4

The Cluster
Decomposition Principle

Up to this point we have not had much to say about the detailed structure
of the Hamiltonian operator H. This operator can be defined by giving
all its matrix elements between states with arbitrary numbers of particles.
Equivalently, as we shall show here, any such operator may be expressed
as a function of certain operators that create and destroy single particles.
We saw in Chapter 1 that such creation and annihilation operators were
first encountered in the canonical quantization of the electromagnetic field
and other fields in the early days of quantum mechanics. They provided
a natural formalism for theories in which massive particles as well as
photons can be produced and destroyed, beginning in the early 1930s with
Fermi’s theory of beta decay.

However, there is a deeper reason for constructing the Hamiltonian out
of creation and annihilation operators, which goes beyond the need to
quantize any pre-existing field theory like electrodynamics, and has nothing
to do with whether particles can actually be produced or destroyed. The
great advantage of this formalism is that if we express the Hamiltonian
as a sum of products of creation and annihilation operators, with suitable
non-singular coefficients, then the S-matrix will automatically satisfy a
crucial physical requirement, the cluster decomposition principle,! which
says in effect that distant experiments yield uncorrelated results. Indeed, it
is for this reason that the formalism of creation and annihilation operators
is widely used in non-relativistic quantum statistical mechanics, where the
number of particles is typically fixed. In relativistic quantum theories, the
cluster decomposition principle plays a crucial part in making field theory
inevitable. There have been many attempts to formulate a relativistically
invariant theory that would not be a local field theory, and it is indeed
possible to construct theories that are not field theories and yet yield
a Lorentz-invariant S-matrix for two-particle scattering,? but such efforts
have always run into trouble in sectors with more than two particles: either
the three-particle S-matrix is not Lorentz-invariant, or else it violates the
cluster decomposition pringiple.

In this chapter we will first discuss the basis of states containing ar-
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170 4 The Cluster Decomposition Principle

bitrary numbers of bosons and fermions, then define the creation and
annihilation operators, and finally show how their use facilitates the
construction of Hamiltonians that yield S-matrices satisfying the cluster
decomposition condition.

4.1 Bosons and Fermions

The Hilbert space of physical states is spanned by states containing 0,
1, 2, --- free particles. These can be free-particle states, or ‘in’ states, or
‘out’ states; for definiteness we shall deal here with the free-particle states
Dy, 7, ny.py 72 o, DUt all our results will apply equally to “in’ or ‘out’ states.
As usual, ¢ labels spin z-components (or helicities, for massless particles)
and n labels particle species.

We must now go into a matter that has been passed over in Chapter 3;
the symmetry properties of these states. As far as we know, all particles
are either bosons or fermions, the difference being that a state is unchanged
by the interchange of two identical bosons, and changes sign under the
interchange of two identical fermions. That is

Bopongon-= £ Poponpon- (4.1.1)

with an upper or lower sign if n is a boson or a fermion, respectively,
and dots representing other particles that may be present in the state.
(Equivalently, this could be stated as a condition on the ‘wave functions,’
the coefficients of these multi-particle basis vectors in physically allowable
state-vectors.) These two cases are often referred to as Bose or Fermi
‘statistics’. We will see in the next chapter that Bose and Fermui statistics
are only possible for particles that have integer or half-integer spins, re-
spectively, but we shall not need this information in the present chapter. In
this section we shall offer a non-rigorous argument that all particles must
be either bosons or fermions, and then set up normalization conditions
for multi-boson or multi-fermion states.

First note that if two particles with spins and momenta p,¢ and p’, ¢’
belong to identical species », then the state-vectors ®..psp .. prgrp - and
D..y o n-pon- represent the same physical state; if this were not the case
then the particles would be distinguished by their order in the labelling
of the state-vector, and the first listed would not be identical with the
second. Since the two state-vectors are physically indistinguishable, they
must belong to the same ray, and so

(D---po'n e patae = U (D"'I" anpon s (412)

where a, 18 a complex number of unit absolute value. We may regard this
as part of the definition of what we mean by identical particles.
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The crux of the matter is to decide on what the phase factor «, may
depend. If it depends only on the species index », then we are nearly done.
Interchanging the two particles in Eq. (4.1.2) again, we find

— 2
(D'"pon pata- = Uy (I)...po" plath

so that o2 = 1, yielding Eq. (4.1.1) as the only two possibilities.

On what else could «, depend? It might depend on the numbers
and species of the other particles in the state (indicated by dots in
Eqs. (4.1.1) and (4.1.2)), but this would lead to the uncomfortable result
that the symmetry of state-vectors under interchange of particles here on
earth may depend on the presence of particles elsewhere in the universe.
This is the sort of thing that is ruled out by the cluster decomposition
principle, to be discussed later in this chapter. The phase %, cannot
have any non-trivial dependence on the spins of the two particles that
are interchanged, because then these spin-dependent phase factors would
have to furnish a representation of the rotation group, and there are
no non-trivial representations of the three-dimensional rotation group
that are one-dimensional — that is, by phase factors. The phase %,
might conceivably depend on the momenta of the two particles that are
interchanged, but Lorentz invariance would require o, to depend only on
the scalar p{'py,; this is symmetric under interchange of particles ! and 2,
and therefore such dependence would not change the argument leading
to the conclusion that & = 1.

The logical gap in the above argument is that (although our notation
hides the fact) the states @, o np,0,n- mMay carry a phase factor that
depends on the path through momentum space by which the momenta
of the particles are brought to the values p;, po, etc. In this case the
interchange of two particles twice might change the state by a phase
factor, so that o7 # 1. We will see in Section 9.7 that this is a real
possibility in two-dimensional space, but not for three or more spatial
dimensions.

