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Path integrals

20.1 Path integrals and Richard Feynman

Since Richard Feynman invented them some 80 years ago, path integrals
have been used with increasing frequency in particle physics and condensed-
matter physics, in optics and biophysics, and even in finance. They express
the amplitude for a process as a sum of all the ways the process can occur
each weighted by an exponential of its classical action exp(iS/~). (Richard
Feynman, 1918–1988)

20.2 Gaussian integrals and Trotter’s formula

Path integrals are based upon the gaussian integral (6.184) which holds for
real a 6= 0 and real b

Z 1

�1
eiax

2+2ibx dx =

r
i⇡

a
e�ib2/a (20.1)

and upon the gaussian integral (6.138)
Z 1

�1
e�ax2+2ibx dx =

r
⇡

a
e�b2/a (20.2)

which holds both for Re a > 0 and also for Re a = 0 with b real and Im a 6= 0.
The extension of the integral formula (20.1) to any n⇥ n real symmetric

nonsingular matrix sjk and any real vector cj is (exercises 20.1 & 20.2)

Z 1

�1
eisjkxjxk+2icjxj dx1 . . . dxn =

r
(i⇡)n

det s
e�icj(s�1)jkck (20.3)

in which det a is the determinant of the matrix a, a�1 is its inverse, and
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sums over the repeated indices j and k from 1 to n are understood. One
may similarly extend the gaussian integral (20.2) to any positive symmetric
n⇥ n matrix sjk and any vector cj (exercises 20.3 & 20.4)

Z 1

�1
e�sjkxjxk+2icjxj dx1 . . . dxn =

r
⇡n

det s
e�cj(s�1)jkck . (20.4)

Path integrals also are based upon Trotter’s product formula (Trotter,
1959; Kato, 1978)

ea+b = lim
n!1

⇣
ea/n eb/n

⌘n
(20.5)

both sides of which are symmetrically ordered and obviously equal when
ab = ba.
Separating a given hamiltonian H = K + V into a kinetic part K and a

potential part V , we can use Trotter’s formula to write the time-evolution
operator e�itH/~ as

e�it(K+V )/~ = lim
n!1

⇣
e�itK/(n~) e�itV/(n~)

⌘n
(20.6)

and the Boltzmann operator e��H as

e��(K+V ) = lim
n!1

⇣
e��K/n e��V/n

⌘n
. (20.7)

20.3 Path integrals in quantum mechanics

Path integrals can represent matrix elements of the time-evolution opera-
tor exp( � i(tb � ta)H/~) in which H is the hamiltonian. For a particle of
mass m moving nonrelativistically in one dimension in a potential V (q), the
hamiltonian is

H =
p2

2m
+ V (q). (20.8)

The position and momentum operators q and p obey the commutation rela-
tion [q, p] = i~. Their eigenstates |q0i and |p0i have eigenvalues q0 and p0 for
all real numbers q0 and p0

q |q0i = q0 |q0i and p |p0i = p0 |p0i. (20.9)

These eigenstates are complete. Their outer products |q0ihq0| and |p0ihp0|
provide expansions for the identity operator I and have inner products (4.73)
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that are phases

I =

Z 1

�1
|q0ihq0| dq0 =

Z 1

�1
|p0ihp0| dp0 and hq0|p0i = eiq

0p0/~
p
2⇡~

. (20.10)

Setting ✏ = (tb � ta)/n and writing the hamiltonian (20.8) over ~ as
H/~ = p2/(2m~) + V/~ = k + v, we can write Trotter’s formula (20.6) for
the time-evolution operator as the limit as n ! 1 of n factors of e�i✏ke�i✏v

e�i(tb�ta)(k+v) = e�i✏k e�i✏v e�i✏k e�i✏v · · · e�i✏k e�i✏v e�i✏k e�i✏v. (20.11)

The advantage of using Trotter’s formula is that we now can evaluate the
matrix element hq1|e�i✏k e�i✏v|qai between eigenstates |qai and |q1i of the
position operator q by inserting the momentum-state expansion (20.10) of
the identity operator I between the two exponentials

hq1|e�i✏k e�i✏v|qai = hq1| e�i✏p2/(2m~)
Z 1

�1
|p0ihp0| dp0 e�i✏V (q)/~|qai (20.12)

and using the eigenvalue formulas (20.9)

hq1|e�i✏k e�i✏v|qai =
Z 1

�1
e�i✏p02/(2m~) hq1|p0i e�i✏V (qa)/~ hp0|qai dp0. (20.13)

Now using the formula (20.10) for the inner product hq1|p0i and the complex
conjugate of that formula for hp0|qai, we get

hq1|e�i✏k e�i✏v|qai = e�i✏V (qa)/~
Z 1

�1
e�i✏p02/(2m~) ei(q1�qa)p0/~ dp0

2⇡~ . (20.14)

In this integral, the momenta that are important are very high, being of
order

p
m~/✏ which diverges as ✏! 0; nonetheless, the integral converges.

If we adopt the suggestive notation q1 � qa = ✏ q̇a and use the gaussian
integral (20.1) with a = �✏/(2m~), x = p, and b = ✏q̇/(2~)
Z 1

�1
exp

✓
� i ✏

p2

2m~ + i ✏
q̇ p

~

◆
dp

2⇡~ =

r
m

2⇡i✏~ exp

✓
i
✏

~
mq̇2

2

◆
, (20.15)

then we find

hq1|e�i✏k e�i✏v|qai =
1

2⇡~ e�✏V (qa)
Z 1

�1
exp

✓
� i

✏p02

2m~ + i
✏ q̇a p0

~

◆
dp0

=
⇣ m

2⇡i~✏

⌘1/2
exp


i
✏

~

✓
mq̇2a
2

� V (qa)

◆�
. (20.16)

The dependence of the amplitude hq1|e�i✏k e�i✏v|qai upon q1 is hidden in the
formula q̇a = (q1 � qa)/✏.
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The next step is to use the position-state expansion (20.10) of the identity
operator to link two of these matrix elements together

hq2|
�
e�i✏k e�i✏v

�2|qai =
Z 1

�1
hq2| e�i✏k e�i✏v |q1ihq1| e�i✏k e�i✏v |qai dq1

=
m

2⇡i~✏

Z 1

�1
exp


i
✏

~

✓
mq̇21
2

� V (q1) +
mq̇2a
2

� V (qa)

◆�
dq1

where now q̇1 = (q2 � q1)/✏.
By stitching together n = (tb � ta)/✏ time intervals each of length ✏ and

letting n ! 1, we get

hqb|e�ni✏H/~|qai =
Z
hqb|e�i✏k e�i✏v|qn�1i · · · hq1|e�i✏k e�i✏v|qai dqn�1 · · · dq1

=
⇣ m

2⇡i~✏

⌘n/2Z
exp

"
i
✏

~

n�1X

j=0

mq̇2j
2

� V (qj)

#
dqn�1 · · · dq1

=
⇣ m

2⇡i~✏

⌘n/2Z
exp

0

@i
✏

~

n�1X

j=0

Lj

1

A dqn�1 · · · dq1 (20.17)

in which Lj = mq̇2j /2� V (qj) is the lagrangian of the jth interval, and the
qj integrals run from �1 to 1. In the limit ✏ ! 0 with n✏ = (tb � ta)/✏,
this multiple integral is an integral over all paths q(t) that go from qa, ta to
qb, tb

hqb|e�i (tb�ta)H/~|qai =
Z

eiS[q]/~Dq (20.18)

in which each path is weighted by the phase of its classical action

S[q] =

Z tb

ta

L(q̇, q) dt =

Z tb

ta

✓
mq̇(t)2

2
� V (q(t))

◆
dt (20.19)

in units of ~ and Dq = (mn/(2⇡i~(tb � ta)))n/2 dqn�1 . . . dq1.
If we multiply the path-integral (20.18) for hqb|e�i (tb�ta)H/~|qai from the

left by |qbi and from the right by hqa| and integrate over qa and qb as in
the resolution (20.10) of the identity operator, then we can write the time-
evolution operator as an integral over all paths from ta to tb

e�i (tb�ta)H/~ =

Z
|qbi eiS[q]/~ hqa|Dq dqa dqb (20.20)

with Dq = (mn/(2⇡i~(tb� ta)))n/2 dqn�1 . . . dq1 and S[q] the action (20.19).
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The path integral for a particle moving in three-dimensional space is

hqb|e�i(tb�ta)H/~|qai =
Z

exp


i

~

Z tb

ta

1
2 m q̇

2(t)� V (q(t)) dt

�
Dq (20.21)

where Dq = (mn/(2⇡i~(tb � ta)))3n/2 dqn�1 · · · dq1.
Let us first consider macroscopic processes whose actions are large com-

pared to ~. Apart from the factor Dq, the amplitude (20.21) is a sum of
phases eiS[q]/~ one for each path from qa, ta to qb, tb. When is this ampli-
tude big? When is it small? Suppose there is a path qc(t) from qa, ta to qb, tb
that obeys the classical equation of motion (19.14–19.15)

�S[qc]

�qjc
= mq̈jc + V 0(qc) = 0. (20.22)

Its action may be minimal. It certainly is stationary: a path qc(t) + �q(t)
that di↵ers from qc(t) by a small detour �q(t) has an action S[qc + �q] that
di↵ers from S[qc] only by terms of second order and higher in �q. Thus
a classical path has infinitely many neighboring paths whose actions di↵er
only by integrals of (�q)n, n � 2, and so have the same action to within
a small fraction of ~. These paths add with nearly the same phase to the
path integral (20.21) and so make a huge contribution to the amplitude
hqb|e�i(tb�ta)H/~|qai. But if no classical path goes from qa, ta to qb, tb, then
the nonclassical, nonstationary paths that go from qa, ta to qb, tb have ac-
tions that di↵er from each other by large multiples of ~. These amplitudes
cancel each other, and their sum, which is the amplitude for going from qa, ta
to qb, tb, is small. Thus the path-integral formula for an amplitude
in quantum mechanics explains why macroscopic processes have
stationary action (section 7.13).
What about microscopic processes whose actions are tiny compared to

~? The path integral (20.21) gives large amplitudes for all microscopic pro-
cesses. On very small scales, anything can happen that doesn’t break a
conservation law.
The path integral for two or more particles {q} = {q1, . . . , qk} interacting

with a potential V ({q}) is

h{q}b|e�i(tb�ta)H/~|{q}ai =
Z

eiS[{q}]/~D{q} (20.23)

where

S[{q}] =
Z tb

ta


m1q̇

2
1(t)

2
+ · · ·+ mkq̇

2
k(t)

2
� V ({q(t)})

�
dt (20.24)

and D{q} = Dq1 · · ·Dqk.
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Example 20.1 (A free particle) For a free particle, the potential is zero,
H = p2/(2m), and the path integral (20.18, 20.19) is the ✏ ! 0, n ! 1
limit of

hqb|e�i tH/~|qai =
⇣ m

2⇡i~✏

⌘n/2
(20.25)

⇥
Z
exp


i
m✏

2~

✓
(qb � qn�1)2

✏2
+ · · ·+ (q1 � qa)2

✏2

◆�
dqn�1 · · · dq1.

The q1 integral is by the gaussian formula (20.1)

m

2⇡i~✏

Z
eim[(q2�q1)2+(q1�qa)2]/(2~✏)dq1 =

r
m

2⇡i~2✏ e
im(q2�qa)2/(2~2✏).

(20.26)

The q2 integral is (exercise 20.5)

m

2
p
2⇡i~✏

Z
eim[(q3�q2)2+(q2�qa)2/2]/(2~✏)dq2 =

r
m

2⇡i~3✏ e
im(q3�qa)2/(2~3✏).

(20.27)

Doing all n� 1 integrals (20.25) in this way and setting n✏ = tb� ta, we get

hqb| e�i (tb�ta)H/~ |qai =
r

m

2⇡i~n✏ exp


im(qb � qa)2

2~n✏

�

=

r
m

2⇡i~(tb � ta)
exp


im(qb � qa)2

2~(tb � ta)

�
.

(20.28)

It is easier to compute this amplitude (20.28) by using the outer products
(20.10) (exercise 20.6).
In three dimensions, the amplitude to go from qa, ta to qb, tb is

hqt|e�i(tb�ta)H/~|q0i =
✓

m

2⇡i~(tb � ta)

◆3/2

exp


im(qb � qa)

2

2~(tb � ta)

�
. (20.29)

Example 20.2 (The ubiquitous phase factor eipx/~) The phase factor
eipx/~ is actually the exponential of the classical action of a particle of mass
m going from the origin to the point x = (ct,x) both non-relativistically

ipx/~ = i(p · x� Et)/~ = i(mv · vt� 1
2mv

2t)/~ = i12mv
2t/~ (20.30)

and relativistically

ipx/~ =
mv · v t

~
p
1� v2/c2

� mc2 t

~
p
1� v2/c2

= �mc2
p
1� v2/c2 t/~. (20.31)
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20.4 Path integrals for quadratic actions

If a path q(t) = qc(t) + x(t) di↵ers from a classical path qc(t) by a detour
x(t) that vanishes at the endpoints x(ta) = 0 = x(tb) so that both paths go
from qa, ta to qb, tb, then the di↵erence S[qc+x]�S[qc] in their actions that
is of first order in x(t) vanishes (section 7.13). Thus the actions of the two
paths di↵er by a time integral of quadratic and higher powers of the detour
x(t)

S[qc + x] =

Z tb

ta

1
2mq̇(t)2 � V (q(t)) dt

=

Z tb

ta

1
2m (q̇c(t) + ẋ(t))2 � V (qc(t) + x(t)) dt

=

Z tb

ta


m

2
q̇2c +mq̇cẋ+

m

2
ẋ2 � V (qc)� V 0(qc)x� V 00(qc)

2
x2

�V 000(qc)

6
x3 � V 0000(qc)

24
x4 � . . .

