19

Functional derivatives

19.1 Functionals

A functional G[f] is a map from a space of functions to a set of numbers.
For instance, the action functional S[q] for a particle in one dimension maps
the coordinate ¢(t), which is a function of the time ¢, into a number—the
action of the motion of the coordinate ¢(t). If the particle has mass m and
is moving slowly and freely, then for the interval (t1,t2) its action is

Sola] :/:dt % <df’:liﬂ>2. (19.1)

If the particle is moving slowly in a potential V' (g(t)), then its action is

to m 2
Slal = | i [2 (“4) —v<q<t>>]. (192)

Example 19.1 (Dirac’s delta function) Dirac’s delta function §(z — y) is
the functional §, that maps every function f(x) into its value f(y)

5,10 = f(y) = / f(2)b(x — ) da. (19.3)
Il

19.2 Functional derivatives

A functional derivative is a functional

SGIf][h] = %G[f rehl (19.4)
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of a functional G[f]. For instance, if G,,[f] is the functional

Gulf = [dz (@), (19.5)

then its functional derivative is the functional that maps the pair of functions
f, h to the number

6Gn[f1[h] = ——Gnlf + €h]

d n
=i JEv@rawy|
= /dmn(f(m))n_lh(x). (19.6)

Physicists often replace the function h by the delta functional 6, = §(x—y)
and use the less elaborate notation

SGlf] _
5f(y) = 0G|/f] [511] (19.7)
writing equation 19.6 as
of(y) /d =) 6z —y) = nf""Hy). (19.8)

Functional derivatives of functionals that involve powers of derivatives
also are easily dealt with. Suppose that the functional involves the square
of the derivative f/(x)

Glf] = /dx (f'(2))>. (19.9)

Then its functional derivative is

— di da (f'(z) + eh’(x))2
e=0 € e=0

= /dx 2f'(z)h' () = -2 /dm " (z)h(z) (19.10)

SGITIH] = S Cf + eh]

in which we have integrated by parts and used suitable boundary conditions
on h(z) to drop the surface terms. In physics notation, h(xz) = é(x —y), and

— = =2 /dx 1"(x)o6(z —y) = =2f"(y). (19.11)
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Example 19.2 (Lagrange’s equations)
action (19.2) is

The functional derivative of the

51allh) = 5 Sla + b

% dt [g‘ (q(t) + E}L(t)>2 —Vi(q(t) + eh(t))] o
_ /dt [ma(t)h(t) ~ V' (a(t)h(t)]

e=0

= /dt [=md(t) — V'(a(t))] h(t)

(19.12)
where we have integrated by parts and used suitable boundary conditions on
t

h(t) to drop the surface terms. Thus the functional derivative of the action
J

o mi(t') = V' (a(t))] 6/ 1) =

= —mig(t) — V'(q(t)) (19.13)
of a process that obeys Lagrange’s equation is stationary

65[q]

0] =0 <+ mijlt)= —V'(q@®)).

(19.14)
O
Physicists also use the compact notation
2Z[j 2Z[j + eby + €6,
02| _ 9721+ €0y + €] (19.15)
5] (y)5] (Z) Oe O€’ e=€'=0
in which d,(z) = 6(z —y) and 6,(z) = é(x — 2).
Example 19.3 (Shortest Path is a Straight Line) On a plane, the length
of the path (z, y(x)) from (20,30 to (x1,y1) is
1 1
= / Vdx? 4+ dy? = / V14 y?de. (19.16)
x0 Zo
The shortest path y(z) minimizes this length L[y], so
SLyllh] = —Lly + eh] =

- V14 (Y +eh)? da

de e=0
T1 d y/
= - h———=dz =0 (19.17
/ 1+y'2 /z dz (/1 + y2 ( )
1) = 0. This can vanish for arbitrary h(z) only if
d Y

de \1+y2

since h(zg) = h(x

(19.18)
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which implies y” = 0. Thus y(z) is a straight line, y = mx + b. O

Example 19.4 (Multiple functional derivatives) If j(x) is a prescribed
current and ¢(z) is a field, then the functional derivative of the exponential
functional

20 = exo ( [ sarota) o) (19.19)

18

0Z[j][h] = o= exp [/ () + eh(@) ¢(z) dw] =0 (19.20)

_ / h(x)é(z) dz exp < / j(@)b() d:p).

