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Complex-Variable Theory

6.1 Analytic Functions

A complex-valued function f(z) of a complex variable z is di↵erentiable
at z with derivative f 0(z) if the limit

f 0(z) = lim
z0!z

f(z0)� f(z)

z0 � z
(6.1)

exists and is unique as z0 approaches z from any direction in the com-
plex plane. The limit must exist no matter how or from what direction z0

approaches z.
If the function f(z) is di↵erentiable in a small disk around a point z0,

then f(z) is said to be analytic (or equivalently holomorphic) at z0 (and
at all points inside the disk).

Example 6.1 (Polynomials) If f(z) = zn for some integer n, then for tiny
dz and z0 = z + dz, the di↵erence f(z0)� f(z) is

f(z0)� f(z) = (z + dz)n � zn ⇡ nzn�1 dz (6.2)

and so the limit

lim
z0!z

f(z0)� f(z)

z0 � z
= lim

dz!0

nzn�1 dz

dz
= nzn�1 (6.3)

exists and is nzn�1 independently of how z0 approaches z. Thus the function
zn is analytic at z for all z with derivative

dzn

dz
= nzn�1. (6.4)
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A function that is analytic everywhere is entire. All polynomials

P (z) =
nX

k=0

ck z
k (6.5)

are entire.

Example 6.2 (A function that’s not analytic) The function f(x, y) =
x2 + y2 = zz̄ for z = x + iy. If we compute its derivative at (x, y) = (1, 0)
by setting x = 1 + ✏ and y = 0, then the limit is

lim
✏!0

f(1 + ✏, 0)� f(1, 0)

✏
= lim

✏!0

(1 + ✏)2 � 1

✏
= 2, (6.6)

while if we instead set x = 1 and y = ✏, then the limit is

lim
✏!0

f(1, ✏)� f(1, 0)

i✏
= lim

✏!0

1 + ✏2 � 1

i✏
= �i lim

✏!0
✏ = 0. (6.7)

So the derivative depends upon the direction through which z ! 1.

6.2 Cauchy-Riemann Conditions

When is a complex function of two real variables x and y f(x, y) = u(x, y)+
iv(x, y) whose real and imaginary parts are u(x, y) and v(x, y) is analytic?
We apply the criterion (6.1) of analyticity and require that the change df
in the function f(x, y) be proportional to the change dz = dx+ idy so that
the ratio df/dz is independent of how dz approaches 0

✓
@u

@x
+ i

@v

@x

◆
dx+

✓
@u

@y
+ i

@v

@y

◆
dy = f 0(z)(dx+ idy). (6.8)

Setting first dy and then dx equal to zero, we have
✓
@u

@x
+ i

@v

@x

◆
= f 0(z) =

1

i

✓
@u

@y
+ i

@v

@y

◆
. (6.9)

This complex equation implies the two real equations

@u

@x
=

@v

@y
and

@v

@x
= � @u

@y
(6.10)

which are the Cauchy-Riemann conditions. In a notation in which partial
derivatives are labeled by subscripts, the Cauchy-Riemann conditions are
ux = vy and vx = � uy (Augustin-Louis Cauchy, 1789–1857; Bernhard
Riemann, 1826–1866).
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Example 6.3 Is the function f(x, y) = u(x, y)+iv(x, y) with u(x, y) = x2y
and v(x, y) = xy2 analytic? Well ux = 2xy = vy, but vx = y2 6= �ux =
�2xy. So no, f(x, y) = x2y + ixy2 is not analytic.

What if u(x, y) = v(x, y) = x2y2? Now ux = 2xy2, but vy = 2x2y. So no,
f(x, y) = (1 + i)x2y2 is not analytic.

What if u(x, y) = x2 � y2 and v(x, y) = 2xy? Now ux = 2x = vy, and
vx = 2y = �uy. So, yes, f(x, y) = (x+ iy)2 = z2 is analytic.

Example 6.4 (A function analytic except at a point) The real and imag-
inary parts of the function

f(z) =
1

z � z0
=

z⇤ � z⇤0
|z � z0|2

=
x� x0 � i(y � y0)

(x� x0)2 + (y � y0)2
(6.11)

are

u(x, y) =
x� x0

(x� x0)2 + (y � y0)2
and v(x, y) =

�(y � y0)

(x� x0)2 + (y � y0)2
.

(6.12)
They satisfy the Cauchy-Riemann conditions (6.10)

@u(x, y)

@x
=

(y � y0)2 � (x� x0)2

[(x� x0)2 + (y � y0)2]2
=

@v(x, y)

@y
(6.13)

and

@v(x, y)

@x
=

2(x� x0)(y � y0)

[(x� x0)2 + (y � y0)2]2
= �@u(x, y)

@y
(6.14)

except at the point z = z0 where x = x0 and y = y0.

6.3 Cauchy’s Integral Theorem

The Cauchy-Riemann conditions imply that the integral of a function
along a closed contour (one that ends where it starts) vanishes if the
function is analytic on the contour and everywhere inside it. To keep the
notation simple, let’s consider a rectangle R of length ` and height h with
one corner at the origin and edges running along the x and y axes of the z
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plane. The integral along the four sides of the rectangle is
I

R

f(z) dz =

I

R

(u(x, y) + iv(x, y)) (dx+ idy)

=

Z
`

0
[u(x, 0) + iv(x, 0)] dx+

Z
h

0
[u(`, y) + iv(`, y)] idy

+

Z 0

`

[u(x, h) + iv(x, h)] dx+

Z 0

h

[u(0, y) + iv(0, y)] idy.

(6.15)

The real and imaginary parts of this contour integral are

Re

✓I

R

f(z)dz

◆
=

Z
`

0
[u(x, 0)� u(x, h)] dx�

Z
h

0
[v(`, y)� v(0, y)] dy

Im

✓I

R

f(z)dz

◆
=

Z
`

0
[v(x, 0)� v(x, h)] dx+

Z
h

0
[u(`, y)� u(0, y)] dy.

(6.16)

The di↵erences u(x, 0) � u(x, h) and v(`, y) � v(0, y) in the real part are
integrals of the y derivative uy(x, y) and of the x derivative vx(x, y)

u(x, 0)� u(x, h) = �
Z

h

0
uy(x, y) dy

v(`, y)� v(0, y) =

Z
`

0
vx(x, y) dx.

