our formula (7.469) for $f^{\prime}(x)$ gives

$$
\begin{equation*}
f^{\prime}(a)=\frac{u^{\prime}(a)}{A} \int_{a}^{b} v(y) g(y) d y=0=f^{\prime}(b)=\frac{v^{\prime}(b)}{A} \int_{a}^{b} u(y) g(y) d y \tag{7.473}
\end{equation*}
$$

For instance, to solve the equation $-f^{\prime \prime}(x)-f(x)=\exp x$, with the mixed boundary conditions $f(-\pi)=0$ and $f^{\prime}(\pi)=0$, we choose from among the solutions $\alpha \cos x+\beta \sin x$ of the homogeneous equation $-f^{\prime \prime}-f=0$, the functions $u(x)=\sin x$ and $v(x)=\cos x$. Substituting them into the formula (7.468) and setting $p(x)=1$ and $A=-W\left(x_{0}\right)=\sin ^{2}\left(x_{0}\right)+\cos ^{2}\left(x_{0}\right)=1$, we find as the Green's function

$$
\begin{equation*}
G(x, y)=\theta(x-y) \sin y \cos x+\theta(y-x) \sin x \cos y \tag{7.474}
\end{equation*}
$$

The solution $f(x)=\int_{-\pi}^{\pi} G(x, y) e^{y} d y$ then is

$$
\begin{align*}
f(x) & =\int_{-\pi}^{\pi}[\theta(x-y) \sin y \cos x+\theta(y-x) \sin x \cos y] e^{y} d y \tag{7.475}\\
& =-\frac{1}{2}\left(e^{-\pi} \cos x+e^{\pi} \sin x+e^{x}\right) .
\end{align*}
$$

7.44 Principle of Stationary Action in Field Theory

If $\phi(x)$ is a scalar field, and $L(\phi)$ is its action density, then its action $S[\phi]$ is the integral over all of spacetime

$$
\begin{equation*}
S[\phi]=\int L\left(\phi(x), \partial_{a} \phi(x)\right) d^{4} x \tag{7.476}
\end{equation*}
$$

The principle of least (or stationary) action says that the field $\phi(x)$ that satisfies the classical equation of motion is the one for which the first-order change in the action due to any tiny variation $\delta \phi(x)$ in the field vanishes, $\delta S[\phi]=0$. To keep things simple, we'll assume that the action (or Lagrange) density $L(\phi)$ is a function only of the field ϕ and its first derivatives $\partial_{a} \phi=$ $\partial \phi / \partial x^{a}$. The first-order change in the action then is

$$
\begin{equation*}
\delta S[\phi]=\int\left[\frac{\partial L}{\partial \phi} \delta \phi+\frac{\partial L}{\partial\left(\partial_{a} \phi\right)} \delta\left(\partial_{a} \phi\right)\right] d^{4} x=0 \tag{7.477}
\end{equation*}
$$

in which we sum over the repeated index a from 0 to 3 . Now $\delta\left(\partial_{a} \phi\right)=$ $\partial_{a}(\phi+\delta \phi)-\partial_{a} \phi=\partial_{a} \delta \phi$. So we may integrate by parts and drop the surface
terms because we set $\delta \phi=0$ on the surface at infinity

$$
\delta S[\phi]=\int\left[\frac{\partial L}{\partial \phi} \delta \phi+\frac{\partial L}{\partial\left(\partial_{a} \phi\right)} \partial_{a}(\delta \phi)\right] d^{4} x=\int\left[\frac{\partial L}{\partial \phi}-\partial_{a} \frac{\partial L}{\partial\left(\partial_{a} \phi\right)}\right] \delta \phi d^{4} x .
$$

This first-order variation is zero for arbitrary $\delta \phi$ only if the field $\phi(x)$ satisfies Lagrange's equation

$$
\begin{equation*}
\partial_{a}\left(\frac{\partial L}{\partial\left(\partial_{a} \phi\right)}\right) \equiv \frac{\partial}{\partial x^{a}}\left[\frac{\partial L}{\partial\left(\partial \phi / \partial x^{a}\right)}\right]=\frac{\partial L}{\partial \phi} \tag{7.478}
\end{equation*}
$$

which is the classical equation of motion.
Example 7.66 (Theory of a scalar field) The action density of a single scalar field ϕ of mass m is $L=\frac{1}{2}(\dot{\phi})^{2}-\frac{1}{2}(\nabla \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}$ or equivalently $L=-\frac{1}{2} \partial_{a} \phi \partial^{a} \phi-\frac{1}{2} m^{2} \phi^{2}$. Lagrange's equation (7.478) is then

