so its differential is

$$
\begin{align*}
d F & =d U-T d S-S d T=T d S-p d V+\sum_{j} \mu_{j} d N_{j}-T d S-S d T \\
& =-p d V-S d T+\sum_{j} \mu_{j} d N_{j} \tag{7.157}
\end{align*}
$$

which shows that the Helmholtz free energy is a function $F(V, T, \boldsymbol{N})$ of the volume $V$, the temperature $T$, and the numbers $\boldsymbol{N}$ of molecules.

### 7.13 Principle of Stationary Action in Mechanics

In classical mechanics, the motion of $n$ particles in three dimensions is described by an action density or lagrangian $L(q, \dot{q}, t)$ in which $q$ stands for the $3 n$ generalized coordinates $q_{1}, q_{2}, \ldots, q_{3 n}$ and $\dot{q}$ for their time derivatives. The action of a motion $q(t)$ is the time integral

$$
\begin{equation*}
S=\int_{t_{1}}^{t_{2}} L(q, \dot{q}, t) d t \tag{7.158}
\end{equation*}
$$

If $q(t)$ changes slightly by $\delta q(t)$, then the first-order change in the action is

$$
\begin{equation*}
\delta S=\int_{t_{1}}^{t_{2}} \sum_{i=1}^{3 n}\left[\frac{\partial L(q, \dot{q}, t)}{\partial q_{i}} \delta q_{i}(t)+\frac{\partial L(q, \dot{q}, t)}{\partial \dot{q}_{i}} \delta \dot{q}_{i}(t)\right] d t \tag{7.159}
\end{equation*}
$$

The change in $\dot{q}_{i}$ is the time derivative of the change $\delta q_{i}$

$$
\begin{equation*}
\delta \frac{d q_{i}}{d t}=\frac{d\left(q_{i}+\delta q_{i}\right)}{d t}-\frac{d q_{i}}{d t}=\frac{d \delta q_{i}}{d t} \tag{7.160}
\end{equation*}
$$

so we have

$$
\begin{equation*}
\delta S=\int_{t_{1}}^{t_{2}} \sum_{i}\left[\frac{\partial L(q, \dot{q}, t)}{\partial q_{i}} \delta q_{i}(t)+\frac{\partial L(q, \dot{q}, t)}{\partial \dot{q}_{i}} \frac{d \delta q_{i}(t)}{d t}\right] d t \tag{7.161}
\end{equation*}
$$

Integrating by parts, we find

$$
\begin{equation*}
\delta S=\int_{t_{1}}^{t_{2}} \sum_{i}\left[\left(\frac{\partial L}{\partial q_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}\right) \delta q_{i}(t)\right] d t+\left[\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \delta q_{i}(t)\right]_{t_{1}}^{t_{2}} \tag{7.162}
\end{equation*}
$$

According to the principle of stationary action, a classical process is one that makes the action stationary to first order in $\delta q(t)$ for changes
that vanish at the end points $\delta q\left(t_{1}\right)=0=\delta q\left(t_{2}\right)$. Thus a classical process satisfies Lagrange's equations

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=0 \quad \text { for } \quad i=1, \ldots, 3 n \tag{7.163}
\end{equation*}
$$

Moreover, if the lagrangian $L$ does not depend explicitly on the time $t$, as in autonomous systems, then the hamiltonian (7.142)

$$
\begin{equation*}
H=\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i}-L \tag{7.164}
\end{equation*}
$$

does not change with time because its total time derivative $\dot{E}$ is the vanishing explicit time dependence of the lagrangian $-\partial L / \partial t=0$

$$
\begin{equation*}
\dot{H}=\sum_{i}\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}\right) \dot{q}_{i}+\frac{\partial L}{\partial \dot{q}_{i}} \ddot{q}_{i}-\frac{d L}{d t}=\sum_{i} \frac{\partial L}{\partial q_{i}} \dot{q}_{i}+\frac{\partial L}{\partial \dot{q}_{i}} \ddot{q}_{i}-\frac{d L}{d t}=-\frac{\partial L}{\partial t}=0 . \tag{7.165}
\end{equation*}
$$