(6.17)

The real part of the contour integral therefore vanishes due to the second
vx = � uy of the Cauchy-Riemann conditions (6.10)

Re

✓I

R

f(z) dz

◆
= �

Z
`

0

Z
h

0
uy(x, y) dy dx�

Z
h

0

Z
`

0
vx(x, y) dx dy

= �
Z

`

0

Z
h

0
[uy(x, y) + vx(x, y)] dy dx = 0.

(6.18)

Similarly, di↵erences v(x, 0)�v(x, h) and u(`, y)�u(0, y) in the imaginary
part are integrals of the y derivative vy(x, y) and of the x derivative ux(x, y)

v(x, 0)� v(x, h) = �
Z

h

0
vy(x, y) dy

u(`, y)� u(0, y) =

Z
`

0
ux(x, y) dx.

(6.19)

Thus the imaginary part of the contour integral vanishes due to the first
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ux = vy of the Cauchy-Riemann conditions (6.10)

Im

✓I

R

f(z) dz

◆
= �

Z
`

0

Z
h

0
vy(x, y) dy dx+

Z
h

0

Z
`

0
ux(x, y) dx dy

=

Z
`

0

Z
h

0
[� vy(x, y) + ux(x, y)] dy dx = 0.

(6.20)

A similar argument shows that the contour integral along the four sides of
any rectangle vanishes as long as the function f(z) is analytic on and within
the rectangle whether or not the rectangle has one corner at the origin z = 0.
Suppose a function f(z) is analytic along a closed contour C and also at

every point inside it. We can tile the inside area A with a suitable collection
of contiguous rectangles some of which might be very small. The integral of
f(z) along the perimeter of each rectangle will vanish because each rectan-
gle lies entirely within the region in which f(z) is analytic. Now consider
two adjacent rectangles like the two squares in Fig. 6.1. The sum of the two
contour integrals around the two adjacent squares is equal to the contour in-
tegral around the perimeter of the two squares because the up integral along
the right side (dots) of the left square cancels the down integral along the
left side of the right square. Thus the sum of the contour integrals around
the perimeters of all the rectangles that tile the inside area A amounts to
just the integral along the outer contour C. The integral around each rect-
angle vanishes. So the integral of f(z) along the contour C also must vanish
because it is the sum of these vanishing integrals around the rectangles that
tile the inside area A. This is Cauchy’s Integral Theorem: The integral
of a function f(z) along a closed contour vanishes

I

C

f(z) dz = 0 (6.21)

if the function f(z) is analytic on the contour and at every point inside it.
What could go wrong? The area A inside the contour might have a hole in

it in which the function f(z) is not analytic. To exclude this possibility, we
require that the area A inside the contour be simply connected, that is, we
insist that we be able to shrink every loop in A to a point while keeping the
loop inside A. A slice of American cheese is simply connected, a slice of Swiss
Emmental is not. A dime is simply connected, a washer isn’t. The surface of
a sphere is simply connected, the surface of a bagel isn’t. So another version
of Cauchy’s integral theorem is that the integral of a function f(z) along a
closed contour vanishes if the contour lies within a simply connected region
in which f(z) is analytic (Augustin-Louis Cauchy, 1789–1857).

Example 6.5 (Tiny circular contour) If f(z) is analytic at z0, then the
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Cauchy’s Integral Theorem

Figure 6.1 The sum of two contour integrals around two adjacent squares
is equal to the contour integral around the perimeter of the two squares
because the up integral along the right side (dots) of the left square cancels
the down integral along the left side (dots) of the right square. A contour
integral around a big square is equal to the sum of the contour integrals
around the smaller interior squares that tile the big square. Matlab scripts
for this chapter’s figures are in Complex-variable theory at github.com/
kevinecahill.

definition (6.1) of the derivative f 0(z) shows that f(z) ⇡ f(z0)+f 0(z0) (z�z0)
near z0 to first order in z � z0. The points of a small circle of radius ✏ and
center z0 are z = z0 + ✏ ei✓. Since z� z0 = ✏ ei✓ and dz = i✏ ei✓d✓, the closed
contour integral around the circle is

I

#
f(z) dz =

Z 2⇡

0

⇥
f(z0) + f 0(z0) (z � z0)

⇤
i✏ ei✓d✓

= f(z0)

Z 2⇡

0
i✏ ei✓d✓ + f 0(z0)

Z 2⇡

0
✏ ei✓ i✏ ei✓d✓

(6.22)

which vanishes because the ✓-integrals are zero. Thus the contour integral
of an analytic function f(z) around a tiny circle, lying within the region in
which f(z) is analytic, vanishes.

Example 6.6 (Tiny square contour) The analyticity of f(z) at z = z0
lets us expand f(z) near z0 as f(z) ⇡ f(z0) + f 0(z0) (z� z0). A tiny square
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contour consists of four complex segments dz1 = ✏, dz2 = i ✏, dz3 = �✏, and
dz4 = �i ✏. The integral of the constant f(z0) around the square vanishes

I

⇤
f(z0) dz = f(z0)

I

⇤
dz = f(z0) [✏+ i ✏+ (�✏) + (�i ✏)] = 0. (6.23)

The integral of the second term f 0(z0)(z � z0) also vanishes. It is the sum
of four integrals along the four sides of the tiny square. Like the integral
of the constant f(z0), the integral of the constant �f 0(z0) z0 also vanishes.
Dropping that term, we are left with the integral of f 0(z0) z along the four
sides of the tiny square.

The integral from left to right along the bottom of the square where
z = x� i✏/2 is

I1 = f 0(0)

Z
✏/2

�✏/2

⇣
x� i

✏

2

⌘
dx = � i✏2

2
f 0(0). (6.24)

The integral up the right side of the square where z = ✏/2 + iy is

I2 = f 0(0)

Z
✏/2

�✏/2

⇣ ✏
2
+ iy

⌘
idy =

i✏2

2
f 0(0). (6.25)

The integral backwards along the top of the square where z = x+ i✏/2 is

I3 = f 0(0)

Z �✏/2

✏/2

⇣
x+ i

✏

2

⌘
dx = � i✏2

2
f 0(z0). (6.26)

Finally, the integral down the left side where z = �✏/2 + iy is

I4 = f 0(0)

Z �✏/2

✏/2

⇣
� ✏

2
+ iy

⌘
idy =

i✏2

2
f 0(0). (6.27)

These integrals cancel in pairs. Thus the contour integral of an analytic
function f(z) around a tiny square of side ✏ is zero to order ✏2 as long as the
square lies inside the region in which f(z) is analytic.