What about interchanges of particles belonging to different species? If
we like, we can avoid this question by simply agreeing from the beginning
to label the state-vector by listing all photon momenta and helicities first,
then all electron momenta and spin z-components, and so on through the
table of elementary particle types. Alternatively, we can allow the particle
labels to appear in any order, and define the state-vectors with particle
labels in an arbitrary order as equal to the state-vector with particle
labels in some standard order times phase factors, whose dependence
on the interchange of particles of different species can be anything we
like. In order to deal with symmetries like isospin invariance that relate
particles of different species, it is convenient to adopt a convention that
generalizes Eq. (4.1.1): the state-vector will be taken to be symmetric
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under interchange of any bosons with each other, or any bosons with
any fermions, and antisymmetric with respect to interchange of any two
fermions with each other, in all cases, whether the particles are of the
same species or not.”

The normalization of these states must be defined in consistency with
these symmetry conditions. To save writing, we will use a label g to
denote all the quantum numbers of a single particle: its momentum, p,
spin z-component {or, for massless particles, helicity) o, and species n. The
N-particle states are thus labelled ®q;...qy (with N = 0 for the vacuum
state ®g.) For N = 0 and N = 1 the question of symmetry does not arise:
here we have

(Do, Do) =1 (4.1.3)
and
(@, ®g) =0(q"—q), (4.14)

where (g’ —g) is a product of all the delta functions and Kronecker deltas
for the particle’s quantum numbers,

5(q —q) =5 (p' — P)Ssaun. (4.1.5)

On the other hand, for N = 2 the states @y 4 and Dy are physically the
same, so here we must take

(Pgg; » Paar) = 8(a1 —91) 8(a> — @2) & 8(ah —41) 6(d —42)  (4.1.6)

the sign + being — if both particles are fermions and + otherwise. This
obviously is consistent with the above stated symmetry properties of the
states. More generally,

(‘I’q;qg,..q;,a (Dq,q:..,qw) = dnm ; 3o 1'[ 8(qi — 4'5;) 4.1.7)

The sum here is over all permutations 2 of the integers 1, 2,---, N. (For
instance, in the first term in Eq. (4.1.6), 2 is the identity, Z1 =1, 2 =12,
while in the second term 21 = 2, 22 = 1.} Also, Jd» is a sign factor equal
to —1 if # involves an odd permutation of fermions (an odd number of
fermion interchanges) and +1 otherwise. It is easy to see that Eq. (4.1.7)
has the desired symmetry or antisymmetry properties under interchange
of the g;, and also under interchange of the g;.

* In fact, by the same reasoning, the symmetry or antisymmetry of the state-vector under inter-
change of particles of the same species but different helicities or spin z-components is purely
conventional, because we could have agreed from the beginning to list first the momenta of
photons of helicity +1, then the momenta of all photons of helicity —1, then the momenta of
all electrons of spin z-component +%, and so on. We adopt the convention that the state-vector
is symmetric or antisymmetric under interchange of identical bosons or fermions of different
helicilies or spin z-components in order to facilitate the use of rotational invariance.

A
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4.2 Creation and Annihilation Operators

Creation and annihilation operators may be defined in terms of their effect
on the normalized multi-particle states dlscussed in the prev1ous section.
The creation operator a'(q) (or in more detail, a*(p, o, n)) is defined as the
operator that simply adds a particle with quantum numbers g at the front
of the list of particles in the state

a'(@)®g14,-0, = Cggiaray - (42.1)

In particular, the N-particle state can be obtained by acting on the vacuum
with N creation operators

a'(g1)a(q2) -~ a'(qn)@p = By, .y - (4.2.2)

It is conventional for this operator to be called a'(q); its adjoint, which
is then called a(g), may be calculated from Eq. (4.1.7). As we shall
now show, a(q) removes a particle from any state on which it acts, and
is therefore known as an annihilation operator. In particular, when the
particles g g1 - - - gy are ¢ither all bosons or all fermions, we have

A(q)Pqyg5-gy = Z +)"*16(g — 4 )Pgg,_ygri1qn » (4.2.3)

with a +1 or —1 sign for bosons or fermions, respectively . (Here is the
proof. We want to calculate the scalar product of a(g)®,, 4,4, With an
arbitrary state @, ..q,- Using Eq. (4.2.1), this is

(®syafys A @1y ) = (6@ yyog) = (Rt mq,‘.‘qﬁ.) :

We now use Eq. (4.1.7). The sum over permutations & of 1,2, ,N
can be written as a sum over the integer » that is permuted into the
first place Le. Pr = 1, and over mappmgs Z of the remammg integers
1, r—1Lr+1,- N into 1,- — 1. Furthermore, the sign factor is

Op = (i)r_l 0%

with upper and lower signs for bosons and fermions, respectively. Hence,
using Eq. (4.1.7) twice,

((Dq;-“q:wy a(‘f)(hqy“q;q) = ONM+1

ZZ ) ~'658(q ~ qr)Hé(qrqy.)