Equivalently, the energy $E=H$ is conserved.
The momentum $p_{i}$ canonically conjugate to the coordinate $q_{i}$ is

$$
\begin{equation*}
p_{i}=\frac{\partial L}{\partial \dot{q}_{i}} \tag{7.166}
\end{equation*}
$$

If we can write the time derivatives $\dot{q}_{i}$ of the coordinates in terms of the $q_{k}$ 's and $p_{k}$ 's, that is, $\dot{q}_{i}=\dot{q}_{i}(q, p)$, then the hamiltonian is a Legendre transform of the lagrangian (example 7.27)

$$
\begin{equation*}
H(q, p)=\sum_{i=1}^{3 n} p_{i} \dot{q}_{i}(q, p)-L(q, p) . \tag{7.167}
\end{equation*}
$$

This rewriting of the velocities $\dot{q}_{i}$ in terms of the $q$ 's and $p$ 's is easy to do when the lagrangian is quadratic in the $\dot{q}_{i}$ 's but not so easy in other cases.

The change (7.162) in the action due to a tiny detour $\delta q(t)$ that differs from zero only at $t_{2}$ is proportional to the momenta (7.166)

$$
\begin{equation*}
\delta S=\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \delta q_{i}\left(t_{2}\right)=\sum_{i} p_{i} \delta q_{i}\left(t_{2}\right) \tag{7.168}
\end{equation*}
$$

whence

$$
\begin{equation*}
\frac{\partial S}{\partial q_{i}}=p_{i} \tag{7.169}
\end{equation*}
$$

We can write the total time derivative of the action $S$, which by construction
(7.158) is the lagrangian $L$, in terms of the $3 n$ momenta (7.169) as

$$
\begin{equation*}
\frac{d S}{d t}=L=\frac{\partial S}{\partial t}+\sum_{i} \frac{\partial S}{\partial q_{i}} \dot{q}_{i}=\frac{\partial S}{\partial t}+\sum_{i} p_{i} \dot{q}_{i} . \tag{7.170}
\end{equation*}
$$

Thus apart from a minus sign, the partial time derivative of the action $S$ is the energy function (7.164) or the hamiltonian (7.167)

$$
\begin{equation*}
\frac{\partial S}{\partial t}=L-\sum_{i} p_{i} \dot{q}_{i}=-E=-H \tag{7.171}
\end{equation*}
$$

### 7.14 Symmetries and Conserved Quantities in Mechanics

A transformation $q_{i}^{\prime}(t)=q_{i}(t)+\delta q_{i}(t)$ and its time derivative

$$
\begin{equation*}
\dot{q}_{i}^{\prime}(t)=\frac{d q_{i}^{\prime}(t)}{d t}=\frac{d q_{i}(t)}{d t}+\frac{d \delta q_{i}(t)}{d t}=\dot{q}_{i}(t)+\delta \dot{q}_{i}(t) \tag{7.172}
\end{equation*}
$$

is a symmetry of a lagrangian $L$ if the resulting change $\delta L$ vanishes

$$
\begin{equation*}
\delta L=\sum_{i} \frac{\partial L}{\partial q_{i}(t)} \delta q_{i}(t)+\frac{\partial L}{\partial \dot{q}_{i}(t)} \delta \dot{q}_{i}(t)=0 . \tag{7.173}
\end{equation*}
$$

This symmetry (7.173) and Lagrange's equations (7.163) imply that the quantity

$$
\begin{equation*}
Q=\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \delta q_{i} \tag{7.174}
\end{equation*}
$$

is conserved because its time derivative vanishes

$$
\begin{equation*}
\frac{d}{d t}\left(\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \delta q_{i}\right)=\sum_{i}\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}\right) \delta q_{i}+\frac{\partial L}{\partial \dot{q}_{i}} \frac{d \delta q_{i}}{d t}=\sum_{i} \frac{\partial L}{\partial q_{i}} \delta q_{i}+\frac{\partial L}{\partial \dot{q}_{i}} \delta \dot{q}_{i}=0 . \tag{7.175}
\end{equation*}
$$