�
dt. (20.32)

We integrate the linear terms by parts
Z tb

ta

⇥
mq̇cẋ� V 0(qc)x

⇤
dt = �

Z tb

ta

⇥
mq̈c + V 0(qc)

⇤
x dt = 0 (20.33)

and see that they vanish because on the classical path mq̈c = � V 0(qc) and
x(ta) = x(tb) = 0 at its end points. Thus the action of the deviant path is

S[qc + x] =

Z tb

ta

hm
2
q̇2c � V (qc)

i
dt+

Z tb

ta


m

2
ẋ2 � V 00(qc)

2
x2

�V 000(qc)

6
x3 � V 0000(qc)

24
x4 � . . .

�
dt

= S[qc] +�S[qc, x]

in which S[qc] is the action of the classical path, and the detour x(t) is a
loop that goes from x(ta) = 0 to x(tb) = 0.

If the potential V (q) is quadratic in the position q, then the third V 000

and higher derivatives of the potential vanish, and the second derivative is
a constant V 00(qc(t)) = V 00. In this quadratic case, the correction �S[qc, x]
depends only on the time interval tb � ta and on ~, m, and V 00

�S[qc, x] = �S[x] =

Z tb

ta

⇥
1
2mẋ2(t)� 1

2V
00 x2(t)

⇤
dt. (20.34)

It is independent of the classical path.
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Thus for quadratic actions, the path integral (20.18) is simply the ex-
ponential exp(iS[qc]/~) of the classical action apart from a factor f(tb �
ta, ~,m, V 00) that depends only on the time interval tb � ta and on the pa-
rameters ~, m, and V 00

hqb|e�i(tb�ta)H/~|qai =
Z

eiS[q]/~Dq =

Z
ei(S[qc]+�S[x])/~Dq

= eiS[qc]/~
Z

ei�S[x])/~Dx

= f(tb � ta, ~,m, V 00) eiS[qc]/~.

(20.35)

The function f = f(tb � ta, ~,m, V 00) is the limit as n ! 1 of the (n � 1)-
dimensional integral

f =


mn

2⇡i~(tb � ta)

�n/2Z
ei�S[x])/~dxn�1 . . . dx1 (20.36)

where

�S[x] =
tb � ta

n

nX

j=1

1

2
m

(xj � xj�1)2

[(tb � ta)/n]2
� 1

2
V 00 x2j (20.37)

and xn = 0 = x0.
More generally, the path integral for any quadratic action of the form

S[q] =

Z tb

ta

u q̇2(t) + v q(t)q̇(t) + w q2(t) + s(t) q̇(t) + j(t) q(t) dt (20.38)

is (exercise 20.7)

hqb|e�i(tb�ta)H/~|qai = f(ta, tb, ~, u, v, w) eiS[qc]/~. (20.39)

The dependence of the amplitude upon s(t) and j(t) is contained in the
classical action S[qc] of the classical path qc.
These formulas (20.35–20.39) may be generalized to any number of par-

ticles with coordinates {q} = {q1, . . . , qk} moving nonrelativistically in a
space of multiple dimensions as long as the action is quadratic in the {q}’s
and their velocities {q̇}. The amplitude is then an exponential of the action
S[{q}c] of the classical path multiplied by a function f(ta, tb, ~, . . . ) that is
independent of the classical path qc

h{q}b|e�i(tb�ta)H/~|{q}ai = f(ta, tb, ~, . . . ) eiS[{q}c]/~. (20.40)

Example 20.3 (Free particle) The classical path of a free particle going
from qa at time ta to qb at time tb is

qc(t) = qa +
t� ta
tb � ta

(qb � qa). (20.41)
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Its action is

S[qc] =

Z tb

ta

1

2
m q̇

2
c dt =

m(qb � qa)
2

2(tb � ta)
(20.42)

and for this case our quadratic-potential formula (20.40) is

hqb|e�i(tb�ta)H/~|qai = f(tb � ta, ~,m) exp


i
m(qb � qa)

2

2~(tb � ta)

�
(20.43)

which agrees with our explicit calculation (20.29) when f(tb � ta, ~,m) =
[m/(2⇡i~(tb � ta))]3/2.

Example 20.4 (Bohm-Aharonov e↵ect) From the formula (12.70) for the
action of a relativistic particle of mass m and charge e, it follows (exer-
cise 20.18) that the action of a nonrelativistic particle in an electromagnetic
field with no scalar potential is

S =

Z tb

ta

⇥
1
2mq̇

2 + eA · q̇
⇤
dt =

Z qb

qa

⇥
1
2mq̇ + eA

⇤
· dq . (20.44)

Since this action is quadratic in q̇, the amplitude for a particle to go from
qa at ta to qb at tb is an exponential of the classical action

hqb|e�i(tb�ta)H/~|qai = f(tb � ta, ~,m, e) eiS[qc]/~ (20.45)

multiplied by a function f(tb�ta, ~,m, e) that is independent of the path qc.
A beam of such particles goes horizontally past but not through a vertical
pipe in which a vertical magnetic field is confined. The particles can go
both ways around the pipe of cross-sectional area S but do not enter it. The
di↵erence in the phases of the amplitudes for the two paths is a loop integral
from the source to the detector around the pipe and back to the source
I 

mq̇

2
+ eA

�
·dq~ =

I
mq̇ · dq

2~ +
e

~

Z

S
B · dS =

I
mq̇ · dq

2~ +
e�

~ (20.46)

in which � is the magnetic flux through the cylinder.

Example 20.5 (Harmonic oscillator) The action

S =

Z tb

ta

1

2
mq̇2(t)� 1

2
m!2q2(t) dt (20.47)

of a harmonic oscillator is quadratic in q and q̇. So apart from a factor f ,
its path integral (20.35–20.37) is an exponential

hqb|e�i(tb�ta)H/~|qai = f eiS[qc]/~ (20.48)
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of the action S[qc] (exercise 20.8)

S[qc] =
m!

⇥�
q2a + q2b

�
cos(!(tb � ta))� 2qaqb

⇤

2 sin(!(tb � ta))
(20.49)

of the classical path

qc(t) = qa cos!(t� ta) +
qb � qa cos!(tb � ta)

sin!(tb � ta)
sin!(t� ta) (20.50)

that runs from qa, ta to qb, tb and obeys the classical equation of motion
mq̈c(t) = � !2qc(t).
The factor f is a function f(tb � ta, ~,m,m!2) of the time interval and

the parameters of the oscillator. Its actual value is

f =

r
m!

2⇡i~ sin!T . (20.51)

The amplitude (20.48) is then an exponential of the action S[qc] (20.49) of
the classical path (20.50) multiplied by this factor f

hqb|e�i(tb�ta)H/~|qai =
r

m!

2⇡i~ sin!(tb � ta)
(20.52)

⇥ exp

(
i

~
m!

⇥�
q2a + q2b

�
cos(!(tb � ta))� 2qaqb

⇤

2 sin(!(tb � ta))

)
.

Example 20.6 (Computation of f) The factor f is the n ! 1 limit of
the (n� 1)-dimensional integral (20.36)

f =


mn

2⇡i~(tb � ta)

�n/2 Z
ei�S[x])/~ dxn�1 . . . dx1 (20.53)

over all loops that run from 0 to 0 in time tb � ta in which the quadratic
correction to the classical action is (20.37)

�S[x] =
tb � ta

n

nX

j=1

1

2
m

(xj � xj�1)2

[(tb � ta)/n]2
� 1

2
m!2 x2j , (20.54)

and xn = 0 = x0.
Setting tb� ta = T , we use the many-variable imaginary gaussian integral

(20.3) to write f as

f =
h mn

2⇡i~T

in/2Z
eiajkxjxkdxn�1 . . . dx1 =

h mn

2⇡i~T

in/2
r

(i⇡)n�1

det a
(20.55)
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in which the quadratic form ajkxjxk is

nm

~T

nX

j=1


� xjxj�1 +

1

2
(x2j + x2j�1)�

(!T )2

2n2
x2j

�
(20.56)

which has no linear term because x0 = xn = 0.
The (n� 1)-dimensional square matrix a is a tridiagonal Toeplitz matrix

a =
nm

2~T

0

BBBBB@

y �1 0 0 · · ·
�1 y �1 0 · · ·
0 �1 y �1 · · ·
0 0 �1 y · · ·
...

...
...

. . .
. . .

1

CCCCCA
. (20.57)

Apart from the factor nm/(2~T ), the matrix a = (nm/(2~T ))Cn�1(y) is a
tridiagonal matrix Cn�1(y) whose o↵-diagonal elements are �1 and whose
diagonal elements are y = 2 � (!T )2/n2. Their determinants |Cn(y)| =
detCn(y) obey (exercise 20.9) the recursion relation

|Cn+1(y)| = y |Cn(y)|� |Cn�1(y)| (20.58)

and have the initial values |C1(y)| = y and |C2(y)| = y2 � 1. The trigono-
metric functions Sn(y) = sin[(n+1)✓]/ sin ✓ with y = 2 cos ✓ obey the same
recursion relation and have the same initial values (exercise 20.10), so

|Cn(y)| =
sin(n+ 1)✓

sin ✓
. (20.59)

Since for large n

✓ = arccos(y/2) = arccos

✓
1� !2t2

2n2

◆
⇡ !T

n
, (20.60)

the determinant of the matrix a is

det a =
⇣ nm

2~T

⌘n�1
|Cn�1(y)| =

⇣ nm

2~T

⌘n�1 sinn✓

sin ✓

⇡
⇣ nm

2~T

⌘n�1 sin(!T )

sin(!T/n)
⇡
⇣ nm

2~T

⌘n�1 n sin!T

!T
.

(20.61)

Thus the factor f is

f =
h mn

2⇡i~T

in/2
r

(i⇡)n�1

det a
=
h mn

2⇡i~T

in/2
s✓

2⇡i~T
nm

◆n�1 !T

n sin!T

=

r
m!

2⇡i~ sin!T . (20.62)
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As these examples (20.1 & 20.5) suggest, path integrals are well defined.

20.5 Path integrals in statistical mechanics

At the imaginary time t = �i~� = �i~/(kT ), the time-evolution oper-
ator e�itH/~ becomes the Boltzmann operator e��H whose trace is the
partition function Z(�) at inverse energy � = 1/(kT )

Z(�) = Tr
�
e��H

�
=
X

n

hn|e��H |ni (20.63)

in which the states |ni form a complete orthonormal set, k = 8.617 ⇥ 10�5

eV/K is Boltzmann’s constant, and T is the absolute temperature. Partition
functions are used in statistical mechanics and quantum field theory.
Since the Boltzmann operator e��H is the time-evolution operator e�itH/~

at the imaginary time t = � i~�, we can write it as a path integral by
imitating the derivation of the preceding section (20.3). We will use the
same hamiltonian H = p2/(2m) + V (q) and the operators q and p which
have complete sets of eigenstates (20.9) that satisfy (20.10).
Changing our definitions of ✏, k, and v to ✏ = �/n, k = �p2/(2m), and

v = �V (q), we can write Trotter’s formula (20.7) for the Boltzmann operator
as the n ! 1 limit of n factors of e�✏k e�✏v

e��H = e�✏k e�✏v e�✏k e�✏v · · · e�✏k e�✏v e�✏k e�✏v. (20.64)

To evaluate the matrix element hq1|e�✏k e�✏v|qai, we insert the identity op-
erator hq1|e�✏k I e�✏v|qai as an integral (20.10) over outer products |p0ihp0| of
momentum eigenstates and use the inner products hq1|p0i = eiq1p

0/~/
p
2⇡~

and hp0|qai = e�iqap0/~/
p
2⇡~

hq1|e�✏k e�✏v|qai =
Z 1

�1
hq1|e�✏p

2/(2m)|p0ihp0|e�✏V (q)|qai dp0

= e�✏V (qa)
Z 1

�1
e�✏p

02/(2m) eip
0(q1�qa)/~ dp0

2⇡~ . (20.65)

If we adopt the suggestive notation q1 � qa = ✏~ q̇a and use the gaussian
integral (20.2) with a = ✏/(2m), x = p, and b = ✏q̇/2
Z 1

�1
exp

✓
� ✏

p2

2m
+ i✏ q̇ p

◆
dp

2⇡~ =

r
m

2⇡✏~2 exp

✓
� ✏

mq̇2

2

◆
, (20.66)
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then we find

hq1|e�✏k e�✏v|qai = e�✏V (qa)
Z 1

�1
exp

✓
�✏ p02

2m
+ i ✏ p0 q̇a

◆
dp0

2⇡~

=
⇣ m

2⇡~2✏

⌘1/2
exp


� ✏

✓
m q̇2a
2

+ V (qa)

◆�
(20.67)

in which q1 is hidden in the formula q1 � qa = ~ ✏ q̇a.
The next step is to link two of these matrix elements together

hq2|
�
e�✏k e�✏v

�2|qai =
Z 1

�1
hq2|e�✏k e�✏v|q1ihq1|e�✏k e�✏v|qaidq1

=
m

2⇡~2✏

Z 1

�1
exp

⇢
� ✏


mq̇21
2

+ V (q1) +
mq̇20
2

+ V (qa)

��
dq1.

Passing from 2 to n and suppressing some integral signs, we get

hqb|e�n✏H |qai =
ZZZ 1

�1
hqb|e�✏k e�✏v|qn�1i · · · hq1|e�✏k e�✏v|qai dqn�1 . . . dq1

=
⇣ m

2⇡~2✏

⌘n/2ZZZ 1

�1
exp

2

4� ✏
n�1X

j=0

 
m q̇2j
2

+ V (qj)

!3

5 dqn�1 . . . dq1.