=1

= ON M+1 Z(i)r_l (‘I)q;-‘-q;,’ (DQI“'Qr—I‘Ir+1'"QN) :

r=1
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Both sides of Eq. (4.2.3) thus have the same matrix element with any state
Dy ..q » and are therefore equal, as was to be shown.) As a special case
of Eq. (4.2.3), we note that for both bosons and fermions, a(g) annihilates
the vacuum

a(q)Dy =10 (4.2.4)

As defined here, the creation and annihilation operators satisfy an im-
portant commutation or anticommutation relation. Applying the operator
a{g’) to BEq. (4.2.1) and using Eq. (4.2.3) gives

a(q’)aT(Q)mqr"qN =d(q' — gDy, gy

N
+ Z(i)ﬂ_zé(q’ — 4r)@yq; g, 1greran -
r=1
(The sign in the second term is (+)"2 because g, is in the (r + 1)-th place
in @, 4.} On the other hand, applying the operator a'(q) to Eq. (4.2.3)
gives

=

a (Q)a Dyy-qn Z r+15(qf = 4r)Pgq;-gr_1gr11an -

Subtracting or adding, we have then

d)a' (@) F a'(@alq)] Pgiqy = 84— )Py -

But this holds for all states ®,,..,, (and may easily be seen to hold also
for states containing both bosons and fermions) and therefore implies the
operator relation

alq')a'(q) F a'(g)alg’) = 8(¢' — q) . (4.2.5)
In addition, Eq. (4.2.2) gives immediately
a'(q)a'(q) F a'(g)a’(q') = 0 (4.2.6)
and so also
a(q")a(q) F a(g)alq’) = 0. (4.2.7)

As always, the top and bottom signs apply for bosons and fermions,
respectively. According to the conventions discussed in the previous
section, the creation and/or annihilation operators for particles of two
different species commute if either particle is a boson, and anticommute
if both are fermions.

The above discussion could have been presented in reverse order (and
in most textbooks usually is). That is, we could have started with the
commutation or anticommutation relations Eqgs. {(4.2.5)(4.2.7), derived
from the canonical quantization of some given field theory. Multi-particle
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states would have then been defined by Eq. (4.2.2), and their scalar
products Eq. (4.1.7) derived from the commutation or anticommutation
relations. In fact, as discussed in Chapter 1, such a treatment would be
much closer to the way that this formalism developed historicaily. We
have followed an unhistorical approach here because we want to free
ourselves from any dependence on pre-existing field theories, and rather
wish to understand why field theories are the way they are.

We will now prove the fundamental theorem quoted at the beginning
of this chapter: any operator ¢ may be expressed as a sum of products of
creation and annihilation operators

v =
0=>" Zqui“'dq}vdm---dw

N=0 M=0
x a'(q}) - al(gy)alan) - - alqn)
X Cnalqy - dndr - qu) . (4.2.8)

That is, we want to show that the Cyps coefficients can be chosen to give
the matrix elements of this expression any desired values. We do this by
mathematical induction. First, it is trivial that by choosing Cyy properly,
we can give {Pg, ('Dp) any desired value, irrespective of the values of Cypy
with N > 0 and/or M > 0. We need only use Eq. (4.2.4) to see that
Eq. (4.2.8) has the vacuum expectation value

(Do, "Dy} = Cyo -

Now suppose that the same is true for all matrix elements of ¢ between
N- and M-particle states, with N < LM < K or N < L M < K that
is, that these matrix elements have been given some desired values by
an appropriate choice of the corresponding coetlicients Cups. To see that
the same is then also true of matrix elements of ¢ between any L- and
K -particle states, use Eq. (4.2.8) to evaluate

((in"'qi’@q)qw'm() = LIK!Crx{q; - ‘Q’Lth “gK)
+ terms involving Cyy Wwith N< LM <K or N<L M <K.

Whatever values have already been given to Cyy with N < LLM < K
or N < LM < K, there is clearly some choice of C x which gives this
matrix element any desired value.

Of course, an operator need not be expressed in the form (4.2.8), with
all creation operators to the left of all annihilation operators. (This
15 often called the ‘normal’ order of the operators.) However, if the
formula for some operator has the creation and annihilation operators
in some other order, we can always bring the creation operators to the
left of the annihilation operators by repeated use of the commutation or
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anticommutation relations, picking up new terms from the delta function
in Eq. (4.2.5).

For instance, consider any sort of additive operator F (like momentum,
charge, etc.) for which

F®g gy = (flq1) + -+ flan)) @g,qy - (4.2.9)

Such an operator can be written as in Eq. (4.2.8), but using only the term '
with N=M=1:

F= / dqa'(q)a(q)f(a). (4.2.10)
In particular, the free-particle Hamiltonian is always
H = [ dga'(@la@)E(@) (42.11)

where E(g) is the single-particle energy

E(p,o,n)=+/p2+m?.

We will need the transformation properties of the creation and annihila-
tion operators for various symmetries. First, let’s consider inhomogeneous
proper orthochronous Lorentz transformations. Recall that the N-particle
states have the Lorentz transformation property

Uo(A, )@y 010, p109my, = ¢ iBn)e p=ilAp)a
, \/(Am)o(/\m)"'”
pes -
x 3= DY (WA p)) DL, (W(A,p2))

61 62...

0 Opyampaadim, -
Here py is the three-vector part of Ap, Df—,’Z(R) is the same unitary spin-j
representation of the three-dimensional rotation group as used in Section

2.5, and W(A,p) is the particular rotation
W(A,p}= L™/ (Ap)AL(p),

where L(p) is the standard ‘boost’ that takes a particle of mass m from rest
to four-momentum p#. (Of course, m and j depend on the species label a.
This is all for m # 0; we will return to the massiess particle case in the
following chapter.) Now, these states can be expressed as in Eq. (4.2.2)

T aT(PIU 1"1)0T(P263n2) ey,
where @ is the Lorentz-invariant vacuum state
Up(A, )@ = @y .
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In order that the state (4.2.2) should transform properly, it is necessary
and sufficient that the creation operator have the transformation rule

UolA, a)a’ (pom)Uy (A, o) = e~ P21, [(Ap)0/pt
x 3 Dg{i(W(A, p)) af(paon). (42.12)
a
In the same way, the operators C, P, and T, that induce charge-conjugation,

space inversion, and time-reversal transformations on free particle states®
transform the creation operators as:

Ca'(pon)C! = &,af(pan), (4.2.13)
Pa'ipon)P™! = y,a’(—pon), (4.2.14)
Tal(poem T =, (=1Y %al(—p —0on), (4.2.15)

As mentioned in the previous section, although we have been dealing
with operators that create and annihilate particles in free-particle states,
the whole formalism can be applied to ‘in” and ‘out’ states, in which case
we would introduce operators aj, and a,, defined in the same way by
their action on these states. These operators satisfy a Lorentz transforma-
tion rule just like Eq. (4.2.12), but with the true Lorentz transformation
operator U(A, «) instead of the free-particle operator Up(A, «).