$$
\begin{equation*}
\nabla^{2} \phi-\ddot{\phi}=\partial_{a} \partial^{a} \phi=m^{2} \phi \tag{7.479}
\end{equation*}
$$

which is the Klein-Gordon equation (7.41).
In a theory of several fields $\phi_{1}, \ldots, \phi_{n}$ with action density $L\left(\phi_{k}, \partial_{a} \phi_{k}\right)$, the fields obey n copies of Lagrange's equation one for each field ϕ_{k}

$$
\begin{equation*}
\partial_{a}\left(\frac{\partial L}{\partial\left(\partial_{a} \phi_{k}\right)}\right)=\frac{\partial}{\partial x^{a}}\left(\frac{\partial L}{\partial\left(\partial_{a} \phi_{k}\right)}\right)=\frac{\partial L}{\partial \phi_{k}} . \tag{7.480}
\end{equation*}
$$

Application of the principle of stationary action to the action $\int R \sqrt{g} d^{4} x$ gives Einstein's equations as shown in section 13.37.

7.45 Symmetries and Conserved Quantities in Field Theory

A transformation of the coordinates x^{a} or of the fields ϕ_{i} and their derivatives $\partial_{a} \phi_{i}$ that leaves the action density $L\left(\phi_{i}, \partial_{a} \phi_{i}\right)$ invariant is a symmetry of the theory. Such a symmetry implies that something is conserved or time independent.

Suppose that due to a symmetry a Lagrange density $L\left(\phi_{i}, \partial_{a} \phi_{i}\right)$ is unchanged when the fields ϕ_{i} and their derivatives $\partial_{a} \phi_{i}$ change by $\delta \phi_{i}$ and by $\delta\left(\partial_{a} \phi_{i}\right)=\partial_{a}\left(\delta \phi_{i}\right)$ which need not be small:

$$
\begin{equation*}
0=\delta L=\sum_{i} \frac{\partial L}{\partial \phi_{i}} \delta \phi_{i}+\frac{\partial L}{\partial \partial_{a} \phi_{i}} \partial_{a} \delta \phi_{i} . \tag{7.481}
\end{equation*}
$$

Then using Lagrange's equations (7.480), we can rewrite $\partial L / \partial \phi_{i}$ and get

$$
\begin{equation*}
0=\sum_{i}\left(\partial_{a} \frac{\partial L}{\partial \partial_{a} \phi_{i}}\right) \delta \phi_{i}+\frac{\partial L}{\partial \partial_{a} \phi_{i}} \partial_{a} \delta \phi_{i}=\partial_{a} \sum_{i} \frac{\partial L}{\partial \partial_{a} \phi_{i}} \delta \phi_{i} \tag{7.482}
\end{equation*}
$$

which says that the current

$$
\begin{equation*}
J^{a}=\sum_{i} \frac{\partial L}{\partial \partial_{a} \phi_{i}} \delta \phi_{i} \tag{7.483}
\end{equation*}
$$

has zero divergence, $\partial_{a} J^{a}=0$. Thus the time derivative of the volume integral of the charge density J^{0}

$$
\begin{equation*}
Q_{V}=\int_{V} J^{0} d^{3} x \tag{7.484}
\end{equation*}
$$

is the flux of current \boldsymbol{J} entering through the boundary S of the volume V

$$
\begin{equation*}
\dot{Q}_{V}=\int_{V} \partial_{0} J^{0} d^{3} x=-\int_{V} \nabla \cdot \boldsymbol{J} d^{3} x=-\int_{S} \boldsymbol{J} \cdot d^{2} \boldsymbol{S} \tag{7.485}
\end{equation*}
$$

If no current enters V, then the charge Q inside V is conserved. When the volume V is the whole universe, the charge is the integral over all of space

$$
\begin{equation*}
Q=\int J^{0} d^{3} x=\int \sum_{i} \frac{\partial L}{\partial \dot{\phi}_{i}} \delta \phi_{i} d^{3} x=\int \sum_{i} \pi_{i} \delta \phi_{i} d^{3} x \tag{7.486}
\end{equation*}
$$

in which π_{i} is the momentum conjugate to the field ϕ_{i}

$$
\begin{equation*}
\pi_{i}=\frac{\partial L}{\partial \dot{\phi}_{i}} \tag{7.487}
\end{equation*}
$$