Setting du = ~✏ = ~�/n and taking the limit n ! 1, we find that the
matrix element hqb|e��H |qai is the path integral

hqb|e��H |qai =
Z

e�Se[q]/~Dq (20.68)

in which each path is weighted by its euclidian action

Se[q] =

Z ~�

0

mq̇2(u)

2
+ V (q(u)) du, (20.69)

q̇ is the derivative of the coordinate q(u) with respect to euclidian time
u = ~�, and Dq ⌘ (nm/2⇡ ~2�)n/2 dqn�1 . . . dq1.

A derivation identical to the one that led from (20.64) to (20.69) leads to

hqb|e�(�b��a)H |qai =
Z

e�Se[q]/~Dq (20.70)

in which each path is weighted by its euclidian action

Se[q] =

Z ~�b

~�a

mq̇2(u)

2
+ V (q(u)) du, (20.71)

and q̇ and Dq are the same as in (20.69).
If we multiply the path integral (20.70) from the left by |qbi and from the



780 Path integrals

right by hqa| and integrate over qa and qb as in the resolution (20.10) of the
identity operator, then we can write the Boltzmann operator as an integral
over all paths from ta to tb

e�(�b��a)H =

Z
|qbi e�Se[q]/~ hqa|Dq dqa dqb (20.72)

with Dq = (mn/(2⇡i~(tb�ta)))n/2 dqn�1 . . . dq1 and Se[q] the action (20.71).
To get the partition function Z(�), we set qb = qa ⌘ qn and integrate over

all n q’s letting n ! 1

Z(�) = Tr e��H =

Z
hqn|e��H |qni dqn

=

Z
exp


�1

~

Z ~�

0

mq̇2(u)

2
+ V (q(u)) du

�
Dq

(20.73)

where Dq ⌘ (nm/2⇡ ~2 �)n/2 dqn . . . dq1. We sum over all loops q(u) that go
from q(0) = qn at Boltzmann time 0 to q(~�) = qn at Boltzmann time ~�.
In the low-temperature limit, T ! 0 and � ! 1, the Boltzmann operator

exp(��H) projects out the ground state |E0i of the system

lim
�!1

e��H = lim
�!1

X

n

e��En |EnihEn| = e��E0 |E0ihE0|. (20.74)

The maximum-entropy density operator (section 1.40, example 1.64) is
the Boltzmann operator e��H divided by its trace Z(�)

⇢ =
e��H

Tr(e��H)
=

e��H

Z(�)
. (20.75)

Its matrix elements are matrix elements of the Boltzmann operator (20.69)
divided by the partition function (20.73)

hqb|⇢|qai =
hqb|e��H |qai

Z(�)
. (20.76)

For many particles {q} in three dimensions with q̇j(u) = dqj(u)/du, the
{qa}, {qb} matrix element of the Boltzmann operator is the analog of equa-
tion (20.69) (exercise 20.36)

h{qb}|e��H |{qa}i =
Z

exp

"
� 1

~

Z ~�

0

mq̇
2
j (u)

2
+ V ({q}(u)) du

#
D{q}

(20.77)
where D{q} ⌘ (nm/2⇡ ~2�)3n/2 d{q}n�1 . . . d{q1}, and the partition func-
tion is the integral over all loops that go from {q}0 to anywhere and back
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to {q}0 in time ~�

Z(�) =

Z
exp

"
�1

~

Z ~�

0

mq̇
2
j (u)

2
+ V ({q}(u)) du

#
D{q} (20.78)

where now D{q} ⌘ (nm/2⇡ ~2 �)3n/2 d{q}n . . . d{q}1.
Because the Boltzmann operator e��H is the time-evolution operator

e�itH/~ at time ~� and imaginary time t = �iu = �i~� = �i~/(kT ), the
path integrals of statistical mechanics are called euclidian path integrals.

Example 20.7 (Density operator for a free particle) For a free particle,
the matrix element of the Boltzmann operator e��H is the n = �/✏ ! 1
limit of the integral of n factors of the integral (20.67) with V = 0

hqb|e��H |qai =
⇣ m

2⇡~2✏

⌘n/2

⇥
Z
exp


� m(qb � qn�1)2

2~2✏ · · ·� (q1 � qa)2

2~2✏

�
dqn�1 · · · dq1.

The formula (20.2) gives for the q1 integral

⇣ m

2⇡~2✏

⌘1/2Z
e�[m(q2�q1)2+m(q1�qa)2]/(2~2✏)dq1 =

e�m(q2�qa)2/(2~22✏)
p
2

.

The q2 integral is (exercise 20.11)

⇣ m

4⇡~2✏

⌘1/2Z
e�m(q3�q2)2/(2~2✏)�m(q2�qa)2/(4~2✏)dq2 =

e�m(q3�qa)2/(2~23✏)
p
3

.

(20.79)
All n� 1 integrations give

hqb|e��H |qai =
r

m

2⇡~2✏
e�m(qb�qa)2/(2~2n✏)

p
n

=

r
m

2⇡~2� e�m(qb�qa)2/(2~2�).

The partition function is the integral of this matrix element over qa = qb

Z(�) =

✓
m

2⇡~2�

◆1/2 Z
dqa =

✓
m

2⇡~2�

◆1/2

L (20.80)

where L is the (infinite) 1-dimensional volume of the system. The qb, qa
matrix element of the maximum-entropy density operator is

hqb|⇢|qai =
e�m(qb�qa)

2/(2~2�)

L
. (20.81)
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For N particles in 3 dimensions, equations (20.7 and 20.80) are

h{q}b|e��H |{q}ai =
✓
mkT

2⇡~2

◆3N/2

e�m(qjb�qja)
2/(2~2�)

Z(�) =

✓
mkT

2⇡~2

◆3N/2

L3N .

(20.82)

Example 20.8 (Partition function at high temperatures) At high temper-
atures, the product ~� = ~/(kT ) is very small, and the particles are essen-
tially free. So the path integral reduces to the product of the free-particle par-
tition function (20.82) with L3N replaced by an integral of h{q}0|e��V/~|{q}0i

Z(�) =

Z
e��V ({q}0) exp

"
�1

~

Z ~�

0

mq̇
2
j (u)

2
du

#
D{q} (20.83)

=

✓
mkT

2⇡~2

◆3N/2 Z
e��V ({q}0) d{q}0.

20.6 Boltzmann path integrals for quadratic actions

Apart from the factor Dq ⌘ (nm/2⇡ ~2�)n/2 dqn�1 . . . dq1, the euclidian
path integral

hqb|e��H |qai =
Z

exp


�1

~

Z ~�

0

mq̇2(u)

2
+ V (q(u)) du

�
Dq (20.84)

is a sum of positive terms e�Se[q]/~ one for each path from qa, 0 to qb,�. If a
path from qa, 0 to qb,� obeys the euclidian classical equation of motion

m
d2qec
du2

= m q̈ec = V 0(qec) (20.85)

then its euclidian action

Se[q] =

Z ~�

0

m q̇2(u)

2
+ V (u) du (20.86)

is stationary and may be minimal. So we can approximate the euclidian
action Se[qec + x] as we approximated the action S[qc + x] in section 20.4.
The euclidian action Se[qec+x] of an arbitrary path from qa, 0 to qb,� is the
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stationary euclidian action Se[qec] plus a u-integral of quadratic and higher
powers of the detour x which goes from x(0) = 0 to x(~�) = 0

Se[qec + x] =

Z ~�

0

hm
2
q̇2ec + V (qec)

i
du+

Z ~�

0


m

2
ẋ2 +

V 00(qec)

2
x2

+
V 000(qec)

6
x3 +

V 0000(qec)

24
x4 + . . .

�
du

= Se[qec] +�Se[qec, x], (20.87)

and the path integral for the matrix element hqb|e��H |qai is

hqb|e��H |qai = e�Se[qec]/~
Z

e��Se[qec,x]/~Dx (20.88)

as n ! 1 where Dx = (nm/2⇡ ~2�)n/2 dqn�1 . . . dq1 in the limit n ! 1.
If the action is quadratic in q and q̇, then the action �Se[qec, x] of the

detour x is independent of the euclidian classical path qec, and so the path
integral over x is a function f only of the parameters �, m, ~, and V 00

hqb|e��H |qai = e�Se[qec]/~
Z

e��Se[x]/~Dx = f(�, ~,m, V 00) e�Se[qec]/~

(20.89)

in which with xn = 0 = x0 the function f is

f(�, ~,m, V 00) =


mn

2⇡~2�

�n/2Z
e��Se[x]/~dxn�1 . . . dx1,

�Se[x] =
~�
n

nX

j=1

m

2~2
(xj � xj�1)2

(�/n)2
+

1

2
V 00 x2j . (20.90)

Example 20.9 (Density operator for the harmonic oscillator) The path
qec(�) that satisfies the euclidian classical equation of motion (20.85)

q̈ec(u) =
d2qec(u)

du2
= !2qec(u) (20.91)

and goes from qa, 0 to qb, ~� is

qec(u) =
sinh(!u) qb + sinh[!(~� � u)] qa

sinh(~!�) . (20.92)
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Its euclidian action is (exercise 20.20)

Se[qec] =

Z ~�

0

mq̇2ec(u)

2
+

m!2q2ec(u))

2
du

=
m!

2~ sinh(~!�)
⇥
cosh(~!�)(q2a + q2b )� 2qaqb

⇤
.

(20.93)

Since V 00 = m!2, our formulas (20.89 & 20.90) for quadratic actions give
as the matrix element

hqb|e��H |qai = f(�, ~,m,m!2) e�Se[qec]/~ (20.94)

in which

f(�, ~,m,m!2) =


mn

2⇡~2�

�n/2Z
e��Se[x]/~) dxn�1 . . . dx1,

�Se[x] =
~�
n

nX

j=1

m

2~2
(xj � xj�1)2

(�/n)2
+

m!2 x2j
2

,

(20.95)

and xn = 0 = x0. We can do this integral by using the formula (20.4) for a
many variable real gaussian integral

f =
h mn

2⇡~2B

in/2Z
e�ajkxjxkdxn�1 . . . dx1 =

h mn

2⇡~2B

in/2
r

(⇡)n�1

det a
(20.96)

in which the positive quadratic form ajkxjxk is

nm

2~2B

nX

j=1


� 2xjxj�1 + x2j + x2j�1 +

(~!B)2

n2
x2j

�
(20.97)

which has no linear term because x0 = xn = 0.
The matrix a is (nm/(2~2B))Cn�1(y) in which Cn�1(y) is a square, tridi-

agonal, (n� 1)-dimensional matrix whose o↵-diagonal elements are �1 and
whose diagonal elements are y = 2 + (~!�)2/n2. The determinants |Cn(y)|
obey the recursion relation |Cn+1(y)| = y |Cn(y)| � |Cn�1(y)| and have the
initial values C1(y) = y and C2(y) = y2 � 1. So do the hyperbolic functions
sinh(n+1)✓/ sinh ✓ with y = 2 cosh ✓. So we set Cn(y) = sinh(n+1)✓/ sinh ✓
with ✓ = arccosh(y/2). We then get as the matrix element (20.94)

hqb|e��H |qai =
r

m!

2⇡~ sinh(~!�) exp

�

m![cosh(~!�)(q2a + q2b )� 2qaqb]

2~ sinh(~!�)

�
.

(20.98)
The partition function is the integral over qa of this matrix element for
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qb = qa

Z(�) =

r
m!

2⇡~ sinh(~!�)

Z
exp


� m![cosh(~!�)� 1]q2a

~ sinh(~!�)

�
dqa

=
1p

2[cosh(~!�)� 1]
. (20.99)

The matrix elements of the maximum-entropy density operator (20.75) are

hqb|⇢|qai =
hqb|e��H |qai

Z(�)
(20.100)

=

s
m![cosh(~!�)� 1]

⇡~ sinh(~!�) exp


�

m![cosh(~!�)(q2a + q2b )� 2qaqb]

2~ sinh(~!�)

�

which reveals the ground-state wave functions

lim
�!1

hqb|⇢|qai = hqb|0ih0|qai =
r

m!

⇡~ e�m!(q2a+q2b )/(2~). (20.101)

The partition function gives us the ground-state energy

lim
�!1

Z(�) = lim
�!1

1p
2[cosh(~!�)� 1]

= e��E0 = e��~!/2. (20.102)

20.7 Mean values of time-ordered products

In the Heisenberg picture, the position operator at time t is

q(t) = eitH/~q e�itH/~ (20.103)

in which q = q(0) is the position operator at time t = 0 or equivalently the
position operator in the Schrödinger picture. The time-ordered product of
two position operators is

T [q(t1)q(t2)] =

⇢
q(t1) q(t2) if t1 � t2
q(t2) q(t1) if t2 � t1

�
= q(t>) q(t<) (20.104)

in which t> is the later and t< the earlier of the two times t1 and t2.
The position operator q at the imaginary time t = �iu = �i~� =

�i~/(kT ) is the euclidian position operator

qe(u) = qe(~�) = euH/~q e�uH/~. (20.105)
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The time-ordered product of two euclidian position operators at euclidian
times u1 = ~�1 and u2 = ~�2 is

T [qe(u1)qe(u2)] =

⇢
qe(u1) qe(u2) if u1 � u2
qe(u2) qe(u1) if u2 � u1

�
= qe(u>) qe(u<).