4.3 Cluster Decomposition and Connected Amplitudes

It is one of the fundamental principles of physics {indeed, of all science)
that experiments that are sufficiently separated in space have unrelated
results. The probabilities for various collisions measured at Fermilab
should not depend on what sort of experiments are being done at CERN
at the same time, If this principle were not valid, then we could never
make any predictions about any experiment without knowing everything
about the universe.

In S-matrix theory, the cluster decomposition principle states that if
multi-particle processes a; — By,07 — B2, , a4 — B4 are studied in A
very distant laboratories, then the S-matrix element for the overall process

" We omit the subscript ‘0’ on these operalors, because in virtually all cases where C, P, and/or
T are conserved, the operaters that induce these transformations on ‘in’ and ‘out’ states are the
same as those defined by their action on free-particle states. This is not the case for continuous
Lorentz transformations, for which it is necessary to distinguish between the operators U(A, a)
and Up(A, a).
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factorizes. That is,"

Sprfot o ettty > Sp Spm T Spay (4.3.1)

if for all i # j, all of the particles in states o; and f§; are at a great spatial
distance from all of the particles in states «; and f;. This factorization of S-
matrix elements will ensure a factorization of the corresponding transition
probabilities, corresponding to uncorrelated experimental results.

There is a combinatoric trick that allows us to rewrite Eq. (4.3.1) in
a more transparent way. Suppose we define the connected part of the
S-matrix, Sfa, by the formula™

Spr= D (£) SfayShy " - (4.3.2)
PART

Here the sum is over all different ways of partitioning the particles in
the state « into clusters ay,02,- -, and likewise a sum over all ways of
partitioning the particles in the state fi into clusters f, 2, - -, not counting
as different those that merely arrange particles within a given cluster
or permute whole clusters. The sign i1s + or — according to whether
the rearrangements o« — o2 -+ and § — B2 - involve altogether
an even or an odd number of fermion interchanges, respectively. The
term ‘connected’ is used because of the interpretation of S5, in terms of
diagrams representing different contributions in perturbation theory, to
be discussed i1n the next section.

This is a recursive definition. For each « and f, the sum on the right-
hand side of Eq. (4.3.2) consists of a term S{fx, plus a sum X’ over products
of two or more S“-matrix elements, with a total number of particles in
each of the states x; and f§; that is less than the number of particles in

" We are here returning to the notation used in Chapter 3; Greek letters « or # stand for a
collection of particles, including for each particle a specification of its momentum, spin, and
species. Also, %) +as + - + o4 is (he state formed by combining all the particles in the states
%2, ++, and x4, and likewise for §; + 82+ + f 4.

** This decomposition has been used in classical stalistical mechanics by Ursell, Mayer, and others,
and in quantum stalistical mechanics by Lee and Yang and others? It has also been used
to calculate many-body ground state energies by Goldstone* and Hugenholtz? In all of these
applications the purpose of isolating the connecied parts of Green’s functions, partition functions,
resolvents, etc, is Lo deal with objects with a simple volume dependence. This is essentially our
purpose too, because as we shall see, the crucial property of the connected parts of the S-matrix
is that they are proportional to a single momentum-conservation delta function, and in a box the
delta function becomes a Kronecker delta times the volume. The cluster decomposition is also
the same formal device as that used in the theory of noise® to decompose the correlation function
of several random variables into its ‘cumulants’; if the random variable reccives contributions
from a large number N of independent fluctuations, then each cumulant is proportional to N.
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the states x and

Spy :S,§;+ > (h) SE,IS;%@--- .
PART

Suppose that the S“-matrix elements in this sum have already been chosen
in such a way that Eq. (4.3.2) is satisfied for states 8, « containing together
fewer than, say, N particles. Then no matter what values are found in this
way for the S-matrix elements appearing in the sum X/, we can always
choose the remaining term Sf, so that Eq. (4.3.2) is also satisfied for

states «, # containing a total of N particles.Jr Thus Eq. (4.3.2) contains no
information in itself; it is merely a definition of S€.

If the states « and f each consist of just a single particle, say with
quantum numbers g and ¢’ respectively, then the only term on the right-
hand-side of Eq. (4.3.2) is just Sg, itself, so for one-particle states

SG, =Sgg=0(a —q). (4.3.3)

(Apart from possible degeneracies, the fact that Sy, is proportional to
d(q’ — q) follows from conservation laws. The absence of any proportion-
ality factor in Eq. (4.3.3) 1s based on a suitable choice of the relative phase
of in’ and ‘out’ states.) We are here assuming that single-particle states
are stable, so that there are no transitions between single-particle states
and any others, such as the vacuum,

For transitions between two-particle states, Eq. (4.3.2) reads

Sidsarer = Sy qmay T O —a08(as — @) + 5g] —q2)d(ar—q1) . (4.34)

(We are here using Eq. (4.3.3).) The sign + is — if both particles are
fermions, and otherwise +. We recognize that the two delta function
terms just add up to the norm (4.1.6), so here S’% is just (S — 1)g,. But the
general case 138 more complicated.