Suppose a function f(z) is analytic in a simply connected region R and
that C and C 0 are two contours that lie inside R and that both run from
z1 to z2. The di↵erence of the two contour integrals is an integral along a
closed contour C 00 that runs from z1 to z2 and back to z1 and that vanishes
by Cauchy’s theorem
Z

z2

z1C

f(z) dz �
Z

z2

z1C
0
f(z) dz =

Z
z2

z1C

f(z) dz +

Z
z1

z2C
0
f(z) dz =

I

C00
f(z) dz = 0.

(6.28)
It follows that any two contour integrals that lie within a simply connected
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Four equal contour integrals

Figure 6.2 As long as the four contours are within the domain of analyticity
of f(z) and have the same endpoints, the four contour integrals of that
function are all equal.

region in which f(z) is analytic are equal if they start at the same point z1
and end at the same point z2. Thus we may continuously deform the contour
of an integral of an analytic function f(z) from C to C 0 without changing
the value of the contour integral as long as long as these contours and all
the intermediate contours lie entirely within the region R and have the same
fixed endpoints z1 and z2 as in Fig. 6.2

Z
z2

z1C

f(z) dz =

Z
z2

z1C
0
f(z) dz. (6.29)

So a contour integral depends upon its end points and upon the function
f(z) but not upon the actual contour as long as the contour stays within
the region R in which f(z) is analytic as the contour is deformed from C to
some other contour C 0.
If the end points z1 and z2 are the same, then the contour C is closed, and

we write the integral as
I

z1

z1C
f(z) dz ⌘

I

C
f(z) dz (6.30)

with a little circle to denote that the contour is a closed loop. The value
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of that integral is independent of the contour as long as our deformations
of the contour keep it within the domain of analyticity of the function and
as long as the contour starts and ends at z1 = z2. Now suppose that the
function f(z) is analytic along the contour and at all points within it. Then
we can shrink the contour, staying within the domain of analyticity of the
function, until the area enclosed is zero and the contour is of zero length—all
this without changing the value of the integral. But the value of the integral
along such a null contour of zero length is zero. Thus the value of the original
contour integral also must be zero

I
z1

z1C

f(z) dz = 0. (6.31)

And so we again arrive at Cauchy’s integral theorem: The contour inte-
gral of a function f(z) around a closed contour C lying entirely within the
domain of analyticity of the function vanishes

I

C

f(z) dz = 0 (6.32)

as long as the function f(z) is analytic at all points within the contour.

Example 6.7 (Polynomials) Since dzn+1 = (n + 1) zn dz, the integral of
the entire function zn along any contour C that ends and starts at the same
point z0 must vanish for any integer n � 0

I

C

zn dz =
1

n+ 1

I

C

dzn+1 =
1

n+ 1

�
zn+1
0 � zn+1

0

�
= 0. (6.33)

Thus the integral of any polynomial P (z) = c0 + c1z + c2z2 + . . . along any
closed contour C also vanishes

I

C

P (z) dz =

I

C

mX

n=0

cnz
n dz = 0. (6.34)

Example 6.8 (A pole) The function f(z) = 1/(z � z0) is analytic in a
region that is not simply connected because its derivative

f 0(z) = lim
dz!0

✓
1

z + dz � z0
� 1

z � z0

◆
1

dz
= � 1

(z � z0)2
(6.35)

exists in the whole complex plane except for the point z = z0.
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6.4 Cauchy’s Integral Formula

Suppose that f(z) is analytic in a simply connected region R and that z0
is a point inside this region. We first will integrate the function f(z)/(z �
z0) along a tiny closed counterclockwise contour around the point z0. The
contour is a circle of radius ✏ with center at z0 and points z = z0 + ✏ ei✓ for
0  ✓  2⇡. Since z � z0 = ✏ ei✓ and dz = i✏ ei✓d✓, the contour integral in
the limit ✏ ! 0 is

I

✏

f(z)

z � z0
dz =

Z 2⇡

0

[f(z0) + f 0(z0) (z � z0)]

z � z0
i✏ ei✓d✓

=

Z 2⇡

0

⇥
f(z0) + f 0(z0) ✏ ei✓

⇤

✏ ei✓
i✏ ei✓d✓ (6.36)

=

Z 2⇡

0

h
f(z0) + f 0(z0) ✏ e

i✓

i
id✓ = 2⇡i f(z0)

since the ✓-integral involving f 0(z0) vanishes. Thus f(z0) is the integral

f(z0) =
1

2⇡i

I

✏

f(z)

z � z0
dz (6.37)

which is a miniature version of Cauchy’s integral formula.
Now consider the counterclockwise contour C0 in Fig. 6.3 which is a big

counterclockwise circle, a small clockwise circle, and two parallel straight
lines, all within a simply connected region R in which f(z) is analytic. As
we saw in examples 6.4 and 6.8, the function 1/(z � z0) is analytic except
at z = z0. Thus since the product of two analytic functions is analytic
(exercise 6.3), the function f(z)/(z� z0) is analytic everywhere in R except
at the point z0. We can withdraw the contour C0 to the left of the point z0
and shrink it to a point without having the contour C0 cross z0. During this
process, the integral of f(z)/(z� z0) does not change. Its final value is zero.
So its initial value also is zero

0 =
1

2⇡i

I

C0

f(z)

z � z0
dz. (6.38)

We let the two straight-line segments approach each other so that they
cancel. What remains of contour C0 is a big counterclockwise contour C
around z0 and a tiny clockwise circle of radius ✏ around z0. The tiny clockwise
circle integral is the negative of the counterclockwise integral (6.37), so we
have

0 =
1

2⇡i

I

C0

f(z)

z � z0
dz =

1

2⇡i

I

C

f(z)

z � z0
dz � 1

2⇡i

I

✏

f(z)

z � z0
dz. (6.39)
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Contours around z0

Figure 6.3 The full contour is the sum of a big counterclockwise contour
C0 and a small clockwise contour, both around z0, and two straight lines
which cancel.