(20.106)
The matrix element of the time-ordered product (20.104) of two position

operators and two exponentials e�itH/~ between states |ai and |bi is

hb|e�itH/~T [q(t1)q(t2)]e
�itH/~|ai = hb|e�itH/~q(t>)q(t<)e

�itH/~|ai (20.107)

= hb|e�i(t�t> )H/~q e�i(t>�t< )H/~q e�i(t+t< )H/~|ai.

Using the path-integral formula (20.20) for each of the exponentials on the
right-hand side of this equation, we find (exercise 20.13)

hb|e�itH/~T [q(t1)q(t2)]e
�itH/~|ai =

Z
hb|qbiq(t1)q(t2)eiS[q]/~hqa|aiDq

(20.108)

in which the integral is over all paths that run from �t to t. This equation
is simpler when the states |ai and |bi are eigenstates of H with eigenvalues
Em and En

e�it(En+Em)/~hn|T [q(t1)q(t2)]|mi =
Z
hn|qbiq(t1)q(t2)eiS[q]/~hqa|miDq.

(20.109)

By setting n = m and omitting q(t1)q(t2), we get

e�2itEn/~ =

Z
hn|qbieiS[q]/~hqa|niDq. (20.110)

The ratio of (20.109) with n = m to (20.110) is

hn|T [q(t1)q(t2)]|ni =

Z
hn|qbiq(t1)q(t2)eiS[q]/~hqa|niDq
Z
hn|qbieiS[q]/~hqa|niDq

(20.111)

in which the integrations are over all paths that go from �t  t2 to t � t1.
The mean value of the time-ordered product of k position operators is

hn|T [q(t1) · · · q(tk)]|ni =

Z
hn|qbiq(t1) · · · q(tk)eiS[q]/~hqa|niDq

Z
hn|qbieiS[q]/~hqa|niDq

(20.112)
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in which the integrations are over all paths that go from some time before
t1, . . . , tk to some time after them.

We may perform the same operations on the euclidian position operators
by replacing t by �iu = �i~�. A matrix element of the euclidian time-
ordered product (20.106) between two states is

hb|e�uH/~T [qe(u1)qe(u2)]e
�uH/~|ai = hb|e�uH/~qe(u>)qe(u<)e

�uH/~|ai
(20.113)

= hb|e�(u�u> )H/~q e�(u>�u< )H/~q e�(u+u< )H/~|ai.

As u ! 1, the exponential e�uH/~ projects (20.74) states in onto the ground
state |0i which is an eigenstate of H with energy E0. So we replace the
arbitrary states in (20.113) with the ground state and use the path-integral
formula (20.72) for the last three exponentials of (20.113)

e�2uE0/~h0|T [qe(u1)qe(u2)]|0i =
Z
h0|qbiq(u1)q(u2)e�Se[q]/~hqa|0iDq.

(20.114)

The same equation without the time-ordered product is

e�2uE0/~h0|0i = e�2uE0/~ =

Z
h0|qbie�Se[q]/~hqa|0iDq. (20.115)

The ratio of the last two equations is

h0|T [qe(u1)qe(u2)]|0i =

Z
h0|qbiq(u1)q(u2)e�Se[q]/~hqa|0iDq
Z

h0|qbie�Se[q]/~hqa|0iDq
(20.116)

in which the integration is over all paths from u = �1 to u = 1. The mean
value in the ground state of the time-ordered product of k euclidian position
operators is

h0|T [qe(u1) · · · qe(uk)]|0i =

Z
h0|qbi q(u1) · · · q(uk) e�Se[q]/~hqa|0iDq

Z
h0|qbie�Se[q]/~hqa|0iDq

.

(20.117)
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20.8 Quantum field theory on a lattice

Quantum mechanics imposes upon n coordinates qi and conjugate momenta
pk the equal-time commutation relations

[qi, pk] = i ~ �i,k and [qi, qk] = [pi, pk] = 0. (20.118)

In a theory of a single spinless quantum field, a coordinate qx ⌘ �(x) and a
conjugate momentum px ⌘ ⇡(x) are associated with each point x of space.
The operators �(x, t) and ⇡(x, t) obey the equal-time commutation relations

[�(x, t),⇡(x0, t)] = i ~ �(x� x
0)

[�(x, t),�(x0, t)] = [⇡(x, t),⇡(x0, t)] = 0
(20.119)

inherited from quantum mechanics.
To make path integrals, we replace space by a 3-dimensional lattice of

points x = a(i, j, k) = (ai, aj, ak) and eventually let the distance a between
adjacent points go to zero. On this lattice and at equal times, e.g., t = 0, the
field operator �(x, t) ⌘ �(a(i, j, k), t) and its conjugate momentum ⇡(x, t) ⌘
⇡(a(i, j, k), t) obey discrete forms of the commutation relations (20.119)

[�(x),⇡(x0)] = [�(a(i, j, k)),⇡(a(`,m, n))] = i
~
a3
�i,` �j,m �k,n

[�(x),�(x0)] = [�(a(i, j, k)),�(a(`,m, n))] = 0

[⇡(x),⇡(x0)] = [⇡(a(i, j, k)),⇡(a(`,m, n))] = 0.

(20.120)

The vanishing commutators imply that the field and the momenta have
compatible eigenvalues for all lattice points x = a(i, j, k)

�(x)|�0i = �0(x)|�0i and ⇡(x)|⇡0i = ⇡0(x)|⇡0i. (20.121)

Their inner products are

h�0|⇡0i =
 
Y

x

r
a3

2⇡~

!
exp

"
i
a3

~
X

x

�0(x)⇡0(x)

#
. (20.122)

These states are complete
Z

|�0ih�0|
Y

x

d�0(x) = I =

Z
|⇡0ih⇡0|

Y

x

d⇡0(x) (20.123)

and orthonormal

h�0|�00i =
Y

x

�(�0(x)� �00(x)) (20.124)

with a similar equation for h⇡0|⇡00i.
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The hamiltonian for a free field of mass m

H =
1

2

Z 
⇡2 + c2(r�)2 + m2c4

~2 �2
�
d3x (20.125)

is approximated as

H =
a3

2

X

x


⇡(x)2 + c2(r�(x))2 + m2c4

~2 �(x)2
�

(20.126)

where x = a(i, j, k), ⇡(x) = ⇡(a(i, j, k)), �(x) = �(a(i, j, k)), and the square
of the lattice gradient is

(r�(x))2 = 1

a2

h
(�(a(i+ 1, j, k))� �(a(i, j, k)))2

+ (�(a(i, j + 1, k))� �(a(i, j, k)))2 (20.127)

+ (�(a(i, j, k + 1))� �(a(i, j, k)))2
i
.

Other interactions, such as c3�4/~, can be added to this hamiltonian.
To simplify the appearance of the equations in the rest of this chapter, I

will often use natural units (Chapter 23) in which ~ = c = 1. To convert
the value of a physical quantity from natural units to universal units, one
multiplies or divides its natural-unit value by suitable factors of ~ and c
until one gets the right dimensions.
We setK = K(⇡) = (a3/2)

P
x ⇡

2(x) and V = V (�) = (a3/2)
P

x

�
r�(x))2+

m2�2(x) +P (�(x)
�
in which P (�(x)) represents the self-interactions of the

field. With ✏ = (tb � ta)/n, Trotter’s product formula (20.6) is the n ! 1
limit of

e�i(tb�ta)(K+V ) =
⇣
e�i(tb�ta)K/ne�i(tb�ta)V/n

⌘n
=
�
e�i✏Ke�i✏V

�n
.

(20.128)
We insert I in the form (20.123) between e�i✏K and e�i✏V

h�1|e�i✏K e�i✏V |�ai = h�1|e�i✏K
Z

|⇡0ih⇡0|
Y

x

d⇡0(x)e�i✏V |�ai (20.129)

and use the eigenstate formula (20.121)

h�1|e�i✏K e�i✏V |�ai = e�i✏V (�a)
Z

e�i✏K(⇡0)h�1|⇡0ih⇡0|�ai
Y

x

d⇡0(x)

(20.130)
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and the inner-product formula (20.122)

h�1|e�i✏Ke�i✏V |�ai (20.131)

= e�i✏V (�a)
Y

x

Z
a3d⇡0(x)

2⇡
ea

3[�i✏⇡02(x)/2+i(�1(x)��a(x))⇡0(x)]

�
.

Using the gaussian integral (20.1), we set �̇a(x) = (�1(x) � �a(x))/✏ and
get

h�1|e�i✏Ke�i✏V |�ai =
Y

x

"✓
a3

2⇡i✏

◆1/2
ei

✏a3

2 [�̇2a(x)�(r�a(x))2�m2�2a(x)�P (�a(x))]

#
.

(20.132)

The product of n = (tb � ta)/✏ such time intervals is

h�b|e�i(tb�ta)H |�ai =
Y

x

"✓
a3n

2⇡i(tb � ta)

◆n/2 Z
eiSxD�x

#
(20.133)

in which

Sx =
tb � ta

n

a3

2

n�1X

j=0

h
�̇2j (x)� (r�j(x))2 �m2�2j (x)� P (�j(x))

i
, (20.134)

�̇j(x) = n(�j+1(x)� �j(x))/(tb � ta), and D�x = d�n�1(x) · · · d�1(x).
The amplitude h�b|e�i(tb�ta)H |�ai is the integral over all fields that go

from �a(x) at ta to �b(x) at tb each weighted by an exponential

h�b|e�i(tb�ta)H |�ai =
Z

eiS[�]D� (20.135)

of its action

S[�] =

Z tb

ta

dt

Z
d3x

1

2

h
�̇2 � (r�)2 �m2�2 � P (�)

i
(20.136)

in which D� is the n ! 1 limit of the product over all spatial vertices x

D� =
Y

x

"✓
a3n

2⇡i(tb � ta)

◆n/2

d�n�1(x) · · · d�1(x)
#
. (20.137)

Equivalently, the time-evolution operator is

e�i(tb�ta)H =

Z
|�bieiS[�] h�a|D�D�aD�b (20.138)

in which D�aD�b =
Q

v d�a,vd�b,v is an integral over the initial and final
states.
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As in quantum mechanics (section 20.4), the path integral for an action
that is quadratic in the fields is an exponential of the action of a classical
process S[�c] times a function of the times ta, tb and of other parameters

h�b|e�i(tb�ta)H |�ai =
Z

eiS[�]D� = f(ta, tb, . . . ) e
iS[�c] (20.139)

in which S[�c] is the action of the process that goes from �(x, ta) = �a(x)
to �(x, tb) = �b(x) and obeys the classical equations of motion, and the
function f is a path integral over all fields that go from �(x, ta) = 0 to
�(x, tb) = 0.

Example 20.10 (Classical processes) The field

�(x, t) =

Z
eik·x[a(k) cos!t + b(k) sin!t] d3k (20.140)

with ! =
p

k
2 +m2 makes the action (20.136) for P = 0 stationary because

it is a solution of the equation of motion r2� � �̈ �m2� = 0. In terms of
the Fourier transforms

�̃(k, ta) =

Z
e�ik·x �(x, ta)

d3x

(2⇡)3
and �̃(k, tb) =

Z
e�ik·x �(x, tb)

d3x

(2⇡)3
,

(20.141)
the solution that goes from �(x, ta) to �(x, tb) is

�(x, t) =

Z
eik·x

sin!(tb � t) �̃(k, ta) + sin!(t� ta) �̃(k, tb)

sin!(tb � ta)
d3k. (20.142)

The solution that evolves from �(x, ta) and �̇(x, ta) is

�(x, t) =

Z
eik·x


cos!(t� ta) �̃(k, ta) +

sin!(t� ta)

!
˜̇�(k, ta)

�
d3k

(20.143)

in which the Fourier transform ˜̇�(k, ta) is defined as in (20.141).

Like a position operator (20.103), a field at time t is defined as

�(x, t) = eitH/~�(x, 0)e�itH/~ (20.144)

in which �(x) = �(x, 0) is the field at time zero, which obeys the commu-
tation relations (20.119). The time-ordered product of several fields is their
product with newer (later time) fields standing to the left of older (earlier
time) fields as in the definition (20.104). The logic (20.107–20.111) of the
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derivation of the path-formulas for time-ordered products of position oper-
ators also applies to field operators. One finds (exercise 20.14) for the mean
value of the time-ordered product of two fields in an energy eigenstate |ni

hn|T [�(x1)�(x2)]|ni =

Z
hn|�bi�(x1)�(x2)eiS[�]/~h�a|niD�
Z

hn|�bieiS[�]/~h�a|niD�
(20.145)

in which the integrations are over all paths that go from before t1 and t2 to
after both times. The analogous result for several fields is (exercise 20.15)

hn|T [�(x1) · · ·�(xk)]|ni =

Z
hn|�bi�(x1) · · ·�(xk)eiS[�]/~h�a|niD�

Z
hn|�bieiS[�]/~h�a|niD�

(20.146)
in which the integrations are over all paths that go from before the times
t1, . . . , tk to after them.

20.9 Finite-temperature field theory

Since the Boltzmann operator e��H = e�H/(kT ) is the time evolution op-
erator e�itH/~ at the imaginary time t = � i~� = �i~/(kT ), the formulas
of finite-temperature field theory are those of quantum field theory with t
replaced by �iu = �i~� = �i~/(kT ).
As in section 20.8, we use as our hamiltonian H = k + v where k and v

are sums over all lattice vertices v = a(i, j, k) = (ai, aj, ak) of the cubes of
volume a3 times the squared momentum and the potential energy

H = k + v =
a3

2

X

v

⇡2v +
a3

2

X

v

(r�v)2 +m2�2v + P (�v). (20.147)

A matrix element of the first term of the Trotter product formula (20.7)

e��(k+v) = lim
n!1

⇣
e��k/n e��v/n

⌘n
(20.148)

is the imaginary-time version of (20.131) with ✏ = ~�/n

h�1|e�✏k e�✏v|�ai = e�✏v(�a)
Y

v

Z
a3d⇡0v
2⇡

ea
3[�✏⇡2

v/2+i(�1v��av)⇡0
v ]

�
.