For transitions between three-particle or four-particle states, Eq. (4.3.2)

reads

_ <C
Sq’.q;qg,q:qzqs = Sq;q’zqunf{zqs
r C .
+0(dy — @18yt rq, T Permutations

+38(q; — g1)d(g5 — 42)3(¢5 — q3) + permutations {4.3.5)

Ta technicality should be mentioned here. This argument works only if we neglect the possibility
that for one or more of the connected S-matrix elements in Eq. (4.3.2), the states %; and fi; both
contain no particles at all. We must therefore define the connecied vacuum-vacuum element S(fo
to be zero. We do not usc Eq. (4.3.2) for the vacuum vacuum S-matrix Spo, which in the absence
of time-varying external fields is simply defined to be unity, Spo = 1. We will have more to say
aboul the vacuum vacuum amplitude in the presence of external fields in Volume IL
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and
_ <C
Sqiqéqﬁqi,qlqzqaq4 = Sq;q'zq;q"‘,qlqzmqq_
C o .
+ 84 401050040 T PErmutations
+ 3(q1 — 41)S5 1 + permutations

479394424394
+ 8(g] — q1)8(dz — 42)Sgy 4., T Permutations

+ 8(q} — q1)d(g5 — g2)8(q5 — q3)8(q} — qa) L permutations . (4.3.6)

(Taking account of all permutations, there are a total of 1 +9+6 = 16
terms in Eq. (4.3.5) and 1 + 18 + 16 + 72 + 24 = 131 terms in Eq. (4.3.6).
If we had not assumed that one-particle states are stable, there would
be even more terms.) As explained previously, the definition of S, is

recursive: we use Eq. (4.3.4) to define Sffa for two-particle states, then use

this definition in Eq. {4.3.5) when we define S,(,.; for three-particle states,
then use both of these definitions in Eq. (4.3.6) to obtain the definition of
Sfa for four-particle states, and so on.

The point of this definition of the connected part of the S-matrix is
that the cluster decomposition principle is equivalent to the requirement
that Sﬁca must vanish when any one or more of the particles in the states §

and/or « are far away in space from the others.¥ To see this, suppose that
the particles in the states f and o are grouped into clusters f;, 2, -+ and
ay,%,"*+, and that all particles in the set «; + §; are far from all particles
in the set o; + f; for any j # i. Then if Sf,a, vanishes if any particles in
B’ or of are far from the others, it vanishes if any particles in these states
are in different clusters, so the definition (4.3.2) yields

1 C C 2 C C
Sﬂ"‘ - Z( )(i)SﬁnranBuxu v X Z{ J(i)SﬁmazlSﬁzzizz X, (43.7)

where U is a sum over all different ways of partitioning the clusters §;
and «; into subclusters §;1, 8;2,--- and 1,252, -+ -. But referring back to
Eq. (4.3.2), this is just the desired factorization property (4.3.1).

For instance, suppose that in the four-particle reaction 1234 — 1'2'3'4/,
we let particles 1,2,1', and 2’ be very far from 3,4,3, and 4. Then if
S§. vanishes when any particles in § and/or a are far from the others,
tge only terms in Eq. (4.3.6) that survive (in an even more abbreviated
notation) are

% 1n order to give a meaning to ‘far, we will have to Fourier transform S€, so that each three-
momentum label pis replaced with a spatial coordinate three-vector x.
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Svrya 1238 = Sty 12554 34
+ (011622 = 12021)S54.34
+ (633044 T+ 8340438t 1
+ (01002 + 612021)(03304s * Syadys).

Comparison with Eq. (4.3.4) shows that this is just the required factoriza-
tion condition (4.3.1)

Syryza 1234 — S 12534 34 .

We have formulated the cluster decomposition principle in coordinate
space, as the condition that ng vanishes if any particles in the states f
or « are far from any others. It is convenient for us to reexpress this in
momentum space. The coordinate space matrix elements are defined as a
Fourier transform

C N 3n/ Bl ... 33 3p,--- 8S
Sxixy Xy Xy = /d PPy @ pd P2 Spiptpip,
X &PIX g%y pTIPX piprNy (4.3.8)

(We are here temporarily dropping spin and species labels, which just
go along with the momentum or coordinate labels.) If |S|?‘1p3'-'mpz'"| were

sufficiently well behaved (to be specific, if it were Lebesgue integrable) then
according to the Riemann-Lebesgue theorem’ the integral (4.3.8) would
vanish when any combination of spatial coordinates goes to infinity. Now,
this is certainly too strong a requirement. Translational invariance tells
us that the connected part of the S-matrix, like the S-matrix itself, can
only depend on differences of coordinate vectors, and therefore does not
change at all if all of the x; and X} vary together, with their differences

held constant. This requires that the elements of S¢ in a momentum
basis must, like those of S, be proportional to a three-dimensional delta

function that ensures momentum conservation (and makes [Spc'p'-~-p1p2---l
1F2

not Lebesgue integrable), as well as the energy-conservation delta function
required by scattering theory. That is, we can write

Spc’lpjz»plp2 = 63(",1 +p’2 +"' --pl _p2 —_ ,)

X S(E}+ Ey+ —Er—Ea— - )Cyrpro gy - (43.9)

This is no problem: the cluster decomposition principle only requires that
Eq. (4.3.8) vanish when the differences among some of the x; and/or x|
become large. However, if C itself in Eq. (4.3.9) contained additional delta
functions of linear combinations of the three-momenta, then this principle
would not be satisfied. For instance, suppose that there were a delta func-
tion in C that required that the sum of the p; and —p; for some subset of
the particles vanished. Then Eq. (4.3.8) would not vary if all of the x; and
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x; for the particles in that subset moved together (with constant differ-
ences) away from all the other xj, and x,, in contradiction to the cluster
decomposition principle. Loosely speaking then, the cluster decomposition
principle simply says that the connected part of the S-matrix, unlike the
S-matrix itself, contains just a single momentum-conservation delta function.