Using the miniature result (6.37), we find

f(z0) =
1

2⇡i

I

C

f(z)

z � z0
dz (6.40)

which is Cauchy’s integral formula.

We can use this formula to compute the first derivative f 0(z) of f(z)

f 0(z) =
f(z + dz)� f(z)

dz

=
1

2⇡i

1

dz

I
dz0 f(z0)

✓
1

z0 � z � dz
� 1

z0 � z

◆

=
1

2⇡i

I
dz0

f(z0)

(z0 � z � dz)(z0 � z)
. (6.41)

So in the limit dz ! 0, we get

f 0(z) =
1

2⇡i

I
dz0

f(z0)

(z0 � z)2
. (6.42)
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The second derivative f (2)(z) of f(z) then is

f (2)(z) =
2

2⇡i

I
dz0

f(z0)

(z0 � z)3
. (6.43)

And its nth derivative f (n)(z) is

f (n)(z) =
n!

2⇡i

I
dz0

f(z0)

(z0 � z)n+1
. (6.44)

In these formulas, the contour runs counterclockwise about the point z and
lies within the simply connected domain R in which f(z) is analytic.
Thus a function f(z) that is analytic in a region R is infinitely di↵eren-

tiable there.

Example 6.9 (Schlaefli’s Formula for the Legendre Polynomials) Ro-
drigues showed (section 9.2) that the Legendre polynomial Pn(x) is the nth
derivative

Pn(x) =
1

2n n!

✓
d

dx

◆
n

(x2 � 1)n. (6.45)

Schlaefli used this expression and Cauchy’s integral formula (6.44) to repre-
sent Pn(z) as the contour integral (exercise 6.9)

Pn(z) =
1

2n 2⇡i

I
(z02 � 1)n

(z0 � z)n+1
dz0 (6.46)

in which the contour encircles the complex point z counterclockwise. This
formula tells us that at z = 1 the Legendre polynomial is

Pn(1) =
1

2n 2⇡i

I
(z02 � 1)n

(z0 � 1)n+1
dz0 =

1

2n 2⇡i

I
(z0 + 1)n

(z0 � 1)
dz0 = 1 (6.47)

in which we applied Cauchy’s integral formula (6.40) to f(z) = (z+1)n.

Example 6.10 (Bessel Functions of the First Kind) The counterclockwise
integral around the unit circle z = ei✓ of the ratio zm/zn in which both m
and n are integers is

1

2⇡i

I
dz

zm

zn
=

1

2⇡i

Z 2⇡

0
iei✓d✓ ei(m�n)✓ =

1

2⇡

Z 2⇡

0
d✓ ei(m+1�n)✓. (6.48)

If m+ 1� n 6= 0, this integral vanishes because exp 2⇡i(m+ 1� n) = 1

1

2⇡

Z 2⇡

0
d✓ ei(m+1�n)✓ =

1

2⇡

"
ei(m+1�n)✓

i(m+ 1� n)

#2⇡

0

= 0. (6.49)
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If m + 1 � n = 0, the exponential is unity exp i(m + 1 � n)✓ = 1, and the
integral is 2⇡/2⇡ = 1. Thus the original integral is the Kronecker delta

1

2⇡i

I
dz

zm

zn
= �m+1,n. (6.50)

The generating function (10.5) for Bessel functions Jm of the first kind is

et(z�1/z)/2 =
1X

m=�1
zmJm(t). (6.51)

Applying our integral formula (6.50) to it, we find

1

2⇡i

I
dz et(z�1/z)/2 1

zn+1
=

1

2⇡i

I
dz

1X

m=�1

zm

zn+1
Jm(t)

=
1X

m=�1
�m+1,n+1 Jm(t) = Jn(t).

(6.52)

Thus letting z = ei✓, we have

Jn(t) =
1

2⇡

Z 2⇡

0
d✓ exp

h
1
2 t
⇣
ei✓ � e�i✓

⌘
� in✓

i
(6.53)

or more simply

Jn(t) =
1

2⇡

Z 2⇡

0
d✓ ei(t sin ✓�n✓) =

1

⇡

Z
⇡

0
d✓ cos(t sin ✓ � n✓) (6.54)

(exercise 6.4).

6.5 Harmonic Functions

The Cauchy-Riemann conditions (6.10)

ux = vy and uy = �vx (6.55)

tell us about the laplacian of the real and imaginary parts of an analytic
function f = u + iv. The second x-derivative uxx of the real part u is
uxx = vyx = vxy = �uyy. So the real part u of an analytic function f is a
harmonic function

uxx + uyy = 0 (6.56)

that is, one with a vanishing laplacian. Similarly vxx = �uyx = �vyy, so the
imaginary part v of an analytic function also is a harmonic function

vxx + vyy = 0. (6.57)
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A harmonic function h(x, y) can have saddle points, but not local minima
or maxima because at a local minimum both hxx > 0 and hyy > 0, while at
a local maximum both hxx < 0 and hyy < 0. So in its domain of analyticity,
the real and imaginary parts of an analytic function f have neither minima
nor maxima.
For static fields, the electrostatic potential �(x, y, z) is a harmonic function

of the three spatial variables x, y, and z in regions that are free of charge
because the electric field is E = �r� , and its divergence vanishes r ·E = 0
where the charge density is zero. Thus the laplacian of the electrostatic
potential �(x, y, z) vanishes

r ·r� = �xx + �yy + �zz = 0 (6.58)

and �(x, y, z) is harmonic where there is no charge. The location of each
positive charge is a local maximum of the electrostatic potential �(x, y, z)
and the location of each negative charge is a local minimum of �(x, y, z).
But in the absence of charges, the electrostatic potential has neither local
maxima nor local minima. Thus one cannot trap charged particles with an
electrostatic potential, a result known as Earnshaw’s theorem.
The Cauchy-Riemann conditions imply that the real and imaginary parts

of an analytic function are harmonic functions with two-dimensional gradi-
ents that are mutually perpendicular

(ux, uy) · (vx, vy) = uxvx + uyvy = vyvx � vxvy = 0. (6.59)

In regions with no charge, the electrostatic potential is a harmonic function.
So the real part u(x, y) (or the imaginary part v(x, y)) of any analytic func-
tion f(z) = u(x, y)+ iv(x, y) describes the electrostatic potential �(x, y) for
some electrostatic problem that does not involve the third spatial coordinate
z. If the surfaces of constant u(x, y) are equipotential surfaces, then since
the two gradients are orthogonal, the surfaces of constant v(x, y) are the
electric field lines.

