, as described in parts (v} and (vi) of Section 6.1.

The difficulty of evaluating Feynman diagrams increases rapidly with
the number of internal lines and vertices, so it is important to have some
idea of what numerical factors tend to suppress the contributions of the
more complicated diagrams. We shall estimate these numerical factors
including not only the factors of the electronic charge e associated with
vertices, but also the factors of 2 and = from vertices, propagators, and
momentum space integrals.

Consider a connected Feynman diagram with V vertices, I internal
lines, E external lines, and L loops. These quantities are not independent,
but are subject to relations already used in Section 6.3:

L=I—V—I—1 21 +E=3V.

There is a factor e(2n)* from each vertex, a factor (2n)™* from each
internal line, and a four-dimensional momentum space integral for each
loop. The volume element in four-dimensional Euclidean space in terms
of a radius parameter x is n2x%dx?, so each loop contributes a factor n2.
Thus the diagram will contain a factor

5 \L
Qr)* ¥ (2r) 4 72l = Qn)tef2 L
1672
The number E of external lines is fixed for a given process, so we see that
the expansion parameter that governs the suppression of Feynman graphs
for each additional loop is

e

a _ 4
e = g = 581 x 107
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Fortunately this is small enough that good accuracy can usually be ob-
tained from Feynman diagrams with at most a few loops.

* %k sk

We must say a little more about the spin states of photons and electrons
in realistic experiments, where not every particle in the initial and fina]
states has a definite known helicity or spin z-component. This consid-
eration is especially important for photons, which in practice are often

1//2

wt1) =R | F/V2 |
0

where R(p) is the standard rotation that takes the z-axis to the p direction.
These are not the only possible photon states; in general, a photon state
can be a linear combination of helicity states Y11

) ' 4 Wp 41 + a_ W, (8.6.13)
which is properly normalized if
o [+ a2 =1, (8.6.14)

To calculate the S-matrix element for absorbing or emitting such a photon,
we simply replace eu(p, 1) in the Feynman rules with :

eu(p) = ay eu(p, +1) + x— e,u(P:{'_'I) . (8.6.15)
The polarization vectors for definite helicity satisfy the normalization
condition

€u(p. 4) e(p, 1) = 5., (8.6.16)

and therefore in general
e,(p) e"(p) =1 . (8.6.17)
The two extreme cases are circular polarization, for which o = 0 or
%+ =0, and linear polarization, for which oy ] = Ja_| = 1/./2. For linear

polarization, by an adjustment of the overall phase of the state (8.6.13),
Wwe can make oy and o complex conjugates, so that they can be expressed
as

ot = exp(Fig) /2. (8.6.18)
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Then in the Feynman rules we should use a polarization vector

cos ¢

eu(p) = R(p) Sig¢ : (8.6.19)

0

That is, ¢ is the azimuthal angle of the photon polarization in the plane
perpendicular to p. Note that the photon polarization vector here is real,
which is only possible for linear polarization. In between the extremes of
circular and linear polarization are the states of elliptic polarization, for
which |oy| and |a_| are non-zero and unequal.

More generally, an initial photon may be prepared in a statistical
mixture of spin states. In the most general case, an initial photon may have
any number of possible polarization vectors eg’)(p), each with probability
P,. The rate for absorbing such a photon in a given process will then be
of the form

=Y Plel(p) M*> = M"M"pyy , (8.6.20)

where p is the density matrix

pu=_ Prelp) e (p). (8:6.21)
. |

Since p is obviously a Hermitian positive matrix of unit trace (because
. P, = 1} with pyo = po, = 0 and popp’ = pyup* =0, it may be written
as

pu= D Ases(p;s)en(p;s) (8.6.22)
s=172

where e,(p;s) are the two orthonormal eigenvectors of p with

eo(p; s) = eu(p;s)p* =0 (8.6.23)
and 1, are the corresponding eigenvalues, with
=0, > A=1.
s=1,2
‘We may then write the rate for the photon absorption process as
=Y Ale(p; )M’ (8.6.24)
§=12

Thus any statistical mixture of initial photon states is always equivalent
to having just two orthonormal polarizations e,(p; s) with probabilities A;.

In particular, if we know nothing whatever about the initial photon
polarization, then the two probabilities A, for the polarization vectors
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ev(p;s) are equal, so that Al =1y = %, and the density matrix (and hence
the absorption rate) is an average over initial polarizations

Pii= 1 2 el®;s)€j(pis) = L (3 — pip)) . (8.6.25)
5=],2

Fortunately, this result does not depend on the particular pair of polar-
ization vectors ei{p; s) over which we average; for unpolarized photons we
can average the absorption rate over any pair of orthonormal polarization
vectors. Similarly, if we make no attempt to measure the polarization of
a photon in the final state, then the rate may be calculated by summing
over any pair of orthonormal fina] photon polarization vectors.

The same remarks apply to electrons and positrons; if (as is usually the
case) we make no attempt to prepare an electron or positron so that some
spin states are more likely than others, then the rate is to be calculated
by averaging over any two orthonormal initia] spin states, such as those
with spin z-component ¢ = i% ; If we make no attempt to measure a final
electron’s or positron’s Spin state, then we must sum the rate over any
two orthonormal final spin states, such as those with spin z-component
g = i%. Such sums may be performed using the relations (5.5.37) and
(5.5.38):

> uup, o)ip(p, ) = :QQL—"E , (8.6.26)
o zp off
> vu(p, 0)p(p, o) = (:li——o:f) , (8.6.27)

where p? = VP2 +m2.  For instance, if the initial state contains an
electron with momentum P and spin z-component ¢, and a positron with .
momentum p’ and spin z-component ¢’, then the S-matrix element for
the process will be of the form (0ulp’, 0") My ug(p, o). Hence if neither
~electron nor positron spins are observed, the rate will be proportional to

i 2|00, 0") Mg ug(p, o))
s (). (2}

Techniques for the calculation of such traces are described in the Appendix
to this chapter.