(20.149)
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Setting �̇av = (�1v � �av)/✏, we find, instead of (20.132)

h�1|e�✏k e�✏v|�ai =
Y

v

"✓
a3

2⇡✏

◆1/2
e�✏a

3[�̇2av+(r�av)2+m2�2av+P (�v)]/2

#
.

(20.150)
The product of n = ~�/✏ such inverse-temperature intervals is

h�b|e��H |�ai =
Y

v

"✓
a3n

2⇡�

◆n/2 Z
e�SevD�v

#
(20.151)

in which the euclidian action is

Sev =
�

n

a3

2

n�1X

j=0

h
�̇2jv + (r�jv)2 +m2�2jv + P (�v)

i
(20.152)

where �̇jv = n(�j+1,v � �j,v)/� and D�v = d�n�1,v · · · d�1,v.
The amplitude h�b|e�(�b��a)H |�ai is the integral over all fields that go

from �a(x) at �a to �b(x) at �b each weighted by an exponential

h�b|e�(�b��a)H |�ai =
Z

e�Se[�]D� (20.153)

of its euclidian action

Se[�] =

Z �b

�a

du

Z
d3x

1

2

h
�̇2 + (r�)2 +m2�2 + P (�)

i
(20.154)

in which D� is the n ! 1 limit of the product over all spatial vertices v

D� =
Y

v

"✓
a3n

2⇡(�b � �a)

◆n/2

d�n�1,v · · · d�1,v

#
. (20.155)

Equivalently, the Boltzmann operator is

e�(�b��a)H =

Z
|�bie�Se[�] h�a|D�D�aD�b (20.156)

in which D�aD�b =
Q

v d�a,vd�b,v is an integral over the initial and final
states.
The trace of the Boltzmann operator is the partition function

Z(�) = Tr(e��H) =

Z
e�Se[�] h�a|�biD�D�aD�b =

Z
e�Se[�] D�D�a

(20.157)
which is an integral over all fields that go back to themselves in euclidian
time �.
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Like a position operator (20.105), a field at an imaginary time t = �iu =
�i~� is defined as

�e(x, u) = �e(x, ~�) = euH/~�(x, 0) e�uH/~ (20.158)

in which �(x) = �(x, 0) = �e(x, 0) is the field at time zero, which obeys
the commutation relations (20.119). The euclidian-time-ordered product of
several fields is their product with newer (higher u = ~�) fields standing to
the left of older (lower u = ~�) fields as in the definition (20.106).
The euclidian path integrals for the mean values of euclidian-time-ordered-

products of fields are similar to those (20.145 & 20.146) for ordinary time-
ordered-products. The euclidian-time-ordered-product of the fields �(xj) =
�(xj , uj) is the path integral

hn|T [�e(x1)�e(x2)]|ni =

Z
hn|�bi�(x1)�(x2)e�Se[�]/~h�a|niD�
Z
hn|�bie�Se[�]/~h�a|niD�

(20.159)

in which the integrations are over all paths that go from before u1 and u2
to after both euclidian times. The analogous result for several fields is

hn|T [�e(x1) · · ·�e(xk)]|ni =

Z
hn|�bi�(x1) · · ·�(xk)e�Se[�]/~h�a|niD�

Z
hn|�bie�Se[�]/~h�a|niD�

(20.160)
in which the integrations are over all paths that go from before the times
u1, . . . , uk to after them.
In the low-temperature � = 1/(kT ) ! 1 limit, the Boltzmann operator

is proportional to the outer product |0ih0| of the ground-state kets, e��H !
e��E0 |0ih0|. In this limit, the integrations are over all fields that run from
u = �1 to u = 1, and the only energy eigenstate |ni that contributes is
the ground state |0i of the theory

h0|T [�e(x1) · · ·�e(xk)]|0i =

Z
h0|�bi�(x1) · · ·�(xk)e�Se[q]/~h�a|0iD�

Z
h0|�bie�Se[q]/~h�a|0iD�

.

(20.161)
Formulas like this one are used in lattice gauge theory.
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20.10 Perturbation theory

Field theories with hamiltonians that are quadratic in their fields like

H0 =

Z
1
2

h
⇡2(x) + (r�(x))2 +m2�2(x)

i
d3x (20.162)

are soluble. Their fields evolve in time as

�(x, t) = eitH0�(x, 0)e�itH0 . (20.163)

The mean value in the ground state of H0 of a time-ordered product of these
fields is a ratio (20.146) of path integrals

h0|T [�(x1) · · ·�(xk)] |0i =

Z
h0|�bi�(x1) · · ·�(xn) eiS0[�]h�a|0iD�

Z
h0|�bi eiS0[�]h�a|0iD�

(20.164)
in which the action S0[�] is quadratic in the field �

S0[�] =
1
2

Z
� @a�(x)@

a�(x)�m2�2(x) d4x. (20.165)

Here �@a �@a� = �̇2�(r�)2, and the integrations are over all fields that run
from �a at a time before the times t1, . . . , tk to �b at a time after t1, . . . , tk.
The path integrals in the ratio (20.164) are gaussian and doable.
The Fourier transforms

�̃(p) =

Z
e�ipx�(x) d4x and �(x) =

Z
eipx�̃(p)

d4p

(2⇡)4
(20.166)

turn the spacetime derivatives in the action into a quadratic form

S0[�] = �1
2

Z
|�̃(p)|2 (p2 +m2)

d4p

(2⇡)4
(20.167)

in which p2 = p
2 � p02 and �̃(�p) = �̃⇤(p) by (4.28) since the field � is real.

The initial h�a|0i and final h0|�bi wave functions produce the i✏ in the
Feynman propagator (7.64). Although its exact form doesn’t matter here,
the wave function h�|0i of the ground state of H0 is the exponential (19.53)

h�|0i = c exp


�1

2

Z
|�̃(p)|2

p
p2 +m2 d3p

(2⇡)3

�
(20.168)

in which �̃(p) is the spatial Fourier transform of the eigenvalue �(x)

�̃(p) =

Z
e�ip·x �(x) d3x (20.169)
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and c is a normalization factor that will cancel in ratios of path integrals.
Apart from �2i log c which we will not keep track of, the wave functions

h�a|0i and h0|�bi add to the action S0[�] the term

�S0[�] =
i

2

Z p
p2 +m2

⇣
|�̃(p, t)|2 + |�̃(p,�t)|2

⌘ d3p

(2⇡)3
(20.170)

in which we envision taking the limit t ! 1 with �(x, t) = �b(x) and
�(x,�t) = �a(x). The identity (Weinberg, 1995, pp. 386–388)

f(+1) + f(�1) = lim
✏!0+

✏

Z 1

�1
f(t) e�✏|t| dt (20.171)

(exercise 20.22) allows us to write �S0[�] as

�S0[�] = lim
✏!0+

i✏

2

Z p
p2 +m2

Z 1

�1
|�̃(p, t)|2 e�✏|t| dt d3p

(2⇡)3
. (20.172)

So to first order in ✏, the change in the action is (exercise 20.23)

�S0[�] = lim
✏!0+

i✏

2

Z p
p2 +m2

Z 1

�1
|�̃(p, t)|2 dt d3p

(2⇡)3

= lim
✏!0+

i✏

2

Z p
p2 +m2 |�̃(p)|2 d4p

(2⇡)4
. (20.173)

Thus the modified action is

S0[�, ✏] = S0[�] +�S0[�] = � 1

2

Z
|�̃(p)|2

⇣
p2 +m2 � i✏

p
p2 +m2

⌘ d4p

(2⇡)4

= � 1

2

Z
|�̃(p)|2

�
p2 +m2 � i✏

� d4p

(2⇡)4
(20.174)

since the square root is positive. In terms of the modified action, our formula
(20.164) for the time-ordered product is the ratio

h0|T [�(x1) · · ·�(xn)] |0i =

Z
�(x1) · · ·�(xn) eiS0[�,✏]D�

Z
eiS0[�,✏]D�

. (20.175)

We can use this formula (20.175) to express the mean value in the vacuum
|0i of the time-ordered exponential of a spacetime integral of j(x)�(x), in
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which j(x) is a classical (c-number, external) current, as the ratio

Z0[j] ⌘ h0| T
⇢
exp


i

Z
j(x)�(x) d4x

��
|0i

=

Z
exp


i

Z
j(x)�(x) d4x

�
eiS0[�,✏]D�

Z
eiS0[�,✏]D�

.

(20.176)

Since the state |0i is normalized, the mean value Z0[0] is unity, Z0[0] = 1.
If we absorb the current into the action

S0[�, ✏, j] = S0[�, ✏] +

Z
j(x)�(x) d4x (20.177)

then in terms of the current’s Fourier transform

j̃(p) =

Z
e�ipx j(x) d4x (20.178)

the modified action S0[�, ✏, j] is (exercise 20.24)

S0[�, ✏, j] = � 1
2

Z h
|�̃(p)|2

�
p2 +m2 � i✏

�
� j̃⇤(p)�̃(p)� �̃⇤(p)j̃(p)

i d4p

(2⇡)4
.

(20.179)
Changing variables to  ̃(p) = �̃(p) � j̃(p)/(p2 +m2 � i✏), we can write the
action S0[�, ✏, j] as (exercise 20.25)

S0[�, ✏, j] = � 1
2

Z 
| ̃(p)|2

�
p2 +m2 � i✏

�
� j̃⇤(p)j̃(p)

(p2 +m2 � i✏)

�
d4p

(2⇡)4

= S0[ , ✏] +
1
2

Z 
j̃⇤(p)j̃(p)

(p2 +m2 � i✏)

�
d4p

(2⇡)4
. (20.180)

And since D� = D , our formula (20.176) gives simply (exercise 20.26)

Z0[j] = exp

✓
i

2

Z |j̃(p)|2
p2 +m2 � i✏

d4p

(2⇡)4

◆
. (20.181)

Going back to position space, one finds (exercise 20.27)

Z0[j] = exp


i

2

Z
j(x)�(x� x0) j(x0) d4x d4x0

�
(20.182)

in which �(x� x0) is Feynman’s propagator (7.64)

�(x� x0) = �F (x� x0) =

Z
eip(x�x0)

p2 +m2 � i✏

d4p

(2⇡)4
. (20.183)
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The functional derivative (chapter 19) of Z0[j], defined by (20.176), is

1

i

�Z0[j]

�j(x)
= h0| T


�(x) exp

✓
i

Z
j(x0)�(x0)d4x0

◆�
|0i (20.184)

while that of equation (20.182) is

1

i

�Z0[j]

�j(x)
= Z0[j]

Z
�(x� x0) j(x0) d4x0. (20.185)

Thus the second functional derivative of Z0[j] evaluated at j = 0 gives

h0| T
⇥
�(x)�(x0)

⇤
|0i = 1

i2
�2Z0[j]

�j(x)�j(x0)

����
j=0

= �i�(x� x0). (20.186)

Similarly, one may show (exercise 20.28) that

h0| T
⇥
�(x1)�(x2)�(x3)�(x4)

⇤
|0i = 1

i4
�4Z0[j]

�j(x1)�j(x2)�j(x3)�j(x4)

����
j=0

= ��(x1 � x2)�(x3 � x4)��(x1 � x3)�(x2 � x4)

��(x1 � x4)�(x2 � x3). (20.187)

Suppose now that we add a potential V (�) to the free hamiltonian (20.162).
Scattering amplitudes are matrix elements of the time-ordered exponential
T exp

⇥
�i
R
V (�) d4x

⇤
(Weinberg, 1995, p. 260) Our formula (20.175) for

the mean value in the ground state |0i of the free hamiltonian H0 of any
time-ordered product of fields leads us to

h0|T
⇢
exp


�i

Z
V (�) d4x

��
|0i =

Z
exp


�i

Z
V (�) d4x

�
eiS0[�,✏]D�

Z
eiS0[�,✏]D�

.

(20.188)
Using (20.186 & 20.187), we can cast this expression into the magical form

h0|T
⇢
exp


�i

Z
V (�) d4x

��
|0i = exp


�i

Z
V

✓
�

i�j(x)

◆
d4x

�
Z0[j]

����
j=0

.

(20.189)
The generalization of the path-integral formula (20.175) to the ground

state |⌦i of an interacting theory with action S is

h⌦|T [�(x1) · · ·�(xn)] |⌦i =

Z
�(x1) · · ·�(xn) eiS[�,✏]D�

Z
eiS[�,✏]D�

(20.190)
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in which a term like i✏�2 is added to make the modified action S[�, ✏].
These are some of the techniques one uses to make states of incoming and

outgoing particles and to compute scattering amplitudes (Weinberg, 1995,
1996; Srednicki, 2007; Zee, 2010).