In order to put this a bit more precisely, we can say that the coefficient
function Cprp .. oo i1 EQ. (4.3.9} is a smooth function of its momentum
labels. But how smooth? It would be most straightforward if we could
51mply require that Cypr .. o, be analytic in all of the momenta at py =
py=-"=p =p2 = =0 This requirement would indeed guarantee

. i ) . .
that Sx S vanishes exponentially fast when any of the x and x’ is

very dlstant from any of the other x and x’. However, an exponential fall-
off of ST is not an essential part of the cluster decomposition principle,
and, in fact, the requirement of analyticity is not met in all theories. Most
notably, in theories with massless particles, S¢ can have poles at certain
values of the p and p’. For instance, as we will see in Chapter 10, if a
massless particle can be emitted in the transition 1 — 3 and absorbed in the
transition 2 — 4, then S5 ;, will have a term proportional to 1/(p; — p3)2.

After Fourier transforming, such poles yield terms in SSI X)X X that fall

off only as negative powers of coordinate differences.’ There is no need
to formulate the cluster decomposition principle so stringently that such
behavior is ruled out. Thus the ‘smoothness’ condition on S¢ should be
understood to allow various poles and branch-cuts at certain values of the
p and p’, but not singularities as severe as delta functions.

4.4 Structure of the Interaction

We now ask, what sort of Hamiltonian will yield an S-matrix that sat-
isfies the cluster decomposition principle? It is here that the formalism
of creation and annihilation operators comes into its own. The answer is
contained in the theorem that the S-matrix satisfies the cluster decompo-
sition principle if (and as far as I know, only if) the Hamiltonian can be
expressed as in Eq. (4.2.8):

H= Z Z[dql dqydqr--dqu

N=0 M=0
x al(g) - a'(gy)alam) - - alqr)
X hym(qy gy s 91 qum) (4.4.1)

with coefficient functions syjs that contain just a single three-dimensional
momentum-conservation delta function (returning here briefly to a more
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explicit notation)

hvm(Pio\ny - PNGNIN s PIOIRL - PMOMIM)
=8I+ PN —pi— —pw)
X hnm(pioin) - PNONHN , PIOIRL PMOMAM) (44.2)

where fiyp contains no delta function factors. Note that Eq. (4.4.1) by
itself has no content — we saw in Section 4.2 that any operator can be
put in this form. It is only Eq. (4.4.1) combined with the requirement that
fin s has only the single delta function shown in Eq. (4.4.2) that guarantees
that the S-matrix satisfies the cluster decomposition principle.

The validity of this theorem in perturbation theory will become obvicus
when we develop the Feynman diagram formalism in Chapter 6. The
trusting reader may prefer to skip the rest of the present chapter, and
move on to consider the implications of this theorem in Chapter 5.
However, the proof has some instructive features, and will help to clarify
in what sense the field theory of the next chapter is inevitable.

To prove this theorem, we make use of perturbation theory in its time-
dependent form. (One of the advantages of time-dependent perturbation
theory 1s that it makes the combinatorics underlying the cluster decom-
position principle much more transparent; if £ is a sum of one-particle
energies then ¢ '£! is a product of functions of the individual energies,
while [E — E, + ie]™! is not.) The S-matrix is given by Eq. (3.5.10) as*

S;;Fé(_?n f_idrl---dr,,(d)ﬁ,T{V(tl) --V(t,,)}d)a), (4.4.3)

n!

where the Hamiltonian is split into a free-particle part Hg and an interac-
tion ¥, and

V() = exp(iHot)V exp(—iHot) . (4.4.4)

Now, the states ®, and ®g may be expressed as in Eq. (4.2.2) as products
of creation operators acting on the vacuum ®g, and V(¢) is itself a sum of
products of creation and annihilation operators, so each term in the sum
(4.4.3) may be written as a sum of vacuum expectation values of products
of creation and annihilation operators. By using the commutation or
anticommutation relations (4.2.5} we may move each annihilation operator
in turn to the right past all the creation operators. For each annihilation
operator moved to the right past a creation operator we have two terms,
as shown by writing Eq. (4.2.5} in the form

a(g)a'(q) = +a'(g)alg’) + 5(g' — q) -

* We are now adopting the convention that for n = 0, the time-ordered product in Fq. (4.4.3) is
taken as the unil operalor, so the 7 = 0 term in the sum just yields the term 3{f — ) in Sﬁ,,.
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Moving other creation operators past the annihilation operator in the first
term generates yet more terms. But Eq. (4.2.4) shows that any annihilation
operator that moves all the way to the right and acts on ® gives zero, so
in the end all we have left is the delta functions. In this way, the vacuum
expectation value of a product of creation and annihilation operators is
given by a sum of different terms, each term equal to a product of delta
functions and =+ signs from the commutators or anticommutators. It
follows that each term in Eq. (4.4.3) may be expressed as a sum of terms,
each term equal to a product of delta functions and + signs from the
commutators or anticommutators and whatever factors are contributed
by V(z), integrated over all the times and integrated and summed over the
momenta, spins, and species in the arguments of the delta functions.