Example $7.67(O(n)$ symmetry and its charge) Suppose the action density L is the sum of n copies of the quadratic action density

$$
\begin{equation*}
L=\sum_{i=1}^{n} \frac{1}{2}\left(\dot{\phi}_{i}\right)^{2}-\frac{1}{2}\left(\nabla \phi_{i}\right)^{2}-\frac{1}{2} m^{2} \phi_{i}^{2}=-\frac{1}{2} \partial_{a} \phi \partial^{a} \phi-\frac{1}{2} m^{2} \phi^{2} \tag{7.488}
\end{equation*}
$$

Let $A_{i j}$ be any constant antisymmetric matrix, $A_{i j}=-A_{j i}$. Then if the fields change by $\delta \phi_{i}=\epsilon \sum_{j} A_{i j} \phi_{j}$, the change (7.481) in the action density

$$
\begin{equation*}
\delta L=-\epsilon \sum_{i, j=1}^{n} \partial^{a} \phi_{i} A_{i j} \partial_{a} \phi_{j}+m^{2} \phi_{i} A_{i j} \phi_{j}=0 \tag{7.489}
\end{equation*}
$$

vanishes. Thus the charge (7.486) associated with the matrix A

$$
\begin{equation*}
Q_{A}=\int \sum_{i, j} \pi_{i} \delta \phi_{i} d^{3} x=\epsilon \int \sum_{i, j} \pi_{i} A_{i j} \phi_{j} d^{3} x \tag{7.490}
\end{equation*}
$$

is conserved. There are $n(n-1) / 2$ antisymmetric $n \times n$ imaginary matrices; they generate the group $O(n)$ of $n \times n$ orthogonal matrices (example 11.3).

If an action density $L\left(\phi_{i}, \partial_{a} \phi_{i}\right)$ depends upon the spacetime coordinate x^{a} only through the fields ϕ_{i} and their derivatives $\partial_{a} \phi_{i}$, then its spacetime derivative is

$$
\begin{equation*}
\frac{\partial L}{\partial x^{a}}=\sum_{i}\left(\frac{\partial L}{\partial \phi_{i}} \frac{\partial \phi_{i}}{\partial x^{a}}+\frac{\partial L}{\partial \partial_{b} \phi_{i}} \frac{\partial^{2} \phi_{i}}{\partial x^{b} \partial x^{a}}\right) . \tag{7.491}
\end{equation*}
$$

Using Lagrange's equations (7.480) to rewrite $\partial L / \partial \phi_{i}$, we find

$$
\begin{align*}
& 0=\left(\sum_{i} \partial_{b}\left(\frac{\partial L}{\partial \partial_{b} \phi_{i}}\right) \partial_{a} \phi_{i}+\frac{\partial L}{\partial \partial_{b} \phi_{i}} \frac{\partial^{2} \phi_{i}}{\partial x^{b} \partial x^{a}}\right)-\frac{\partial L}{\partial x^{a}} \tag{7.492}\\
& 0=\partial_{b}\left[\left(\sum_{i} \frac{\partial L}{\partial \partial_{b} \phi_{i}} \frac{\partial \phi_{i}}{\partial x^{a}}\right)-\delta_{a}^{b} L\right]
\end{align*}
$$

which says that the energy-momentum tensor of the theory

$$
\begin{equation*}
T_{a}^{b}=\sum_{i} \frac{\partial L}{\partial \partial_{b} \phi_{i}} \frac{\partial \phi_{i}}{\partial x^{a}}-\delta_{a}^{b} L \tag{7.493}
\end{equation*}
$$

has zero divergence, $\partial_{b} T^{b}{ }_{a}=0$.
Thus the time derivative of the 4-momentum $P_{a V}$ inside a volume V

$$
\begin{equation*}
P_{a V}=\int_{V}\left(\sum_{i} \frac{\partial L}{\partial \partial_{0} \phi_{i}} \frac{\partial \phi_{i}}{\partial x^{a}}-\delta_{a}^{0} L\right) d^{3} x=\int_{V} T_{a}^{0} d^{3} x \tag{7.494}
\end{equation*}
$$

is equal to the flux entering through V 's boundary S

$$
\begin{equation*}
\partial_{0} P_{a V}=\int_{V} \partial_{0} T_{a}^{0} d^{3} x=-\int_{V} \partial_{k} T_{a}^{k} d^{3} x=-\int_{S} T_{a}^{k} d^{2} S_{k} \tag{7.495}
\end{equation*}
$$