20.11 Application to quantum electrodynamics

In the Coulomb gauge r · A = 0, the QED hamiltonian is

H = Hm +

Z ⇥
1
2⇡

2 + 1
2(r ⇥ A)2 �A · j

⇤
d3x+ VC (20.191)

in which Hm is the matter hamiltonian, and VC is the Coulomb term

VC =
1

2

Z
j0(x, t) j0(y, t)

4⇡|x � y| d3x d3y. (20.192)

The operators A and ⇡ are canonically conjugate, but they satisfy the
Coulomb-gauge conditions r · A = 0 and r · ⇡ = 0.
One may show (Weinberg, 1995, pp. 413–418) that in this theory, the

analog of equation (20.190) is

h⌦|T [O1 · · · On] |⌦i =

Z
O1 · · · On e

iSC �[r · A]DAD 
Z

eiSC �[r · A]DAD 
(20.193)

in which the Coulomb-gauge action is

SC =

Z
1
2Ȧ

2 � 1
2(r ⇥ A)2 +A · j + Lm d4x �

Z
VC dt (20.194)

and the functional delta function

�[r · A] =
Y

x

�(r · A(x)) (20.195)

enforces the Coulomb-gauge condition. The term Lm is the action density
of the matter field  .
Tricks are available. We introduce a new field A0(x) and consider the

factor

F =

Z
exp


i

Z
1

2

�
rA0+r4�1j0

�2
d4x

�
DA0 (20.196)

which is just a number independent of the charge density j0 since we can
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cancel the j0 term by shifting A0. By 4�1, we mean � 1/4⇡|x � y|. By
integrating by parts, we can write the number F as (exercise 20.29)

F =

Z
exp


i

Z
1
2

�
rA0

�2 �A0j0 � 1
2 j

04�1j0 d4x

�
DA0

=

Z
exp


i

Z
1
2

�
rA0

�2 �A0j0 d4x+ i

Z
VC dt

�
DA0.

(20.197)

So when we multiply the numerator and denominator of the amplitude
(20.193) by F , the awkward Coulomb term VC cancels, and we get

h⌦|T [O1 · · · On] |⌦i =

Z
O1 · · · On e

iS0
�[r · A]DAD 

Z
eiS

0
�[r · A]DAD 

(20.198)

where now DA includes all four components Aµ and

S0 =

Z
1
2 Ȧ

2 � 1
2 (r ⇥ A)2 + 1

2

�
rA0

�2
+A · j �A0j0 +Lm d4x. (20.199)

Since the delta-functional �[r · A] enforces the Coulomb-gauge condition,
we can add to the action S0 the term (r · Ȧ)A0 which is � Ȧ · rA0 after
we integrate by parts and drop the surface term. This extra term makes the
action gauge invariant

S =

Z
1
2 (Ȧ � rA

0)2 � 1
2 (r ⇥ A)2 +A · j �A0j0 + Lm d4x

=

Z
� 1

4 Fab F
ab+Abjb + Lm d4x.

(20.200)

Thus at this point we have

h⌦|T [O1 · · · On] |⌦i =

Z
O1 · · · On e

iS �[r · A]DAD 
Z

eiS �[r · A]DAD 
(20.201)

in which S is the gauge-invariant action (20.200), and the integral is over
all fields. The only relic of the Coulomb gauge is the gauge-fixing delta
functional �[r · A].
We now make the gauge transformations A0

b(x) = Ab(x) + @b⇤(x) and
 0(x) = eiq⇤(x) (x) in the numerator and also, using a di↵erent gauge trans-
formation ⇤0, in the denominator of the ratio (20.201) of path integrals.
Since we are integrating over all gauge fields, these gauge transformations
merely change the order of integration in the numerator and denominator
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of that ratio. They are like replacing
R1
�1 f(x) dx by

R1
�1 f(y) dy. They

change nothing, and so h⌦|T [O1 · · · On] |⌦i = h⌦|T [O1 · · · On] |⌦i0 in which
the prime refers to the gauge transformations ⇤ and ⇤0.

We’ve seen that the action S is gauge invariant. So is the measure DAD .
We now restrict ourselves to operators O1 · · · On that are gauge invariant.
So in h⌦|T [O1 · · · On] |⌦i0, the replacement of the fields by their gauge trans-
forms a↵ects only the Coulomb-gauge term �[r · A]

h⌦|T [O1 · · · On] |⌦i =

Z
O1 · · · On e

iS �[r · A+4⇤]DAD 
Z

eiS �[r · A+4⇤0]DAD 
. (20.202)

We now have two choices. If we integrate over all gauge functions ⇤(x)
and ⇤0(x) in both the numerator and the denominator of this ratio (20.202),
then apart from over-all constants that cancel, the mean value in the vacuum
of the time-ordered product is the ratio

h⌦|T [O1 · · · On] |⌦i =

Z
O1 · · · On e

iS DAD 
Z

eiS DAD 
(20.203)

in which we integrate over all matter fields, gauge fields, and gauges. That
is, we do not fix the gauge.
The analogous formula for the euclidian time-ordered product is

h⌦|T [Oe,1 · · · Oe,n] |⌦i =

Z
O1 · · · On e

�Se DAD 
Z

e�Se DAD 
(20.204)

in which the euclidian action Se is the spacetime integral of the energy
density. This formula is quite general; it holds in nonabelian gauge theories
and is important in lattice gauge theory.

Our second choice is to multiply the numerator and the denominator of the
ratio (20.202) by the exponential exp[�i12↵

R
(4⇤)2 d4x] and then integrate

over ⇤(x) in the numerator and over ⇤0(x) in the denominator. This oper-
ation just multiplies the numerator and denominator by the same constant
factor, which cancels. But if before integrating over all gauge transforma-
tions, we shift ⇤ so that 4⇤ changes to 4⇤�Ȧ0, then the exponential factor
is exp[�i12↵

R
(Ȧ0 �4⇤)2 d4x]. Now when we integrate over ⇤(x), the delta

function �(r · A+4⇤) replaces 4⇤ by �r · A in the inserted exponen-
tial, converting it to exp[�i12↵

R
(Ȧ0 +r · A)2 d4x]. This term changes the
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gauge-invariant action (20.200) to the gauge-fixed action

S↵ =

Z
� 1

4
Fab F

ab � ↵

2
(@bA

b)2+Abjb + Lm d4x. (20.205)

This Lorentz-invariant, gauge-fixed action is much easier to use than the
Coulomb-gauge action (20.194) with the Coulomb potential (20.192). We
can use it to compute scattering amplitudes perturbatively. The mean value
of a time-ordered product of operators in the ground state |0i of the free
theory is

h0|T [O1 · · · On] |0i =

Z
O1 · · · On e

iS↵ DAD 
Z

eiS↵ DAD 
. (20.206)

By following steps analogous to those that led to (20.183), one may show
(exercise 20.30) that in Feynman’s gauge, ↵ = 1, the photon propagator is

h0|T [Aµ(x)A⌫(y)] |0i = � i4µ⌫(x� y) = � i

Z
⌘µ⌫

q2 � i✏
eiq·(x�y) d4q

(2⇡)4
.

(20.207)

20.12 Fermionic Path Integrals

In our brief introduction (1.11–1.12) and (1.48–1.50), to Grassmann vari-
ables, we learned that because ✓2 = 0 the most general function f(✓) of a
single Grassmann variable ✓ is f(✓) = a + b ✓. So a complete integral table
consists of the integral of this linear function

Z
f(✓) d✓ =

Z
a+ b ✓ d✓ = a

Z
d✓ + b

Z
✓ d✓. (20.208)

This equation has two unknowns, the integral
R
d✓ of unity and the integralR

✓ d✓ of ✓. We choose them so that the integral of f(✓ + ⇣)
Z
f(✓ + ⇣) d✓ =

Z
a+ b (✓ + ⇣) d✓ = (a+ b ⇣)

Z
d✓ + b

Z
✓ d✓ (20.209)

is the same as the integral (20.208) of f(✓). Thus the integral
R
d✓ of unity

must vanish, while the integral
R
✓ d✓ of ✓ can be any constant, which we

choose to be unity. Our complete table of integrals is then
Z
d✓ = 0 and

Z
✓ d✓ = 1. (20.210)
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This table of integrals is true for all Grassmann variables. So if ✓0 = c ✓ is a
complex multiple of ✓, then we must set d✓0 = c�1 d✓ in order to have

Z
d✓0 = 0 and

Z
✓0 d✓0 =

Z
c ✓ d✓0 =

Z
c ✓ c�1 d✓ = 1. (20.211)

The anticommutation relations for a fermionic degree of freedom  are

{ , †} ⌘   † +  † = 1 and { , } = { †, †} = 0. (20.212)

Because  has  †, it is conventional to introduce a variable ✓⇤ = ✓† that
anti-commutes with itself and with ✓

{✓⇤, ✓⇤} = {✓⇤, ✓} = {✓, ✓} = 0. (20.213)

The logic that led to (20.210) now gives
Z
d✓⇤ = 0 and

Z
✓⇤ d✓⇤ = 1. (20.214)

We define the reference state |0i as |0i ⌘  |si for a state |si that is not
annihilated by  . Since  2 = 0, the operator  annihilates the state |0i

 |0i =  2|si = 0. (20.215)

The e↵ect of the operator  on the state

|✓i = exp
⇣
 †✓ � 1

2✓
⇤✓
⌘
|0i =

⇣
1 +  †✓ � 1

2✓
⇤✓
⌘
|0i (20.216)

is

 |✓i =  (1 +  †✓ � 1
2✓

⇤✓)|0i =   †✓|0i = (1�  † )✓|0i = ✓|0i (20.217)

while that of ✓ on |✓i is

✓|✓i = ✓(1 +  †✓ � 1
2✓

⇤✓)|0i = ✓|0i. (20.218)

The state |✓i therefore is an eigenstate of  with eigenvalue ✓

 |✓i = ✓|✓i. (20.219)

The bra corresponding to the ket |⇣i

h⇣| = h0|
✓
1 + ⇣⇤ � 1

2
⇣⇤⇣

◆
(20.220)

is a left eigenstate of  †

h⇣| † = h⇣|⇣⇤ = ⇣⇤h⇣| (20.221)



804 Path integrals

and the inner product h⇣|✓i is (exercise 20.31)

h⇣|✓i = h0|
✓
1 + ⇣⇤ � 1

2
⇣⇤⇣

◆✓
1 +  †✓ � 1

2
✓⇤✓

◆
|0i

= h0|1 + ⇣⇤✓ � 1

2
⇣⇤⇣ � 1

2
✓⇤✓ +

1

4
⇣⇤⇣✓⇤✓|0i

= exp


⇣⇤✓ � 1

2
(⇣⇤⇣ + ✓⇤✓)

�
. (20.222)

Example 20.11 (A gaussian integral) For any number c, we can compute
the integral of exp(c ✓⇤✓) by expanding the exponential
Z

ec ✓
⇤✓ d✓⇤d✓ =

Z
(1 + c ✓⇤✓) d✓⇤d✓ =

Z
(1� c ✓ ✓⇤) d✓⇤d✓ = �c. (20.223)

The identity operator for the space of states

c|0i+ d|1i ⌘ c|0i+ d †|0i (20.224)

is (exercise 20.32) the integral

I =

Z
|✓ih✓| d✓⇤d✓ = |0ih0|+ |1ih1| (20.225)

in which the di↵erentials anti-commute with each other and with other
fermionic variables: {d✓, d✓⇤} = 0, {d✓, ✓} = 0, {d✓, } = 0, and so forth.
The case of several Grassmann variables ✓1, ✓2, . . . , ✓n and several Fermi

operators  1, 2, . . . , n is similar. The ✓k anticommute among themselves
and with the Fermi operators

{✓i, ✓j} = {✓i, ✓⇤j} = {✓⇤i , ✓⇤j} = 0 and {✓i, k} = {✓⇤i , k} = 0 (20.226)

while the  k satisfy

{ k, 
†
`} = �k` and { k, l} = { †

k, 
†
`} = 0. (20.227)

The reference state |0i is

|0i =
 

nY

k=1

 k

!
|si (20.228)

in which |si is any state not annihilated by any  k (so the resulting |0i isn’t
zero). The direct-product state

|✓i ⌘ exp

 
nX

k=1

 †
k✓k �

1

2
✓⇤k✓k

!
|0i =

"
nY

k=1

✓
1 +  †

k✓k �
1

2
✓⇤k✓k

◆#
|0i

(20.229)
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is (exercise 20.33) a simultaneous eigenstate  k|✓i = ✓k|✓i of each  k. It
follows that

 ` k|✓i =  `✓k|✓i = �✓k `|✓i = �✓k✓`|✓i = ✓`✓k|✓i (20.230)

and so too  k `|✓i = ✓k✓`|✓i. Since the  ’s anticommute, their eigenvalues
must also

✓`✓k|✓i =  ` k|✓i = � k `|✓i = �✓k✓`|✓i. (20.231)

The inner product h⇣|✓i is

h⇣|✓i = h0|
"

nY

k=1

(1 + ⇣⇤k k �
1

2
⇣⇤k⇣k)

#"
nY

`=1

(1 +  †
`✓` �

1

2
✓⇤` ✓`)

#
|0i

= exp

"
nX

k=1

⇣⇤k✓k �
1

2
(⇣⇤k⇣k + ✓⇤k✓k)

#
= e⇣

†✓�(⇣†⇣+✓†✓)/2. (20.232)

The identity operator is

I =

Z
|✓ih✓|

nY

k=1

d✓⇤kd✓k. (20.233)

Example 20.12 (Gaussian Grassmann integral) For any 2⇥ 2 matrix A,
we may compute the gaussian integral

g(A) =

Z
e�✓

†A✓ d✓⇤1d✓1d✓
⇤
2d✓2 (20.234)

by expanding the exponential. The only terms that survive are the ones that
have exactly one of each of the four variables ✓1, ✓2, ✓⇤1, and ✓⇤2. Thus the
integral is the determinant of the matrix A

g(A) =

Z
1

2
(✓⇤kAk`✓`)

2 d✓⇤1d✓1d✓
⇤
2d✓2

=

Z
(✓⇤1A11✓1 ✓

⇤
2A22✓2 + ✓⇤1A12✓2 ✓

⇤
2A21✓1) d✓

⇤
1d✓1d✓

⇤
2d✓2

= A11A22 �A12A21 = detA. (20.235)

The natural generalization to n dimensions is

Z
e�✓

†A✓
nY

k=1

d✓⇤kd✓k = detA (20.236)

and is true for any n⇥ n matrix A. If A is invertible, then the invariance of
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Grassmann integrals under translations implies that
Z

e�✓
†A✓+✓†⇣+⇣†✓

nY

k=1

d✓⇤kd✓k =

Z
e�✓

†A(✓+A�1⇣)+✓†⇣+⇣†(✓+A�1⇣)
nY

k=1

d✓⇤kd✓k

=

Z
e�✓

†A✓+⇣†✓+⇣†A�1⇣
nY

k=1

d✓⇤kd✓k

=

Z
e�(✓†+⇣†A�1)A✓+⇣†✓+⇣†A�1⇣

nY

k=1

d✓⇤kd✓k

=

Z
e�✓

†A✓+⇣†A�1⇣
nY

k=1

d✓⇤kd✓k

= detA e⇣
†A�1⇣ . (20.237)

The values of ✓ and ✓† that make the argument �✓†A✓ + ✓†⇣ + ⇣†✓ of the
exponential stationary are ✓ = A�1⇣ and ✓† = ⇣†A�1. So a gaussian Grass-
mann integral is equal to its exponential evaluated at its stationary point,
apart from a prefactor involving the determinant detA. Exercises (20.2 &
20.4) are about the bosonic versions (20.3 & 20.4) of this result.