Setting h(z) = §(x — y), we find as the functional derivative at j(z) =0

7]
(v)

B /5 T — = ¢(y). (19.21)

Similarly, setting

P21ls) = 5o v | [ (1) + ehla) + (o)) 60) de]|

— o [awrsrdeesp | [ G0+ ehte) o(a) de|

€,e/=0

- / 9(2)(x) da / h(@)o(x) da exp [ / j(@)é() da:]%o
(19.22)

So with g(z) = é(x—y) and h(z) = §(x—z), we find as the double functional
derivative at j(z) =0

=0 o) (19.23)

O

19.3 Higher-order functional derivatives
The second functional derivative is
d2

PG = 5

G[f + €h]|._, - (19.24)
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So if G[f] is the functional

Gulf] = / (@) da (19.25)

then
2 2
SN = 5oz Gl + ehll g = 5z [ (@) +ehla))" do

- ;l; (Z) h2(2) 2 (z) da

e=0

e=0

=n(n—1) / 72 (x) b (x)d. (19.26)

Example 19.5 (625)) The second functional derivative of the action Sp[q]
(19.1) is

Pl = o [0 <W+ed"<t>)2

Tde J, o 2\ dt dt
e=0
2 dh(t)\?
:/ dt m (()> >0 (19.27)
4 dt
and is positive for all functions h(t). Thus the stationary classical trajectory
t—t to — 1t
a(t) = —alt2) + " —a(t) (19.28)
2 — 1t to —t1
is a minimum of the action Sp[q]. O

The second functional derivative of the action S[q] (19.2) is

2 to m 2
Fslalln) = 4 [ [2 (440 1 P0) v +eh<t>>]

t1
t 2 2
_ / - [m (dh(t)) _PVaD) oy
t1 dt aq2 (t>

and it can be positive, zero, or negative. Chaos sometimes arises in systems

of several particles when the second variation of S[q] about a stationary path
is negative, 625[q][h] < 0 while 65[q][h] = 0.
The nth functional derivative is defined as

dn

S"Gf][h] = T Gf +€h]|.— - (19.30)

e=0

(19.29)
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The nth functional derivative of the functional (19.25) is

dn

Gl = S [ (1) + b))V =

= / PN () () d.
= (19.31)

19.4 Functional Taylor series
It follows from the Taylor-series theorem (5.8) that

n

Seln =Y =3 gl +

nO

=G[f+h] (19.32)
e=0
which illustrates an advantage of the present mathematical notation.
The functional Sp[g] of Eq.(19.1) provides a simple example of the func-
tional Taylor series (19.32):
d 1d

e’ Solgl[h] = <1 + 7 T3ga
e=0

m %2 d 1d° . 2
= — 14—+ -— i(t h(t dt
2 Jy ( +d6+2d62> (q()—{—e())

> Solg + €h]

e=0
- % ” <q2(t) +24(t)h(t) + h%)) dt
— ZL : (q(t) + h(t))2 dt = So[q + h). (19.33)

If the function ¢(¢) makes the action Sp[g] stationary, and if h(t) is smooth
and vanishes at the endpoints of the time interval, then

So[q + h] = So[q] + So[h] (19.34)

More generally, if ¢(t) makes the action S[qg| stationary, and h(t) is any
loop from and to the origin, then

1 dn
S[q+ h] = €*S[q][h +Z—,d—n Slq + eh]| _ (19.35)

If Ss[q] also is quadratic in ¢ and ¢, then

Solqg + h] = Salq] + Sa[h]. (19.36)
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19.5 Functional differential equations

In inner products like (¢’|f), we represent the momentum operator as

p= Ziddq’ (19.37)
because then
Wivalf) = lal) = T (i) = (2ot ) win aoss

which respects the commutation relation [g, p] = ih.
So too in inner products (¢'|f) of eigenstates |¢') of ¢(x, t)

o(x,1)|¢) = ¢ (z)|) (19.39)

we can represent the momentum w(a,t) canonically conjugate to the field
o(x,t) as the functional derivative

