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our formula (7.469) for f'(x) gives

u(a b " b
7@ =" [ogwar=0=r6) =" [uwgway. ()

For instance, to solve the equation — f”(z) — f(x) = exp z, with the mixed
boundary conditions f(—m) = 0 and f’(7) = 0, we choose from among the
solutions acosx + Bsinz of the homogeneous equation —f” — f = 0, the
functions u(x) = sinz and v(z) = cos z. Substituting them into the formula
(7.468) and setting p(z) = 1 and A = — W (xg) = sin®(zq) + cos?(zg) = 1,
we find as the Green’s function

G(z,y) =0(zx —y)sinycosx + 6(y — x) sinx cos y. (7.474)
The solution f(x) = [7 G(x,y)eYdy then is

f(z) = /7r [0(z —y)sinycosz + 0(y — z) sinz cosy| e dy
- (7.475)

= ! e "cosx + e sinz + e*).
2

7.44 Principle of Stationary Action in Field Theory

If ¢(x) is a scalar field, and L(¢) is its action density, then its action S[¢] is
the integral over all of spacetime

Slé) = / L(6(x), dud(a)) d'a. (7.476)

The principle of least (or stationary) action says that the field ¢(x) that

satisfies the classical equation of motion is the one for which the first-order

change in the action due to any tiny variation d¢(x) in the field vanishes,

dS[¢] = 0. To keep things simple, we’ll assume that the action (or Lagrange)

density L(¢) is a function only of the field ¢ and its first derivatives 0,¢ =
0¢/0x®. The first-order change in the action then is

OL OL

8S[¢] = / [5¢ + ———0(0a0)| d*xz =0 7.477

0= [ 550+ 5i55750:0) (7.477)

in which we sum over the repeated index a from 0 to 3. Now §(0,¢) =

Oa(p+00) — Dy = 0y0¢. So we may integrate by parts and drop the surface
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terms because we set d¢p = 0 on the surface at infinity

ssig) = [ [ag(w* 55" (‘W] to= | [Zg—a@a(@f@] S d'a.

This first-order variation is zero for arbitrary d¢ only if the field ¢(x) satisfies
Lagrange’s equation

Oa (a(gqu)) - aia [a(ajfaxa)} = gz (7.478)

which is the classical equation of motion.

Example 7.66 (Theory of a scalar ﬁeld) The action density of a single

scalar ﬁeld ¢ of mass mis L = 5 ((b) (V¢)2 1 m2¢? or equivalently
L= —130,00%—1% Lm2¢2. Lagrange s equatlon (7.478) is then

V23— ¢ = 0, 0% = m?¢ (7.479)
which is the Klein-Gordon equation (7.41). O

In a theory of several fields ¢4, ..., ¢, with action density L(¢x, 0adr),
the fields obey n copies of Lagrange’s equation one for each field ¢

O <a<§€m> = s <a<§jzsk>> - o (7.480)

Application of the principle of stationary action to the action [ R\/g dx
gives Einstein’s equations as shown in section 13.37.

7.45 Symmetries and Conserved Quantities in Field Theory

A transformation of the coordinates x® or of the fields ¢; and their derivatives
0q¢; that leaves the action density L(¢;,0,¢;) invariant is a symmetry of
the theory. Such a symmetry implies that something is conserved or time
independent.

Suppose that due to a symmetry a Lagrange density L(¢;, 0u¢;) is un-
changed when the fields ¢; and their derivatives 0,¢; change by d¢; and by
3(0a i) = 0q(0¢p;) which need not be small:

oL
0=0L= Z 8@5@ aamza 05 (7.481)

Then using Lagrange’s equations (7.480), we can rewrite L/0¢; and get

oL
' Z <a aaa¢z> oot 8(9@@8 a00i = O Z aaa@ 0i (7.482)
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which says that the current

= Z 6(%@ (7.483)

has zero divergence, 0,J% = 0. Thus the time derivative of the volume
integral of the charge density J°

Qv = /V JOd3x (7.484)

is the flux of current J entering through the boundary S of the volume V'

Qy = / 80J0d3:n:—/ V-Jd3x:—/J-d25. (7.485)
|4 Vv S

If no current enters V, then the charge ) inside V' is conserved. When the
volume V is the whole universe, the charge is the integral over all of space