One may further extend these definitions to a Grassmann field �m(x) and
an associated Dirac field  m(x). The �m(x)’s anticommute among them-
selves and with all fermionic variables at all points of spacetime

{�m(x),�n(x
0)} = {�⇤

m(x),�n(x
0)} = {�⇤

m(x),�⇤
n(x

0)} = 0 (20.238)

and the Dirac field  m(x) obeys the equal-time anticommutation relations

{ m(x, t), †
n(x

0, t)} = �mn �(x� x
0) (n,m = 1, . . . , 4)

{ m(x, t), n(x
0, t)} = { †

m(x, t), †
n(x

0, t)} = 0.
(20.239)

As in (20.228), we use eigenstates of the field  at t = 0. If |0i is defined
in terms of a state |si that is not annihilated by any  m(x, 0) as

|0i =
"
Y

m,x

 m(x, 0)

#
|si (20.240)

then (exercise 20.34) the state

|�i = exp

 Z X

m

 †
m(x, 0)�m(x)� 1

2
�⇤
m(x)�m(x) d3x

!
|0i

= exp

✓Z
 †�� 1

2�
†� d3x

◆
|0i (20.241)
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is an eigenstate of the operator  m(x, 0) with eigenvalue �m(x)

 m(x, 0)|�i = �m(x)|�i. (20.242)

The inner product of two such states is (exercise 20.35)

h�0|�i = exp

Z
�0†�� 1

2
�0†�0 � 1

2
�†� d3x

�
. (20.243)

The identity operator is the integral

I =

Z
|�ih�|D�⇤D� (20.244)

in which

D�⇤D� ⌘
Y

m,x

d�⇤
m(x)d�m(x). (20.245)

The hamiltonian for a free Dirac field  of mass m is the spatial integral

H0 =

Z
 (� · r+m) d3x (20.246)

in which  ⌘ i †�0 and the gamma matrices (11.340) satisfy

{�a, �b} = 2 ⌘ab (20.247)

where ⌘ is the 4⇥ 4 diagonal matrix with entries (�1, 1, 1, 1). Since  |�i =
�|�i and h�0| † = h�0|�0†, the quantity h�0| exp(� i✏H0)|�i is by (20.243)

h�0|e�i✏H0 |�i = h�0|�i exp

� i✏

Z
�0 (� · r+m)� d3x

�
(20.248)

= exp

Z
1
2(�

0† � �†)�� 1
2�

0†(�0 � �)� i✏�0(� ·r+m)�d3x

�

= exp

⇢
✏

Z h
1
2 �̇

†�� 1
2�

0†�̇� i�0 (� · r+m)�
i
d3x

�

in which �0† � �† = ✏�̇† and �0 � � = ✏�̇. Everything within the square
brackets is multiplied by ✏, so we may replace �0† by �† and �0 by � so as
to write to first order in ✏

h�0|e�i✏H0 |�i = exp


✏

Z
1
2 �̇

†�� 1
2�

†�̇� i� (� · r+m)� d3x

�
(20.249)

in which the dependence upon �0 is through the time derivatives.
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Putting together n = 2t/✏ such matrix elements, integrating over all
intermediate-state dyadics |�ih�|, and using our formula (20.244), we find

h�t|e�2itH0 |��ti =
Z
exp

Z
1
2 �̇

†�� 1
2�

†�̇� i� (� ·r+m)�d4x

�
D�⇤D�.

(20.250)
Integrating �̇†� by parts and dropping the surface term, we get

h�t|e�2itH0 |��ti =
Z
exp

Z
� �†�̇� i� (� ·r+m)� d4x

�
D�⇤D�.

(20.251)
Since � �†�̇ = � i��0�̇, the argument of the exponential is

i

Z
� ��0�̇� � (� · r+m)� d4x = i

Z
� � (�µ@µ +m)� d4x. (20.252)

We then have

h�t|e�2itH0 |��ti =
Z
exp

✓
i

Z
L0(�) d

4x

◆
D�⇤D� (20.253)

in which L0(�) = � � (�µ@µ +m)� is the action density (11.342) for a free
Dirac field. Thus the amplitude is a path integral with phases given by the
classical action S0[�]

h�t|e�2itH0 |��ti =
Z

ei
R
L0(�) d4xD�⇤D� =

Z
eiS0[�]D�⇤D� (20.254)

and the integral is over all fields that go from �(x,�t) = ��t(x) to �(x, t) =
�t(x). Any normalization factor will cancel in ratios of such integrals.
Since Fermi fields anticommute, their time-ordered product has an extra

minus sign

T
⇥
 (x1) (x2)

⇤
= ✓(x01�x02) (x1) (x2)�✓(x02�x01) (x2) (x1). (20.255)

The logic behind our formulas (20.146) and (20.164) for the time-ordered
product of bosonic fields now leads to an expression for the time-ordered
product of 2n Dirac fields (with D�00 and D�0 suppressed)

h0|T
⇥
 (x1) · · · (x2n)

⇤
|0i =

Z
h0|�00i�(x1) · · ·�(x2n) eiS0[�]h�0|0iD�⇤D�

Z
h0|�00i eiS0[�]h�0|0iD�⇤D�

.

(20.256)
As in (20.175), the e↵ect of the inner products h0|�00i and h�0|0i is to insert
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✏-terms which modify the Dirac propagators

h0|T
⇥
 (x1) · · · (x2n)

⇤
|0i =

Z
�(x1) · · ·�(x2n) eiS0[�,✏]D�⇤D�

Z
eiS0[�,✏]D�⇤D�

. (20.257)

Imitating (20.176), we introduce a Grassmann external current ⇣(x) and
define a fermionic analog of Z0[j]

Z0[⇣] ⌘ h0| T
h
e
R
⇣ + ⇣ d4x

i
|0i =

Z
e
R
⇣�+�⇣ d4xeiS0[�,✏]D�⇤D�
Z
eiS0[�,✏]D�⇤D�

. (20.258)

Example 20.13 (Feynman’s fermion propagator) Since

i (�µ@µ +m)�(x� y) ⌘ i (�µ@µ +m)

Z
d4p

(2⇡)4
eip(x�y)�i (�i�⌫p⌫ +m)

p2 +m2 � i✏

=

Z
d4p

(2⇡)4
eip(x�y) (i�µpµ +m)

(�i�⌫p⌫ +m)

p2 +m2 � i✏

=

Z
d4p

(2⇡)4
eip(x�y) p2 +m2

p2 +m2 � i✏
= �4(x� y),

(20.259)

the function �(x� y) is the inverse of the di↵erential operator i(�µ@µ+m).
Thus the Grassmann identity (20.237) implies that Z0[⇣] is

h0| T
h
e
R
⇣ + ⇣ d4x

i
|0i =

Z
e
R
[⇣�+�⇣�i�(�µ@µ+m)�]d4xD�⇤D�

Z
eiS0[�,✏]D�⇤D�

= exp

Z
⇣(x)�(x� y)⇣(y) d4xd4y

�
.

(20.260)

Di↵erentiating we get

h0|T
⇥
 (x) (y)

⇤
|0i = �(x�y) = �i

Z
d4p

(2⇡)4
eip(x�y) �i�⌫p⌫ +m

p2 +m2 � i✏
. (20.261)
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20.13 Application to nonabelian gauge theories

The action of a generic nonabelian gauge theory is

S =

Z
� 1

4Faµ⌫F
µ⌫
a �  (�µDµ +m) d4x (20.262)

in which the Maxwell field is

Faµ⌫ ⌘ @µAa⌫ � @⌫Aaµ + g fabcAbµAc⌫ (20.263)

and the covariant derivative is

Dµ ⌘ @µ � ig taAaµ  . (20.264)

Here g is a coupling constant, fabc is a structure constant (11.69), and ta is
a generator (11.58) of the Lie algebra (section 11.16) of the gauge group.
One may show (Weinberg, 1996, pp. 14–18) that the analog of equation

(20.201) for quantum electrodynamics is

h⌦|T [O1 · · · On] |⌦i =

Z
O1 · · · On e

iS �[Aa3]DAD 
Z

eiS �[Aa3]DAD 
(20.265)

in which the functional delta function

�[Aa3] ⌘
Y

x

�(Aa3(x)) (20.266)

enforces the axial-gauge condition, and D stands for D ⇤D .
Initially, physicists had trouble computing nonabelian amplitudes beyond

the lowest order of perturbation theory. Then DeWitt showed how to com-
pute to second order (DeWitt, 1967), and Faddeev and Popov, using path
integrals, showed how to compute to all orders (Faddeev and Popov, 1967).

20.14 Faddeev-Popov tricks

The path-integral methods of Faddeev and Popov are described in (Wein-
berg, 1996, pp. 19–27). We will use gauge-fixing functions Ga(x) to impose
a gauge condition on our nonabelian gauge fields Aa

µ(x). For instance, we
can use Ga(x) = A3

a(x) to impose an axial gauge or Ga(x) = i@µA
µ
a(x) to

impose a Lorentz-invariant gauge.
Under an infinitesimal gauge transformation (13.415)

A�aµ = Aaµ � @µ�a � g fabcAbµ �c (20.267)
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the gauge fields change, and so the gauge-fixing functions Gb(x), which de-
pend upon them, also change. The jacobian J of that change at � = 0 is

J = det

✓
�G�

a(x)

��b(y)

◆����
�=0

⌘ DG�

D�

����
�=0

(20.268)

and it typically involves the delta function �4(x� y).
Let B[G] be any functional of the gauge-fixing functions Gb(x) such as

B[G] =
Y

x,a

�(Ga(x)) =
Y

x,a

�(A3
a(x)) (20.269)

in an axial gauge or

B[G] = exp


i

2

Z
(Ga(x))

2 d4x

�
= exp


� i

2

Z
(@µA

µ
a(x))

2 d4x

�
(20.270)

in a Lorentz-invariant gauge.
We want to understand functional integrals like (20.265)

h⌦|T [O1 · · · On] |⌦i =

Z
O1 · · · On e

iS B[G] J DAD 
Z

eiS B[G] J DAD 
(20.271)

in which the operators Ok, the action functional S[A], and the di↵erentials
DAD (but not the gauge-fixing functional B[G] or the Jacobian J) are
gauge invariant. The axial-gauge formula (20.265) is a simple example in
which B[G] = �[Aa3] enforces the axial-gauge condition Aa3(x) = 0 and the
determinant J = det (�ab@3�(x� y)) is a constant that cancels.

If we translate the gauge fields by gauge transformations ⇤ and ⇤0, then
the ratio (20.271) does not change

h⌦|T [O1 · · · On] |⌦i =

Z
O⇤

1 · · · O⇤
n eiS

⇤
B[G⇤] J⇤DA⇤D ⇤

Z
eiS

⇤0
B[G⇤0

] J⇤0
DA⇤0

D ⇤0
(20.272)

any more than
R
f(y) dy is di↵erent from

R
f(x) dx. Since the operators Ok,

the action functional S[A], and the di↵erentials DAD are gauge invariant,
most of the ⇤-dependence goes away

h⌦|T [O1 · · · On] |⌦i =

Z
O1 · · · On e

iS B[G⇤] J⇤DAD 
Z

eiS B[G⇤0
] J⇤0

DAD 
. (20.273)
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Let ⇤� be a gauge transformation ⇤ followed by an infinitesimal gauge
transformation �. The jacobian J⇤ is a determinant of a product of matrices
which is a product of their determinants

J⇤ = det

✓
�G⇤�

a (x)

��b(y)

◆����
�=0

= det

✓Z
�G⇤�

a (x)

�⇤�c(z)

�⇤�c(z)

��b(y)
d4z

◆����
�=0

= det

✓
�G⇤�

a (x)

�⇤�c(z)

◆����
�=0

det

✓
�⇤�c(z)

��b(y)

◆����
�=0

= det

✓
�G⇤

a (x)

�⇤c(z)

◆
det

✓
�⇤�c(z)

��b(y)

◆����
�=0

⌘ DG⇤

D⇤

D⇤�

D�

����
�=0

. (20.274)

Now we integrate over the gauge transformation ⇤ with weight function
⇢(⇤) = (D⇤�/D�|�=0)

�1 and find, since the ratio (20.273) is ⇤-independent

h⌦|T [O1 · · · On] |⌦i =

Z
O1 · · · On e

iS B[G⇤]
DG⇤

D⇤
D⇤DAD 

Z
eiS B[G⇤]

DG⇤

D⇤
D⇤DAD 

=

Z
O1 · · · On e

iS B[G⇤]DG⇤DAD 
Z

eiS B[G⇤]DG⇤DAD 

=

Z
O1 · · · On e

iS DAD 
Z

eiS DAD 
. (20.275)

Thus the mean-value in the vacuum of a time-ordered product of gauge-
invariant operators is a ratio of path integrals over all gauge fields without
any gauge fixing. No matter what gauge condition G or gauge-fixing func-
tional B[G] we use, the resulting gauge-fixed ratio (20.271) is equal to the
ratio (20.275) of path integrals over all gauge fields without any gauge fixing.
All gauge-fixed ratios (20.271) give the same time-ordered products, and so
we can use whatever gauge condition G or gauge-fixing functional B[G] is
most convenient.
The analogous formula for the euclidian time-ordered product is

h⌦|Te [O1 · · · On] |⌦i =

Z
O1 · · · On e

�Se DAD 
Z

e�Se DAD 
(20.276)
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where the euclidian action Se is the spacetime integral of the energy density.
This formula is the basis for lattice gauge theory.
The path-integral formulas (20.203 & 20.204) derived for quantum elec-

trodynamics therefore also apply to nonabelian gauge theories.