Example 7.29 (Noether's theorem for momentum and angular momentum) Suppose the coordinates $q_{i}$ are the spatial coordinates $\boldsymbol{r}_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ of a system of particles with time derivatives $\boldsymbol{v}_{i}=\left(\dot{x}_{i}, \dot{y}_{i}, \dot{z}_{i}\right)$. If the lagrangian is unchanged $\delta L=0$ by spatial displacement or spatial translation by a constant vector $\boldsymbol{d}=(a, b, c)$, that is, by $\delta x_{i}=a, \delta y_{i}=b, \delta z_{i}=c$, then the momentum in the direction $\boldsymbol{d}$

$$
\begin{equation*}
\boldsymbol{P} \cdot \boldsymbol{d}=\sum_{i} \frac{\partial L}{\partial \boldsymbol{v}_{i}} \cdot \boldsymbol{d}=\sum_{i} \boldsymbol{p}_{i} \cdot \boldsymbol{d} \tag{7.176}
\end{equation*}
$$

is conserved.

If the lagrangian is unchanged $\delta L=0$ when the system is rotated by an angle $\boldsymbol{\theta}$, that is, if $\delta \boldsymbol{r}_{i}=\boldsymbol{\theta} \times \boldsymbol{r}_{i}$ is a symmetry of the lagrangian, then the angular momentum $\boldsymbol{J}$ about the axis $\boldsymbol{\theta}$

$$
\begin{equation*}
\sum_{i} \frac{\partial L}{\partial \boldsymbol{v}_{i}} \cdot\left(\boldsymbol{\theta} \times \boldsymbol{r}_{i}\right)=\sum_{i} \boldsymbol{p}_{i} \cdot\left(\boldsymbol{\theta} \times \boldsymbol{r}_{i}\right)=\left(\sum_{i} \boldsymbol{r}_{i} \times \boldsymbol{p}_{i}\right) \cdot \boldsymbol{\theta}=\boldsymbol{J} \cdot \boldsymbol{\theta} \tag{7.177}
\end{equation*}
$$

is conserved. (Emmy Noether 1882-1935)

Example 7.30 (Lagrangian's that are functions of the accelerations) If a lagrangian $L$ depends upon the accelerations $\ddot{q}_{i}$ but not explicitly upon the time, then the equations of motion

$$
\begin{equation*}
0=\frac{\partial L}{\partial q_{i}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)+\frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial \ddot{q}_{i}}\right) \tag{7.178}
\end{equation*}
$$

and an analog of the equation (7.165) for $\dot{E}$ imply that the energy

$$
\begin{equation*}
E=\sum_{i} \dot{q}_{i}\left[\frac{\partial L}{\partial \dot{q}_{i}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \ddot{q}_{i}}\right)\right]+\ddot{q}_{i} \frac{\partial L}{\partial \ddot{q}_{i}}-L \tag{7.179}
\end{equation*}
$$

is conserved.

### 7.15 Homogeneous First-Order Ordinary Differential Equations

Suppose the functions $P(x, y)$ and $Q(x, y)$ in the first-order ODE

$$
\begin{equation*}
P(x, y) d x+Q(x, y) d y=0 \tag{7.180}
\end{equation*}
$$

are homogeneous of degree $n$ (Ince, 1956). We change variables from $x$ and $y$ to $x$ and $y(x)=x v(x)$ so that $d y=x d v+v d x$, and

$$
\begin{equation*}
P(x, x v) d x+Q(x, x v)(x d v+v d x)=0 \tag{7.181}
\end{equation*}
$$

The homogeneity of $P(x, y)$ and $Q(x, y)$ imply that

$$
\begin{equation*}
x^{n} P(1, v) d x+x^{n} Q(1, v)(x d v+v d x)=0 \tag{7.182}
\end{equation*}
$$

Rearranging this equation, we are able to separate the variables

$$
\begin{equation*}
\frac{d x}{x}+\frac{Q(1, v)}{P(1, v)+v Q(1, v)} d v=0 \tag{7.183}
\end{equation*}
$$