/ JO a3z / Zf&pz dBr = / Zw 8 d>x (7.486)

in which 7; is the momentum conjugate to the field ¢;
oL
= —. (7.487)
0

Example 7.67 (O(n) symmetry and its charge) Suppose the action den-
sity L is the sum of n copies of the quadratic action density

L= Z — L (V)2 = Im?¢? = 10,00 — Lm?¢?.  (7.488)

Let A;; be any constant antisymmetric matrix, A;; = — Aj;. Then if the
fields change by d¢; =€ > ; Aij @j, the change (7.481) in the action density

n

0L = —¢ Z 8“¢,~A,~j8a¢j + m2¢iAij¢j =0 (7.489)
ij=1

vanishes. Thus the charge (7.486) associated with the matrix A
Qi = /Zm S d>z = e/zm Ajj bj dx (7.490)
1] ]

is conserved. There are n(n — 1)/2 antisymmetric n X n imaginary matrices;
they generate the group O(n) of n x n orthogonal matrices (example 11.3).
O
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If an action density L(¢;, d,¢;) depends upon the spacetime coordinate
% only through the fields ¢; and their derivatives 0,¢;, then its spacetime
derivative is

oL 0L 0¢; OL  0%¢;
Bzt = 2 <a¢i 0x% " 0040, a:::baw) ‘ (7.491)
Using Lagrange’s equations (7.480) to rewrite OL/0¢; , we find
oL  0%¢; oL
(Z % (aa,,¢ > Oui + D0y ; 3xb8x“> e
(7.492)
oo |(S s aw) ]
which says that the energy-momentum tensor of the theory
oL ad)z b
00v0; 0,L (7.493)

has zero divergence, abTba = 0.
Thus the time derivative of the 4-momentum P,y inside a volume V

oL a(bl 0 3 / 0 ;3
Py = -0, L) d°x= | T ,d°z 7.494
\% /V ( : 330@ Oz a ) v a ( )

is equal to the flux entering through V’s boundary S

Ao Pay = / T, dPx = — / O T" P = — / T 25y, (7.495)
14 14 S

And so if an action density has no explicit dependence on any of the space-
time coordinates x, then its energy Py and momentum P are conserved.

Example 7.68 (Conservation of angular momentum) Under an infinitesi-
mal rotation by 6, spatial coordinates change by dx = 6 x « and the change
in a scalar field is 0¢(t,x) = V¢ -0x = V¢ - (0 x ) =0 - (x x V¢). So if
the spatial integral of the Lagrange density L is unchanged under rotations

oL oL oL
3 3
_ bt 4
/d 5500+ 550000 = /d:r@ 5500 (7.496)
then the time derivative of the angular momentum
J = / PNy / iz 2L (x x Vo) (7.497)
o o¢p

vanishes as long as the fields fall to zero as |x| — co. If a rotation changes
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the field component ¢¢ by 6¢° = 8- (x x V¢’ — iSEm(bm), where S represents
the spin of the field, then the conserved angular momentum is

oL , .
J = / B Py (x x V¢! — i8St ™). (7.498)

O

The momentum 7;(z) that is canonically conjugate to the field ¢;(x) is
the derivative of the action density L with respect to the time derivative of
the field

oL

-5 (7.499)

Uy

If one can express the time derivatives ¢; of the fields in terms of the fields
¢; and their momenta m;, then the hamiltonian of the theory is the spatial
integral of

H=P=T%= (Z e ¢> —L (7.500)

i=1
in which ¢z = ¢z(¢> ).

Example 7.69 (Hamiltonian of a scalar field) For the lagrangian L of
example 7.66, the hamiltonian density (7.500) is H = 7% + 1 (V¢)? +
3 m%¢?. O

Example 7.70 (Euler’s theorem and the Nambu-Goto string) When the
action density is a first-degree homogeneous function (section 7.10) of the
time derivatives of the fields, as is that of the Nambu-Goto string

JA— (X : X')2 - (X>2 (X")?, (7.501)

C

Euler’s theorem (7.112) implies that the energy density (7.500) vanishes
identically, independently of the equations of motion,

g0 OL

= Xt —L=0. (7.502)

O