20.15 Ghosts

Faddeev, Popov, and DeWitt showed how to do perturbative calculations in
which one does fix the gauge. To continue our description of their tricks, we
return to the gauge-fixed expression (20.271) for the time-ordered product

h⌦|T [O1 · · · On] |⌦i =

Z
O1 · · · On e

iS B[G] J DAD 
Z

eiS B[G] J DAD 
(20.277)

set Gb(x) = �i@µA
µ
b (x) and use (20.270) as the gauge-fixing functional B[G]

B[G] = exp


i

2

Z
(Ga(x))

2 d4x

�
= exp


� i

2

Z
(@µA

µ
a(x))

2 d4x

�
.

(20.278)
This functional adds to the action density the term �(@µA

µ
a)2/2 which leads

to a gauge-field propagator like the photon’s (20.207)

h0|T
h
Aa

µ(x)A
b
⌫(y)

i
|0i = � i�ab4µ⌫(x� y) = � i

Z
⌘µ⌫�ab
q2 � i✏

eiq·(x�y) d4q

(2⇡)4
.

(20.279)
What about the determinant J? Under an infinitesimal gauge transfor-

mation (20.267), the gauge field becomes

A�aµ = Aaµ � @µ�a � g fabcAbµ �c (20.280)

and so G�
a(x) = i@µA�aµ(x) is

G�
a(x) = i@µAaµ(x) + i@µ

Z
[��ac@µ � g fabcAbµ(x)] �

4(x� y)�c(y) d
4y.

(20.281)
The jacobian J then is the determinant (20.268) of the matrix
✓
�G�

a(x)

��c(y)

◆����
�=0

= �i�ac2 �
4(x�y)�ig fabc

@

@xµ
⇥
Aµ

b (x)�
4(x� y)

⇤
(20.282)

that is

J = det

✓
�i�ac2 �

4(x� y)� ig fabc
@

@xµ
⇥
Aµ

b (x)�
4(x� y)

⇤◆
. (20.283)
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But we’ve seen (20.236) that a determinant can be written as a fermionic
path integral

detA =

Z
e�✓

†A ✓
nY

k=1

d✓⇤kd✓k. (20.284)

So we can write the jacobian J as

J =

Z
exp

Z
i!⇤

a2!a + igfabc!
⇤
a@µ(A

µ
b!c) d

4x

�
D!⇤D! (20.285)

which contributes the terms �@µ!⇤
a@

µ!a and

�@µ!⇤
a g fabcA

µ
b!c = @µ!

⇤
a g fabcA

µ
c!b (20.286)

to the action density.
Thus we can do perturbation theory by using the modified action density

L0 = � 1
4Faµ⌫F

µ⌫
a � 1

2 (@µA
µ
a)

2�@µ!⇤
a@

µ!a+@µ!
⇤
a g fabcA

µ
c!b� ( 6D +m) 

(20.287)
in which 6D ⌘ �µDµ = �µ(@µ�igtaAaµ). The ghost field ! is a mathematical
device, not a physical field describing real particles, which would be spinless
fermions violating the spin-statistics theorem (example 11.25).

20.16 E↵ective field theories

Suppose a field � whose mass M is huge compared to accessible energies
interacts with a field  of a low-energy theory such as the standard model

L� = � 1
2@a�(x) @

a�(x)� 1
2M

2�2(x) + g  (x) (x)�(x). (20.288)

Compared to the mass term M2, the derivative terms @a�@a� contribute
little to the action. So we represent the e↵ect of the heavy field � as L�0 =
�1

2M
2�2 + g  �. Completing the square

L�0 = � 1
2M

2
⇣
�� g

M2
  
⌘2

+
g2

2M2
(  )2 (20.289)

and shifting � by g  /M2, we see that the gaussian path integral is
Z

exp


i

Z
�1

2M
2�2 +

g2

2M2
(  )2 d4x

�
D� = exp


i

Z
g2

2M2
(  )2 d4x

�

apart from a field-independent factor. The net e↵ect of heavy field � is thus
to add to the low-energy theory a new interaction

L =
g2

2M2
(  )2 (20.290)
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which is small because M2 is large. If a gauge boson Ya of huge mass M
interacts as LY 0 = �1

2M
2YaY a + ig �a Ya with a spin-one-half field  ,

then L = � (g2/(2M2))  �a  �a is the new low-energy interaction.

20.17 Complex path integrals

In this chapter, it has been tacitly assumed that the action is quadratic in
the time derivatives of the fields. This assumption makes the hamiltonian
quadratic in the momenta and the path integral over them gaussian. In
general, however, the partition function is a path integral over fields and
momenta

Z(�) =

Z
exp

⇢Z �

0

Z h
i�̇(x)⇡(x)�H(�,⇡)

i
dtd3x

�
D�D⇡ (20.291)

in which the exponential is not gaussian or positive. To study such theories,
one may numerically integrate over the momenta, make a look-up table, and
use the Monte Carlo methods of Section 16.6 (Amdahl and Cahill, 2016).
Programs that do this are in the repository Path integrals at github.com/
kevinecahill.

Further reading

“Space-Time Approach to Non-relativistic Quantum Mechanics” (Feynman,
1948), Quantum Mechanics and Path Integrals (Feynman et al., 2010), Sta-
tistical Mechanics (Feynman, 1972), The Quantum Theory of Fields I, II, &
III (Weinberg, 1995, 1996, 2005), Quantum Field Theory in a Nutshell (Zee,
2010), and Quantum Field Theory (Srednicki, 2007) all provide excellent
treatments of path integrals. Some applications are described in Path In-
tegrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial
Markets (Kleinert, 2009).

Exercises

20.1 From (20.1), derive the multiple gaussian integral for real aj and bj

Z 1

�1
exp

0

@
nX

j=1

iajx
2
j + 2ibjxj

1

A
nY

j=1

dxj =
nY

j=1

s
i⇡

aj
e�ib2j/aj . (20.292)

20.2 Use (20.292) to derive the multiple imaginary gaussian integral (20.3).
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Hint: Any real symmetric matrix s can be diagonalized by an orthog-
onal transformation a = oso|. Let y = ox.

20.3 Use (20.2) to show that for positive aj

Z 1

�1
exp

0

@
X

j

�ajx
2
j + 2ibjxj

1

A
nY

j=1

dxj =
nY

j=1

r
⇡

aj
e�b2j/aj . (20.293)

20.4 Use (20.293) to derive the many variable real gaussian integral (20.4).
Same hint as for exercise 20.2.

20.5 Do the q2 integral (20.27).

20.6 Insert the identity operator in the form of an integral (20.10) of outer
products |pihp| of eigenstates of the momentum operator p between
the exponential and the state |qai in the matrix element (20.25) and so
derive for that matrix element hqb| exp(�i(tb� ta)H/~)|qai the formula
(20.28). Hint: use the inner product hq|pi = exp(iqp/~)/

p
2⇡~, and do

the resulting Fourier transform.

20.7 Derive the path-integral formula (20.39) for the quadratic action (20.38).

20.8 Show that for the simple harmonic oscillator (20.47) the action S[qc]
of the classical path from qa, ta to qb, tb is (20.49).

20.9 Show that the determinants |Cn(y)| = detCn(y) of the tridiagonal ma-
trices (20.57) satisfy the recursion relation (20.58) and have the initial
values |C1(y)| = y and |C2(y)| = y2 � 1. Incidentally, the Chebyshev
polynomials (9.68) of the second kind Un(y/2) obey the same recursion
relation and have the same initial values, so |Cn(y)| = Un(y/2).

20.10 (a) Show that the functions Sn(y) = sin(n+1)✓/ sin ✓ with y = 2 cos ✓
satisfy the Toeplitz recursion relation (20.58) which after a cancellation
simplifies to sin(n + 2)✓ = 2 cos ✓ sin(n + 1)✓ � sinn✓. (b) Derive the
initial conditions S0(y) = 1, S1(y) = y, and S2(y) = y2 � 1.

20.11 Do the q2 integral (20.79).

20.12 Show that the euclidian action (20.93) is stationary if the path qec(u)
obeys the euclidian equation of motion q̈ec(u) = !2qec(u).

20.13 By using (20.20) for each of the three exponentials in (20.107), derive
(20.108) from (20.107). Hint: From (20.20), one has

qe�i (tb�ta)H/~q =

Z
qb|qbi eiS[q]/~ hqa|qaDq dqa dqb (20.294)

in which qa = q(ta) and qb = q(tb).

20.14 Derive the path-integral formula (20.145) from (20.135–20.138).

20.15 Derive the path-integral formula (20.159) from (20.153–20.156).
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20.16 Show that the vector Y that makes the argument � iY TSY + iDTY
of the multiple gaussian integral

Z 1

�1
exp

�
� iY TSY + iDTY

� nY

i=1

dyi =

s
⇡n

det(iS)
exp

✓
i

4
DTS�1D

◆

(20.295)
stationary is Y = S�1D/2, and that the multiple gaussian integral
(20.295) is equal to its exponential exp(�iY TSY + iDTY ) evaluated at
its stationary point Y = Y apart from a prefactor involving det iS.

20.17 Show that the vector Y that makes the argument � Y TSY + DTY
of the multiple gaussian integral

Z 1

�1
exp

�
� Y TSY +DTY

� nY

i=1

dyi =

s
⇡n

det(S)
exp

✓
1

4
DTS�1D

◆

(20.296)
stationary is Y = S�1D/2, and that the multiple gaussian integral
(20.296) is equal to its exponential exp(�Y TSY +DTY ) evaluated at
its stationary point Y = Y apart from a prefactor involving detS.

20.18 By taking the nonrelativistic limit of the formula (12.70) for the action
of a relativistic particle of mass m and charge q, derive the expression
(20.44) for the action of a nonrelativistic particle in an electromagnetic
field with no scalar potential.

20.19 Work out the path-integral formula for the amplitude for a mass m
initially at rest to fall to the ground from height h in a gravitational
field of local acceleration g to lowest order and then including loops up
to an overall constant. Hint: use the technique of section 20.4.

20.20 Show that the euclidian action of the stationary solution (20.92) is
(20.93).

20.21 Derive formula (20.167) for the action S0[�] from (20.165 & 20.166).
20.22 Derive identity (20.171). Split the time integral at t = 0 into two

halves, use ✏ e±✏t = ± d e±✏t/dt and then integrate each half by parts.
20.23 Derive the third term in equation (20.173) from the second term.
20.24 Use (20.177) and the Fourier transform (20.178) of the external cur-

rent j to derive the formula (20.179) for the modified action S0[�, ✏, j].
20.25 Derive equation (20.180) from equation (20.179).
20.26 Derive the formula (20.181) for Z0[j] from the formula for S0[�, ✏, j].
20.27 Derive equations (20.182 & 20.183) from formula (20.181).
20.28 Derive equation (20.187) from the formula (20.182) for Z0[j].
20.29 Show that the time integral of the Coulomb term (20.192) is the term

that is quadratic in j0 in the number F defined by (20.196).
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20.30 By following steps analogous to those that led to (20.183), derive the
formula (20.207) for the photon propagator in Feynman’s gauge.

20.31 Derive expression (20.222) for the inner product h⇣|✓i.
20.32 Derive the representation (20.225) of the identity operator I for a

single fermionic degree of freedom from the rules (20.210 & 20.214) for
Grassmann integration and the anticommutation relations (20.213).

20.33 Derive the eigenvalue equation  k|✓i = ✓k|✓i from the definitions
(20.228 & 20.229) of the eigenstate |✓i.

20.34 Derive the eigenvalue relation (20.242) for the Fermi field  m(x, t)
from the anticommutation relations (20.238 & 20.239) and the defini-
tions (20.240 & 20.241).

20.35 Derive the formula (20.243 ) for the inner product h�0|�i from the
definition (20.241) of the ket |�i.

20.36 Imitate the derivation of the path-integral formula (20.70) and derive
its three-dimensional version (20.77).

20.37 Di↵erentials d⇣i of complex linear combinations ⇣i = Ai` ✓` of Grass-
mann variables are defined as d⇣i = d✓` (A�1)`i and as d⇣1 · · · d⇣n =
det(A�1) d✓1 · · · d✓n. Show that the ⇣’s inherit the rules of integration
of the ✓’s:

�ik =

Z
✓i d✓k =) �ik =

Z
⇣i d⇣k. (20.297)