Example 6.11 (Two-dimensional potentials) The function

f(z) = u+ iv = E z = E x+ i E y (6.60)

can represent a potential V (x, y, z) = E x for which the electric-field lines
E = �E x̂ are lines of constant y. It also can represent a potential V (x, y, z) =
E y in which E points in the negative y-direction, which is to say along lines
of constant x.
Another simple example is the function

f(z) = u+ iv = z2 = x2 � y2 + 2ixy (6.61)
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for which u = x2 � y2 and v = 2xy. This function gives us a potential
V (x, y, z) whose equipotentials are the hyperbolas u = x2 � y2 = c2 and
whose electric-field lines are the perpendicular hyperbolas v = 2xy = d2.
Equivalently, we may take these last hyperbolas 2xy = d2 to be the equipo-
tentials and the other ones x2 � y2 = c2 to be the lines of the electric field.

For a third example, we write the variable z as z = rei✓ = exp(log r+ i✓)
and use the function

f(z) = u(x, y) + iv(x, y) = � �

2⇡✏0
log z = � �

2⇡✏0
(log r + i✓) (6.62)

which describes the potential V (x, y, z) = �(�/2⇡✏0) log
p
x2 + y2 due to a

line of charge per unit length � = q/L. The electric-field lines are the lines
of constant v

E =
�

2⇡✏0

(x, y, 0)

x2 + y2
(6.63)

or equivalently of constant ✓.

6.6 Taylor Series for Analytic Functions

Let’s consider the contour integral of the function f(z0)/(z0 � z) along a
circle C inside a simply connected region R in which f(z) is analytic. For
any point z inside the circle, Cauchy’s integral formula (6.40) tells us that

f(z) =
1

2⇡i

I

C

f(z0)

z0 � z
dz0. (6.64)

We add and subtract the center z0 from the denominator z0 � z

f(z) =
1

2⇡i

I

C

f(z0)

z0 � z0 � (z � z0)
dz0 (6.65)

and then factor the denominator

f(z) =
1

2⇡i

I

C

f(z0)

(z0 � z0)
⇣
1� z�z0

z0�z0

⌘ dz0. (6.66)

From Fig. 6.4, we see that the modulus of the ratio (z� z0)/(z0 � z0) is less
than unity, and so the power series

✓
1� z � z0

z0 � z0

◆�1

=
1X

n=0

✓
z � z0
z0 � z0

◆
n

(6.67)
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Taylor-series contour around z0

Figure 6.4 Contour of integral for the Taylor series (6.69).

by (5.31–5.33) converges absolutely and uniformly on the circle. We therefore
are allowed to integrate the series

f(z) =
1

2⇡i

I

C

f(z0)

z0 � z0

1X

n=0

✓
z � z0
z0 � z0

◆
n

dz0 (6.68)

term by term

f(z) =
1X

n=0

(z � z0)
n

1

2⇡i

I

C

f(z0) dz0

(z0 � z0)n+1
. (6.69)

Cauchy’s integral formula (6.44) tells us that the integral is just the nth
derivative f (n)(z) divided by n-factorial. Thus the function f(z) possesses
the Taylor series

f(z) =
1X

n=0

(z � z0)n

n!
f (n)(z0) (6.70)

which converges as long as the point z is inside a circle centered at z0 that
lies within a simply connected region R in which f(z) is analytic.
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6.7 Cauchy’s Inequality

Suppose a function f(z) is analytic in a region that includes the disk |z|  R
and that f(z) is bounded by |f(z)|  M on the circle |z| = R that is the
perimeter of the disk. Then by using Cauchy’s integral formula (6.44), we
may bound the nth derivative f (n)(0) of f(z) at z = 0 by

|f (n)(0)|  n!

2⇡

I |f(z)||dz|
|z|n+1

 n!M

2⇡

Z 2⇡

0

Rd✓

Rn+1
=

n!M

Rn
(6.71)

which is Cauchy’s inequality. This inequality bounds the terms of the Taylor
series (6.70)

1X

n=0

|z � z0|n
n!

|f (n)(z0)|  M
1X

n=0

|z � z0|n
Rn

(6.72)

showing that it converges (5.33) absolutely and uniformly for |z � z0| < R.

6.8 Liouville’s Theorem

Suppose now that f(z) is analytic everywhere (entire) and bounded by

|f(z)|  M for all |z| � R0. (6.73)

Then by applying Cauchy’s inequality (6.71) at successively larger values of
R, we have

|f (n)(0)|  lim
R!1

n!M

Rn
= 0 (6.74)

which shows that for n � 1 every derivative f (n)(z) vanishes at z = 0

f (n)(0) = 0. (6.75)

But then the Taylor series (5.79) about z = 0 for the function f(z) consists
of only a single term, and f(z) is a constant

f(z) =
1X

n=0

zn

n!
f (n)(0) = f (0)(0) = f(0). (6.76)

So every bounded entire function is a constant (Joseph Liouville, 1809–1882).
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6.9 Fundamental Theorem of Algebra

Gauss applied Liouville’s theorem to the function

f(z) =
1

Pn(z)
=

1

c0 + c1z + c2z2 + . . .+ cnzn
(6.77)

which is the inverse of an arbitrary polynomial of order n. Suppose that
the polynomial Pn(z) had no zero, that is, no root anywhere in the complex
plane. Then f(z) would be analytic everywhere. Moreover, for su�ciently
large |z|, the polynomial Pn(z) is approximately Pn(z) ⇡ cnzn, and so f(z)
would be bounded by something like

|f(z)|  1

|cn|Rn

0

⌘ M for all |z| � R0. (6.78)