Each of the terms generated in this way may be symbolized by a
diagram. (This is not yet the full Feynman diagram formalism, because
we are not yet going to associate numerical quantities with the ingredients
in the diagrams; we are using the diagrams here only as a way of keeping
track of three-momentum delta functions.) Draw n points, called vertices,
one for each V() operator. For each delta function produced when
an annihilation operator in one of these V() operators moves past a
creation operator in the initial state ®,, draw a line coming into the
diagram from below that ends at the corresponding vertex. For each delta
function produced when an annihilation operator in the adjoint of the
final state ®; moves past a creation operator in one of the V(t), draw
a line from the corresponding vertex upwards out of the diagram. For
each delta function produced when an annihilation operator in one V(z)
moves past a creation operator in another V() draw a line between the
two corresponding vertices. Finally, for each delta function produced
when an annihilation operator in the adjoint of the final state moves
past a creation operator in the initial state, draw a line from bottom to
top, right through the diagrams. Each of the delta functions associated
with one of these lines enforces the equality of the momentum arguments
of the pair of creation and annihilation operators represented by the
line. There is also at least one delta function contributed by each of the
vertices, which enforces the conservation of the total three-momentum at
the vertex.

Such a diagram may be connected {every point connected to every
other by a set of lines) and if not connected, it breaks up into a number
of connected pieces. The V(t) operator associated with a vertex in one
connected component effectively commutes with the V(¢) associated with
any vertex in any other connected component, because for this diagram,
we are not including any terms in which an annihilation operator in one
vertex destroys a particle that is produced by a creation operator in the
other vertex — if we did, the two vertices would be in the same connected
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component. Thus the matrix element in Eq. (4.4.3) can be expressed as a
sum over products of contributions, one from each connected component:

(QmT{Vuﬂ-~VUﬂ}®)
= 3 (+)II(®m’ (Vi Viem)}0,) . (445)

clusterings

Here the sum is over all ways of splitting up the incoming and outgoing
particles and V(¢t) operators into v clusters (including a sum over v from
1 to n) with the n; operators V{(t;) - V(tj;) and the subsets of initial
particles a; and final particles ; all in the jth cluster. Of course, this
means that

n=m+-+n

and also the set « is the union of all the particles in the subsets «y, a2, - - o,
and likewise for the final state. Some of the clusters in Eq. (4.4.5) may
contain no vertices at all, i.e, n; = 0; for these factors, we must take the
matrix element factor in Eq. (4.4.5) to vanish unless ; and «; are both
one-particle states (in which case it is just a delta function é(o; — f;)),
because the only connected diagrams without vertices consist of a single
line running through the diagram from bottom to top. Most important,
the subscript C in Eq. {4.4.5) means that we exclude any contributions
corresponding to disconnected diagrams, that is, any contributions in
which any V(t} operator or any initial or final particle is not connected
to every other by a sequence of particle creations and annihilations.

Now let us use Eq. (4.4.5) in the sum (4.4.3). Every time variable is
integrated from —o0 to +o0, so it makes no difference which of the 1, - ¢,
are sorted out into each cluster. The sum over clusterings therefore yields
a factor n!/ny!ny!---n,!, equal to the number of ways of sorting out n
vertices into v clusters, each containing ny,ny, - - vertices:

/*ot, dty - 'dtn(d)ﬂ, T{V(tl). . V(tn)}(pfx)
N ”1'”2 nlng!l-- -yt > @ D H/ dtj, o dtj,

PART =iy
ny+tHiy —n

x(@m, {Vﬂh)- GWJ}QH)C.

The first sum here is over all ways of partitioning the particles in the
initial and final states into clusters «; - -- &, and f; - B, (including a sum
over the number v of clusters). The factor n! here cancels the 1/n! in
Eq. (4.4.3), and the factor (—i)" in the perturbation series for (4.4.5) can
be written as a product (—i)™ - - - (—i)™, so instead of summing over » and
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then summing separately over n;,' - n, constrained byn + " +n, =n,
we can simply sum independently over each ny,- - n,. This gives finally

v XL {_‘ oo
Spe= > DT S [y,

PART  j=1 n;=0 "/
X (q)ﬁj’ T{V(fjl)"'y(ti"i}m“f')c '

Comparing this with the definition (4.2.2) of the connected matrix elements
Sﬁ;, we see that these matrix elements are just given by the factors in the
product here

"
!

5= 3 G [ (w7 (v - Vo) was

(The subscript j is dropped on all the ts and ns, as these are now mere
integration and summation variables.) We see that SE;I is calculated by a

very simple prescription: Sﬁ?a is the sum of all contributions to the S-matrix
that are connected, in the sense that we drop all terms in which any initial
or final particle or any operator V(t} is not connected to all the others by a
sequence of particle creations and annihilations. This justifies the adjective
‘connected’ for S€.

As we have seen, momentum is conserved at each vertex and along
every line, so the connected parts of the S-matrix individually conserve
momentum: SI% contains a factor 5°(py — py). What we want to prove is

that S, contains no other delta functions.

We now make the assumption that the coefficient fractions finas in the
expansion (4.4.1) of the Hamiltonian in terms of creation and annihilation
operators are proportional to a single three-dimensional delta function,
that ensures momenta conservation. This is automatically true for the
free-particle Hamiltonian Hy, so it is also then true separately for the
interaction V. Returning to the graphical interpretation of the matrix
elements that we have been using, this means that each vertex contributes
one three-dimensional delta function. (The other delta functions in matrix
¢lements V.5 simply keep the momentum of any particle that is not created
or annihilated at the corresponding vertex unchanged.) Now, most of these
delta functions simply go to fix the momentum of intermediate particles.
The only momenta that are left unfixed by such delta functions are those
that circulate in loops of internal lines. (Any line which if cut leaves the
diagram disconnected carries a momentum that is fixed by momentum
conservation as some linear combination of the momenta of the lines
coming into or going out of the diagram. If the diagram has L lines
that can all be cut at the same time without the diagram becoming
disconnected, then we say it has L independent loops, and there are L




momenta that are not fixed by momentum conservation.) With V vertices,
I internal lines, and L loops, there are V' delta functions, of which I — L
go to fix internal momenta, leaving V — I + L delta functions relating the
momenta of incoming or outgoing particles. But a well-known topological
identity*™ tells that for any graph consisting of C connected pieces, the
numbers of vertices, internal lines, and loops are related by

V-I+L=C. (4.4.7)

Hence for a connected matrix element like S{%, which arises from graphs

with C = 1, we find just a single three-dimensional delta function 3(ps —
P:), as was to be proved.