And so if an action density has no explicit dependence on any of the spacetime coordinates x, then its energy P_{0} and momentum \vec{P} are conserved.
Example 7.68 (Conservation of angular momentum) Under an infinitesimal rotation by $\boldsymbol{\theta}$, spatial coordinates change by $\delta \boldsymbol{x}=\boldsymbol{\theta} \times \boldsymbol{x}$ and the change in a scalar field is $\delta \phi(t, \boldsymbol{x})=\boldsymbol{\nabla} \phi \cdot \delta \boldsymbol{x}=\boldsymbol{\nabla} \phi \cdot(\boldsymbol{\theta} \times \boldsymbol{x})=\boldsymbol{\theta} \cdot(\boldsymbol{x} \times \boldsymbol{\nabla} \phi)$. So if the spatial integral of the Lagrange density L is unchanged under rotations

$$
\begin{equation*}
0=\int d^{3} x \frac{\partial L}{\partial \phi} \delta \phi+\frac{\partial L}{\partial \partial_{a} \phi} \partial_{a} \delta \phi=\int d^{3} x \partial_{a} \frac{\partial L}{\partial \partial_{a} \phi} \delta \phi \tag{7.496}
\end{equation*}
$$

then the time derivative of the angular momentum

$$
\begin{equation*}
\boldsymbol{J}=\int d^{3} x \frac{\partial L}{\partial \dot{\phi}} \delta \boldsymbol{x}=\int d^{3} x \frac{\partial L}{\partial \dot{\phi}}(\boldsymbol{x} \times \boldsymbol{\nabla} \phi) \tag{7.497}
\end{equation*}
$$

vanishes as long as the fields fall to zero as $|\boldsymbol{x}| \rightarrow \infty$. If a rotation changes
the field component ϕ^{ℓ} by $\delta \phi^{\ell}=\boldsymbol{\theta} \cdot\left(\boldsymbol{x} \times \boldsymbol{\nabla} \phi^{\ell}-i \boldsymbol{S}^{\ell}{ }_{m} \phi^{m}\right)$, where S represents the spin of the field, then the conserved angular momentum is

$$
\begin{equation*}
\boldsymbol{J}=\int d^{3} x \frac{\partial L}{\partial \dot{\phi}^{\ell}}\left(\boldsymbol{x} \times \boldsymbol{\nabla} \phi^{\ell}-i \boldsymbol{S}_{m}^{\ell} \phi^{m}\right) \tag{7.498}
\end{equation*}
$$

The momentum $\pi_{i}(x)$ that is canonically conjugate to the field $\phi_{i}(x)$ is the derivative of the action density L with respect to the time derivative of the field

$$
\begin{equation*}
\pi_{i}=\frac{\partial L}{\partial \dot{\phi}_{i}} \tag{7.499}
\end{equation*}
$$

If one can express the time derivatives $\dot{\phi}_{i}$ of the fields in terms of the fields ϕ_{i} and their momenta π_{i}, then the hamiltonian of the theory is the spatial integral of

$$
\begin{equation*}
H=P_{0}=T_{0}^{0}=\left(\sum_{i=1}^{n} \pi_{i} \dot{\phi}_{i}\right)-L \tag{7.500}
\end{equation*}
$$

in which $\dot{\phi}_{i}=\dot{\phi}_{i}(\phi, \pi)$.
Example 7.69 (Hamiltonian of a scalar field) For the lagrangian L of example 7.66 , the hamiltonian density (7.500) is $H=\frac{1}{2} \pi^{2}+\frac{1}{2}(\nabla \phi)^{2}+$ $\frac{1}{2} m^{2} \phi^{2}$.

Example 7.70 (Euler's theorem and the Nambu-Goto string) When the action density is a first-degree homogeneous function (section 7.10) of the time derivatives of the fields, as is that of the Nambu-Goto string

$$
\begin{equation*}
L=-\frac{T_{0}}{c} \sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-(\dot{X})^{2}\left(X^{\prime}\right)^{2}} \tag{7.501}
\end{equation*}
$$

Euler's theorem (7.112) implies that the energy density (7.500) vanishes identically, independently of the equations of motion,

$$
\begin{equation*}
E^{0}=\frac{\partial L}{\partial \dot{X}^{\mu}} \dot{X}^{\mu}-L=0 \tag{7.502}
\end{equation*}
$$