So if Pn(z) had no root, then the function f(z) would be a bounded entire
function and so would be a constant by Liouville’s theorem (6.76). But of
course, f(z) = 1/Pn(z) is not a constant unless n = 0. Thus any polynomial
Pn(z) that is not a constant must have a root, a pole of f(z), so that f(z)
is not entire.
If the root of Pn(z) is at z = z1, then Pn(z) = (z � z1)Pn�1(z), in which

Pn�1(z) is a polynomial of order n�1, and we may repeat the argument for
its reciprocal f1(z) = 1/Pn�1(z). In this way, one arrives at the fundamental
theorem of algebra: Every polynomial Pn(z) = c0 + c1z + . . . + cnzn has n
roots somewhere in the complex plane

Pn(z) = cn (z � z1)(z � z2) . . . (z � zn). (6.79)

6.10 Laurent Series

Consider a function f(z) that is analytic in an annulus that contains an
outer circle C1 of radius R1 and an inner circle C2 of radius R2 as in Fig. 6.5.
We integrate f(z) along a contour C12 within the annulus that encircles the
point z in a counterclockwise fashion by following C1 counterclockwise and
C2 clockwise and a line joining them in both directions. By Cauchy’s integral
formula (6.40), this contour integral yields f(z)

f(z) =
1

2⇡i

I

C12

f(z0)

z0 � z
dz0. (6.80)

The integrations in opposite directions along the line joining C1 and C2 can-
cel, and we are left with a counterclockwise integral around the outer circle C1
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Contour around z

Figure 6.5 A contour consisting of two concentric circles with center at z0
encircles the point z in a counterclockwise sense. The asterisks are poles or
other singularities of the function f(z).

and a clockwise one around C2 or minus a counterclockwise integral around
C2

f(z) =
1

2⇡i

I

C1

f(z0)

z0 � z
dz0 � 1

2⇡i

I

C2

f(z00)

z00 � z
dz00. (6.81)

Now the figure (6.5) shows that the center z0 of the two concentric circles
is closer to the points z00 on the inner circle C2 than it is to z; it also shows
that z0 is closer to z than to the points z0 on C1

����
z00 � z0
z � z0

���� < 1 and

����
z � z0
z0 � z0

���� < 1. (6.82)

We add and subtract z0 from each of the denominators in (6.81) and absorb
the minus sign before the second integral into its denominator

f(z) =
1

2⇡i

I

C1

f(z0)

z0 � z0 � (z � z0)
dz0 +

1

2⇡i

I

C2

f(z00)

z � z0 � (z00 � z0)
dz00.

(6.83)
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After factoring the two denominators

f(z) =
1

2⇡i

I

C1

f(z0)

(z0 � z0) [1� (z � z0)/(z0 � z0)]
dz0

+
1

2⇡i

I

C2

f(z00)

(z � z0) [1� (z00 � z0)/(z � z0)]
dz00 (6.84)

we expand them in power series (6.68) that converge absolutely and uni-
formly on the two contours

f(z) =
1X

n=0

(z � z0)
n

1

2⇡i

I

C1

f(z0)

(z0 � z0)n+1
dz0

+
1X

m=0

1

(z � z0)m+1

1

2⇡i

I

C2
(z00 � z0)

m f(z00) dz00. (6.85)

Since the functions being integrated are analytic between the two circles, we
may move the contours, without changing the values of the integrals, to a
common counterclockwise contour C about any circle of radius R2  R  R1

between the two circles C1 and C2. We then set m = �n�1 so as to combine
the two sums into one sum on n from �1 to 1

f(z) =
1X

n=�1
(z � z0)

n
1

2⇡i

I

C

f(z0)

(z0 � z0)n+1
dz0. (6.86)

This Laurent series often is written as

f(z) =
1X

n=�1
an(z0) (z � z0)

n (6.87)

with

an(z0) =
1

2⇡i

I

C

f(z)

(z � z0)n+1
dz (6.88)

(Pierre Laurent, 1813–1854).
The coe�cient a�1(z0) is called the residue of the function f(z) at z0.

Its significance will be discussed in section 6.13. Useful functions typically
have Laurent series that start at some least integer �`

f(z) =
1X

n=�`

an(z0) (z � z0)
n (6.89)

rather than at �1. For such functions, we can find the coe�cients an one
by one without doing the integrals (6.88). The first one a�` is the limit

a�`(z0) = lim
z!z0

(z � z0)
`f(z). (6.90)
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The second Laurent coe�cient a�`+1(z0) is given by the recipe

a�`+1(z0) = lim
z!z0

(z � z0)
`�1
h
f(z)� (z � z0)

�`a�`(z0)
i
. (6.91)

The third coe�cient requires a recipe with two subtractions, and so forth.

Example 6.12 (Laurent series for f(z) = 1/(exp(z) � 1)) The Matlab
commands syms z; series(1/(exp(z)� 1)) give

z

12
+

1

z
� z3

720
� 1

2
(6.92)

while syms z; series(1/(exp(z)�1), z,’ExpansionPoint’,0, ’Order’, 10) gives

z

12
+

1

z
� z3

720
+

z5

30240
� z7

1209600
+

z9

47900160
� 1

2
. (6.93)

The Mathematica command Series[1/(Exp[z]-1),z,0,9] gives

1

z
� 1

2
+

z

12
� z3

720
+

z5

30240
� z7

1209600
+

z9

47900160
+O

�
z10
�
. (6.94)

Newton invented series with fractional exponents. The Matlab command
syms z; series(1/(exp(z1/3) � 1), z,’Order’,6) gives the Puiseux series
1/z1/3 � z/720 + z1/3/12 + z5/3/30240� 1/2. (Isaac Newton, 1643–1727)

6.11 Singularities

A function f(z) that is analytic for all z is entire. Entire functions have
no singularities but, unless they are constants, they diverge as the real or
imaginary part of z goes to infinity. Some call |z| = 1 the point at infinity.

A function f(z) has an isolated singularity at z0 if it is analytic in a
small disk about z0 but not analytic at that point.

A function f(z) has a pole of order n > 0 at a point z0 if (z� z0)n f(z) is
analytic at z0 but (z � z0)n�1 f(z) has an isolated singularity at z0. A pole
of order n = 1 is called a simple pole. Poles are isolated singularities. A
function is meromorphic if it is analytic for all z except for poles.