It was not important in the above argument that the time variables
were integrated from —oo0 to +o00. Thus exactly the same arguments can
be used to show that if the coefficients Ay ps in the Hamiltonian contain
just single delta functions, then U(t,tp) can also be decomposed into
connected parts, each containing a single momentum-conservation delta
function factor. On the other hand, the connected part of the S-matrix
also contains an energy-conservation delta function, and when we come to
Feynman diagrams in Chapter 6 we shall see that S, contains only a single
energy-conservation delta function, d(Eg — E,), while U(z, to) contains no
energy-conservation delta functions at all.

It should be emphasized that the requirement that hyps in Eq. (4.4.1)
should have only a single three-dimensional momentum conservation delta
function factor is very far from trivial, and has far-reaching implications.
For instance, assume that ¥ has non-vanishing matrix elements between
two-particle states. Then Eq. (4.4.1) must contain a term with N = M = 2,
and coefficient

Ulz{pllp{b ] p2) = Vp'lp'zfp] Py - (4.4.8]

(We are here temporarily dropping spin and species labels.) But then the
matrix element of the interaction between three-particle states is

f ! !
Voipiptpipaps = U33(P1P2P 3, P1 P2 P3)

+v22(p 192 P1P2) 53(11'3 — p3) & permutations. (4.4.9)

** A graph consisting of a single vertex has ¥ = 1, L =0, and C = 1. If we add V — 1 vertices
with just enough internal lines to keep the graph connccted, we have I = V ~ 1, L = 0, and
C = 1. Any additional internal lines attached (without new vertices) to the same connected graph
produce an equal number of loops, so I = V +L—1 and € = 1. [f a disconnected graph consists
of C such connected parts, the sums of 7, ¥, and L in cach connected part will than satisfy
SI=3V+> L-C
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As mentioned at the beginning of this chapter, we might try to make a
relativistic quantum theory that is not a field theory by choosing v;; so
that the two-body S-matrix is Lorentz-invariant, and adjusting the rest of
the Hamiltonian so that there is no scattering in states containing three
or more particles. We would then have to take v33 to cancel the other
terms in Eq. (4.4.9)

233(P1P2P 5 P1 P2 P3) = —v22(P 1P 2. P1P2) 8°(p5 — p3) F permutations.
(4.4.10)

However, this would mean that each term in v33 contains two delta
function factors (recall that v;,(pp5, pip2) has a factor 83 (p| +pr—p1 —
p2) ) and this would violate the cluster decomposition principle. Thus
in a theory satisfying the cluster decomposition principle, the existence
of scattering processes involving two particles makes processes involving
three or more particles inevitable.

* %k %k

When we set out to solve three-body problems in quantum theories
that satisfy the cluster decomposition principle, the term v33 in Eq. (4.4.9)
gives no particular trouble, but the extra delta function in the other terms
makes the Lippmann-Schwinger equation difficult to solve directly. The
problem is that these delta functions make the kernel [E, — Eg + ie] "1V,
of this equation not square-integrable, even after we factor out an overall
momentum conservation delta function. In consequence, it cannot be
approximated by a finite matrix, even one of very large rank. To solve
problems involving three or more particles, it is necessary to replace the
Lippmann-Schwinger equation with one that has a connected right-hand
side. Such equations have been developed for the scattering of three or
more particles,’ and in non-relativistic scattering problems they can be
solved recursively, but they have not turned out to be useful in relativistic
theories and so will not be described in detail here.

However, recasting the Lippmann-Schwinger equation in this manner
is useful in another way. Our arguments in this section have so far
relied on perturbation theory. I do not know of any non-perturbative
proof of the main theorem of this section, but it has been shown® that
these reformulated non-perturbative dynamical equations are consistent
with the requirement that US(t, 1) (and hence S€) should also contain
only a single momentum-conservation delta function, as required by the
cluster decomposition principle, provided that the Hamiltonian satisfies
our condition that the coefficient functions Ay ps each contain only a single
momentum-conservation delta function.
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Problems

1. Define generating functionals for the S-matrix and its connected
part:

oC oL 1 . .,
FRI=1+ Y 3 o [ o'l o' @i -+ vlaw)

Nt M=
X Sgtq qray 091 " ddy dgr - dgu

FRI= 3 3w [ 0@ et oo

N=1M=]

C
X Sq'...q;wa...qM dqi v dq}v dgy - dgu.

Derive a formula relating F[¢] and FC[v]. (You may consider the
purely bosonic case.)

2. Consider an interaction
V=g/ﬁmfmfmfmﬁm+m—m~m1

x al(py) aT(pz)a(pa)a(IM) :

where g is a real constant and a(p) is the annihilation operator of a
spinless boson of mass M > 0. Use perturbation theory to calculate
the S-matrix element for scattering of these particles in the center-
of-mass frame to order g2. What is the corresponding differential
cross-section?

3. A coherent state ®, is defined to be an eigenstate of the annihilation
operators a{q) with eigenvalues A(g). Construct such a state as a
superposition of the multi-particle states Oy, q,..4y-
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