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our formula (7.469) for f 0(x) gives

f 0(a) =
u0(a)
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v(y) g(y) dy = 0 = f 0(b) =
v0(b)
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u(y) g(y) dy. (7.473)

For instance, to solve the equation � f 00(x)� f(x) = expx, with the mixed
boundary conditions f(�⇡) = 0 and f 0(⇡) = 0, we choose from among the
solutions ↵ cosx + � sinx of the homogeneous equation �f 00 � f = 0, the
functions u(x) = sinx and v(x) = cosx. Substituting them into the formula
(7.468) and setting p(x) = 1 and A = �W (x0) = sin2(x0) + cos2(x0) = 1,
we find as the Green’s function

G(x, y) = ✓(x� y) sin y cosx+ ✓(y � x) sinx cos y. (7.474)

The solution f(x) =
R
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(7.475)

7.44 Principle of Stationary Action in Field Theory

If �(x) is a scalar field, and L(�) is its action density, then its action S[�] is
the integral over all of spacetime

S[�] =

Z
L(�(x), @a�(x)) d

4x. (7.476)

The principle of least (or stationary) action says that the field �(x) that
satisfies the classical equation of motion is the one for which the first-order
change in the action due to any tiny variation ��(x) in the field vanishes,
�S[�] = 0. To keep things simple, we’ll assume that the action (or Lagrange)
density L(�) is a function only of the field � and its first derivatives @a� =
@�/@xa. The first-order change in the action then is

�S[�] =

Z 
@L
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��+

@L

@(@a�)
�(@a�)

�
d4x = 0 (7.477)

in which we sum over the repeated index a from 0 to 3. Now �(@a�) =
@a(�+��)�@a� = @a��. So we may integrate by parts and drop the surface
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terms because we set �� = 0 on the surface at infinity
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This first-order variation is zero for arbitrary �� only if the field �(x) satisfies
Lagrange’s equation
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which is the classical equation of motion.

Example 7.66 (Theory of a scalar field) The action density of a single
scalar field � of mass m is L = 1

2 (�̇)
2 � 1

2 (r�)2 � 1
2 m

2�2 or equivalently
L = � 1

2 @a�@a�� 1
2 m

2�2. Lagrange’s equation (7.478) is then

r2�� �̈ = @a @
a� = m2� (7.479)

which is the Klein-Gordon equation (7.41).

In a theory of several fields �1, . . . ,�n with action density L(�k, @a�k),
the fields obey n copies of Lagrange’s equation one for each field �k
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. (7.480)

Application of the principle of stationary action to the action
R
R
p
g d4x

gives Einstein’s equations as shown in section 13.37.

7.45 Symmetries and Conserved Quantities in Field Theory

A transformation of the coordinates xa or of the fields �i and their derivatives
@a�i that leaves the action density L(�i, @a�i) invariant is a symmetry of
the theory. Such a symmetry implies that something is conserved or time
independent.
Suppose that due to a symmetry a Lagrange density L(�i, @a�i) is un-

changed when the fields �i and their derivatives @a�i change by ��i and by
�(@a�i) = @a(��i) which need not be small:
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Then using Lagrange’s equations (7.480), we can rewrite @L/@�i and get
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which says that the current

Ja =
X

i

@L

@@a�i

��i (7.483)

has zero divergence, @aJa = 0. Thus the time derivative of the volume
integral of the charge density J0

QV =

Z

V

J0 d3x (7.484)

is the flux of current J entering through the boundary S of the volume V

Q̇V =
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J · d2S. (7.485)

If no current enters V , then the charge Q inside V is conserved. When the
volume V is the whole universe, the charge is the integral over all of space
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in which ⇡i is the momentum conjugate to the field �i

⇡i =
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. (7.487)

Example 7.67 (O(n) symmetry and its charge) Suppose the action den-
sity L is the sum of n copies of the quadratic action density
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Let Aij be any constant antisymmetric matrix, Aij = � Aji. Then if the
fields change by ��i = ✏

P
j
Aij �j , the change (7.481) in the action density
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nX
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vanishes. Thus the charge (7.486) associated with the matrix A
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is conserved. There are n(n� 1)/2 antisymmetric n⇥n imaginary matrices;
they generate the group O(n) of n⇥ n orthogonal matrices (example 11.3).
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If an action density L(�i, @a�i) depends upon the spacetime coordinate
xa only through the fields �i and their derivatives @a�i, then its spacetime
derivative is
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Using Lagrange’s equations (7.480) to rewrite @L/@�i , we find
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which says that the energy-momentum tensor of the theory
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has zero divergence, @bT b

a
= 0.

Thus the time derivative of the 4-momentum PaV inside a volume V
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is equal to the flux entering through V ’s boundary S
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And so if an action density has no explicit dependence on any of the space-
time coordinates x, then its energy P0 and momentum ~P are conserved.

Example 7.68 (Conservation of angular momentum) Under an infinitesi-
mal rotation by ✓, spatial coordinates change by �x = ✓⇥x and the change
in a scalar field is ��(t,x) = r� · �x = r� · (✓ ⇥ x) = ✓ · (x ⇥r�). So if
the spatial integral of the Lagrange density L is unchanged under rotations
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then the time derivative of the angular momentum
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vanishes as long as the fields fall to zero as |x| ! 1. If a rotation changes
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the field component �` by ��` = ✓ · (x⇥r�`� iS`

m
�m), where S represents

the spin of the field, then the conserved angular momentum is
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The momentum ⇡i(x) that is canonically conjugate to the field �i(x) is
the derivative of the action density L with respect to the time derivative of
the field

⇡i =
@L

@�̇i

. (7.499)

If one can express the time derivatives �̇i of the fields in terms of the fields
�i and their momenta ⇡i, then the hamiltonian of the theory is the spatial
integral of

H = P0 = T 0
0 =

 
nX
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⇡i �̇i

!
� L (7.500)

in which �̇i = �̇i(�,⇡).

Example 7.69 (Hamiltonian of a scalar field) For the lagrangian L of
example 7.66, the hamiltonian density (7.500) is H = 1

2 ⇡
2 + 1

2 (r�)2 +
1
2 m

2�2.

Example 7.70 (Euler’s theorem and the Nambu-Goto string) When the
action density is a first-degree homogeneous function (section 7.10) of the
time derivatives of the fields, as is that of the Nambu-Goto string
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Euler’s theorem (7.112) implies that the energy density (7.500) vanishes
identically, independently of the equations of motion,

E0 =
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@Ẋµ
Ẋµ � L = 0. (7.502)