Example 6.13 (Poles) The function

f(z) =
nY

j=1

1

(z � j)j
(6.95)

has a pole of order j at z = j for j = 1, 2, . . . , n. It is meromorphic.
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An essential singularity is a pole of infinite order. If a function f(z)
has an essential singularity at z0, then its Laurent series (6.86) really runs
from n = �1 and not from n = � ` as in (6.89). Essential singularities
are spooky: if a function f(z) has an essential singularity at w, then inside
every disk around w, f(z) takes on every complex number, with at most one
exception, an infinite number of times (Émile Picard, 1856–1941).

Example 6.14 (Essential singularity) The function f(z) = exp(1/z) has
an essential singularity at z = 0 because its Laurent series (6.86)

f(z) = e1/z =
1X

m=0

1

m!

1

zm
=

0X

n=�1

1

|n|! z
n (6.96)

runs from n = �1. Near z = 0, f(z) = exp(1/z) takes on every complex
number except 0 an infinite number of times.

Example 6.15 (Meromorphic function with two poles) The function f(z) =
1/z(z+1) has simple poles at z = 0 and at z = �1 but otherwise is analytic;
it is meromorphic. We may expand it in a Laurent series (6.87–6.88)

f(z) =
1

z(z + 1)
=

1X

n=�1
anz

n (6.97)

about z = 0 for |z| < 1. The coe�cient an is the integral

an =
1

2⇡i

I

C

dz

z n+2 (z + 1)
(6.98)

in which the contour C is a counterclockwise circle of radius r < 1. Since
|z| < 1, we may expand 1/(1 + z) as the power series

1

1 + z
=

1X

m=0

(�z)m. (6.99)

Doing the integrals, we find

an =
1X

m=0

1

2⇡i

I

C
(�z)m

dz

zn+2
=

1X

m=0

(�1)m rm�n�1 �m,n+1 (6.100)

for n � �1 and zero otherwise. Thus the Laurent series about z = 0 for f(z)
is

f(z) =
1

z(z + 1)
=

1X

n=�1

(�1)n+1 zn. (6.101)
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It starts at n = �1, not at n = �1, because f(z) is meromorphic with only
a simple pole at z = 0.

Example 6.16 (Argument principle) Consider the counterclockwise inte-
gral

1

2⇡i

I

C
f(z)

g0(z)

g(z)
dz (6.102)

along a closed contour C that lies inside a simply connected region R in
which f(z) is analytic and g(z) meromorphic. If the function g(z) has a zero
or a pole of order n at z = w 2 R

g(z) = an(w) (z � w)n, (6.103)

then the ratio g0/g is

g0(z)

g(z)
=

n(z � w)n�1

(z � w)n
=

n

z � w
(6.104)

and the integral is

1

2⇡i

I

C
f(z)

g0(z)

g(z)
dz =

1

2⇡i

I

C
f(z)

n

z � w
dz = n f(w). (6.105)

Any function g(z) meromorphic in R will have a Laurent series

g(z) =
1X

k=n

ak(w)(z � w)k (6.106)

about each point w 2 R. One may show (exercise 6.19) that as z ! w the
ratio g0/g again approaches (6.104). It follows that the integral (6.102) is a
sum of n`f(w`) at the zeros and poles of g(z) that lie within the contour C

1

2⇡i

I

C
f(z)

g0(z)

g(z)
dz =

X

`

1

2⇡i

I

C
f(z)

n`

z � w`

=
X

`

n` f(w`) (6.107)

in which |n`| is the multiplicity of the `th zero or pole.

6.12 Analytic Continuation

We saw in Sec. 6.6 that a function f(z) that is analytic within a circle of
radius R about a point z0 possesses a Taylor series (6.70)

f(z) =
1X

n=0

(z � z0)n

n!
f (n)(z0) (6.108)
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that converges for all z inside the disk |z � z0| < R. Suppose z0 is the
singularity of f(z) that is closest to z0. Pick a point z1 in the disk |z�z0| < R
that is not on the line from z0 to the nearest singularity z0. The function f(z)
is analytic at z1 because z1 is within the circle of radius R about the point
z0, and so f(z) has a Taylor series expansion like (6.108) but about the point
z1. Often the circle of convergence of this power series about z1 will extend
beyond the original disk |z� z0| < R. If so, the two power series, one about
z0 and the other about z1, define the function f(z) and extend its domain
of analyticity beyond the original disk |z � z0| < R. Such an extension of
the range of an analytic function is an analytic continuation.

Example 6.17 (Geometric series) The power series

f(z) =
1X

n=0

zn (6.109)

converges and defines an analytic function for |z| < 1. But for such z, we
may sum the series to

f(z) =
1

1� z
. (6.110)

By summing the series (6.109), we have analytically continued the function
f(z) to the whole complex plane apart from its simple pole at z = 1.

Example 6.18 (Gamma function) Euler’s form of the gamma function is
the integral

�(z) =

Z 1

0
e�t tz�1 dt = (z � 1)! (6.111)

which makes �(z) analytic in the right half-plane Re z > 0. But by succes-
sively using the relation �(z+1) = z �(z), we may extend �(z) into the left
half-plane

�(z) =
1

z
�(z + 1) =

1

z

1

z + 1
�(z + 2) =

1

z

1

z + 1

1

z + 2
�(z + 3). (6.112)

The last expression defines �(z) as a function that is analytic for Re z > �3
apart from simple poles at z = 0, �1, and �2. Proceeding in this way, we
may analytically continue the gamma function to the whole complex plane
apart from the negative integers and zero. The analytically continued gamma
function is represented by Weierstrass’s formula

�(z) =
1

z
e��z

" 1Y

n=1

⇣
1 +

z

n

⌘
e�z/n

#�1

. (6.113)
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Example 6.19 (Riemann’s zeta function) Ser found an analytic continu-
ation

⇣(z) =
1X

n=1

1

nz
=

1

z � 1

1X

n=0

1

n+ 1

nX

k=0

✓
n

k

◆
(�1)k

(k + 1)z�1
(6.114)

of Riemann’s zeta function (5.107) to the whole complex plane except for
the point z = 1 (Joseph Ser, 1875–1954).