]

h
e =)

(19.40)

because then

/ T 6 / T /
(@n(a (. 0)1) = :“W ;jf( 2D BN 0.

o ([ @ -a)s @) 1)

- ? (5(ac —z')+ ¢ (z )&;5'5;1:')) (@'1f)

= (¢| —ihd(x — 2') + ¢(x,t) (', 1) | f)

which respects the equal-time commutation relation

[p(x,t), 7(x' t)] =ihd(x — ). (19.42)

We can use the representation (19.40) for 7(z) to find the wave function
of the ground state |0) of the hamiltonian

H= ;/ [7T2 + (Vo)? + m2¢2] 3z (19.43)

where we have set h = ¢ = 1. We will use the trick we used in section 1.31
to find the ground state |0) of the harmonic-oscillator hamiltonian

2 2 2
P> mw?q

Hy =2
0= 9T T2

(19.44)
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and in example 7.14. In that trick, one writes

) .
Hy = %(qu — ip)(mwq +ip) + %[p, q]

1 . ) 1
= %(qu — ip)(mwq + ip) + 57%) (19.45)

and seeks a state |0) that is annihilated by mwq + ip

(¢'|mwq + ip|0) = (qu' - hdcé,) (¢'|0) = 0. (19.46)
The solution to this differential equation
di,(cz’l@ = —m:q/@’lo) (19.47)
is
(d'|0) = (%)1/4 exp <—m;g/2> (19.48)

in which the prefactor is a constant of normalization.
Extending that trick to the hamiltonian (19.43), we factor H

1
H = 2/[\/_v2 FmZe— m] [\/—W Fm2o+ m} Br+C (19.49)
in which C is the (infinite) constant

C = ;/ [77, V=2 +m? gb} dz. (19.50)

The ground state |0) of H therefore must satisfy the functional differential
equation (¢'|vV—V?2 4+ m? ¢ +ir|0) =0 or

fsij(’:g; — VoV ¢ (@) (¢]0). (19.51)

The solution to this equation is
1
(¢]0) = N exp <—2 / d(x) vV —=V2+m?2o(x) d3x> (19.52)

in which N is a normalization constant. To see that this functional does
satisfy equation (19.51), we compute the derivative

HOL MOl xp [ [ 6+ )T o ey ] (19.5)
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which at e =0 is

dig + <hio) - - [ [@)V=TT T m o) 8%
/ WV + m2 h(z) | (4]0).

We integrate the second term by parts and drop the surface terms because

(19.54)

the smooth function h goes to zero quickly as its arguments go to infinity.
We then have

d(¢ + €h|0)

de

= / NV =V2+m2o(z') d*z’ (9]0). (19.55)
e=0

Letting h(z’) = 6@ (2’ — x), we arrive at (19.51).
Since ¢(x) is real, its spatial Fourier transform

~ . 3o
o) = [ o) 5 (19.56)

satisfies ¢(—p) = ¢*(p). In terms of it, the ground-state wave function is

00 =N exp (5 [ VT ). 957

Example 19.6 (Other theories, other vacua) We can find exact ground
states for interacting theories with hamiltonians like

_ ;/ [\/qu ey — m] WW¢ Ficad" + zﬂ dz.

(19.58)
The state |Q2) will be an eigenstate of H with eigenvalue zero if
Q)
(;f( [\/ V2 +m?2 dlx) + icngb"} (6]92). (19.59)

By extending the argument of equations (19.49-19.55), one may show (ex-
ercise 19.4) that the wave functional of the vacuum is

(912 = N exp [—/ <1¢> \/m¢+ ¢"+1> d?’x]. (19.60)

O]
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Exercises

19.1 Compute the action Splg] (19.1) for the classical path (19.28).

19.2 Use (19.29) to find a formula for the second functional derivative of the
action (19.2) of the harmonic oscillator for which V(q) = mw?¢?/2.

19.3 Derive (19.57) from equations (19.52 & 19.56).

19.4 Show that (19.60) satisfies (19.59).