Example 6.20 (Dimensional regularization) The loop diagrams of quan-
tum field theory involve badly divergent integrals like

I(4) =

Z
d4q

(2⇡)4

�
q2
�
a

(q2 + ↵2)b
(6.115)

where often a = 0 and b = 2 and ↵2 > 0. Gerardus ’t Hooft (1946–) and
Martinus J. G. Veltman (1931–2021) promoted the number of spacetime
dimensions from 4 to a complex number d. The resulting integral has the
value (Srednicki, 2007, p. 102)

I(d) =

Z
ddq

(2⇡)d

�
q2
�
a

(q2 + ↵2)b
=

�(b� a� d/2)�(a+ d/2)

(4⇡)d/2 �(b)�(d/2)

1

(↵2)b�a�d/2

(6.116)
and so defines a function of the complex variable d that is analytic every-
where except for simple poles at d = 2(n� a+ b) where n = 0, 1, 2, . . . ,1.
At these poles, the formula

�(�n+ z) =
(�1)n

n!

 
1

z
� � +

nX

k=1

1

k
+O(z)

!
(6.117)

where � = 0.5772... is the Euler-Mascheroni constant (5.8) can be useful.

6.13 Calculus of residues

A contour integral of an analytic function f(z) does not change unless the
end points move or the contour crosses a singularity or leaves the region of
analyticity (section 6.3). Let us consider the integral of a function f(z) along
a counterclockwise contour C that encircles n poles at zk for k = 1, . . . , n in
a simply connected region R in which f(z) is meromorphic. We may shrink
the area within the contour C without changing the value of the integral until
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the area is infinitesimal and the contour is a sum of n tiny counterclockwise
circles Ck around the n poles

I

C
f(z) dz =

nX

k=1

I

Ck
f(z) dz. (6.118)

These tiny counterclockwise integrals around the poles at zi are 2⇡i times
the residues a�1(zi) defined by Laurent’s formula (6.88) with n = �1. So
the whole counterclockwise integral is 2⇡i times the sum of the residues of
the enclosed poles of the function f(z)

I

C
f(z) dz = 2⇡i

nX

k=1

a�1(zk) = 2⇡i
nX

k=1

Res(f, zk) (6.119)

a result that is known as the residue theorem.

Example 6.21 (Pole of order n) Setting z = w + ✏ei✓, we do a counter-
clockwise integral around a circle Cw of radius ✏ with center w

I

Cw
an(w)(z � w)n dz = an(w)

Z 2⇡

0

�
✏ei✓
�
n
i✏ ei✓ d✓

= ian(w)✏
n+1

Z 2⇡

0
ei(n+1)✓ d✓ = 2⇡i a�1(w) �n,�1.

(6.120)

This is why only the n = �1 term a�1(w) of the Laurent series (6.86–6.88)
for f(z) contributes to the integral

I

Cw
f(z) dz =

I

Cw

1X

n=�1
an(w) (z � w)n dz = 2⇡i a�1(w). (6.121)

In general, one must do each tiny counterclockwise integral about each
pole zi, but simple poles are an important special case. If w is a simple pole
of the function f(z), then near it f(z) is given by its Laurent series (6.87)
as

f(z) =
a�1(w)

z � w
+

1X

n=0

an(w) (z � w)n. (6.122)

In this case, its residue is by (6.90) with �` = �1

a�1(w) = lim
z!w

(z � w) f(z) (6.123)

which usually is easier to do than the integral (6.88)

a�1(w) =
1

2⇡i

I

C
f(z)dz. (6.124)
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Example 6.22 (A function with simple poles) The integral of the function

f(z) =
1X

n=1

z

z � n�s
(6.125)

along a circle of radius 2 with center at z = 0 is just the sum of its residues

1

2⇡i

I
f(z) dz =

1X

n=1

lim
z!n�s

(z � n�s)f(z) =
1X

n=1

1

ns
= ⇣(s) (6.126)

which is the zeta function (5.107).

Example 6.23 (Cauchy’s Integral Formula) Suppose the function f(z) is
analytic within a region R and that C is a counterclockwise contour that
encircles a point w 2 R. Then the counterclockwise contour C encircles the
simple pole at w of the function f(z)/(z � w), which is its only singularity
in R. By applying the residue theorem and formula (6.123) for the residue
a�1(w) of the function f(z)/(z � w), we find
I

C

f(z)

z � w
dz = 2⇡i a�1(w) = 2⇡i lim

z!w
(z � w)

f(z)

z � w
= 2⇡i f(w). (6.127)

So Cauchy’s integral formula (6.40) is an example of the calculus of residues.

Example 6.24 (A meromorphic function) By the residue theorem (6.119),
the integral of the function

f(z) =
1

z � 1

1

(z � 2)2
(6.128)

along the circle C = 4ei✓ for 0  ✓  2⇡ is the sum of the residues at z = 1
and z = 2 I

C
f(z) dz = 2⇡i [a�1(1) + a�1(2)] . (6.129)

The function f(z) has a simple pole at z = 1, and so we may use the formula
(6.123) to evaluate the residue a�1(1) as

a�1(1) = lim
z!1

(z � 1) f(z) = lim
z!1

1

(z � 2)2
= 1 (6.130)

instead of using Cauchy’s integral formula (6.40) to do the integral of f(z)
along a tiny circle about z = 1, which gives the same result

a�1(1) =
1

2⇡i

I
dz

z � 1

1

(z � 2)2
=

1

(1� 2)2
= 1. (6.131)
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The residue a�1(2) is the integral of f(z) along a tiny circle about z = 2,
which we do by using Cauchy’s integral formula (6.42)

a�1(2) =
1

2⇡i

I
dz

(z � 2)2
1

z � 1
=

d

dz

1

z � 1

����
z=2

= � 1

(2� 1)2
= �1

(6.132)
getting the same answer as if we had used the recipe (6.90) for a�2

a�2(2) = lim
z!2

(z � 2)2
1

(z � 1)(z � 2)2
= 1 (6.133)

and (6.91) for a�1

a�1(2) = lim
z!2

(z � 2)


1

(z � 1)(z � 2)2
� a�2(2)

(z � 2)2

�
= �1. (6.134)

The sum of the residues a�1(1) and a�1(2) is zero, and so the integral
(6.129) vanishes. Another way of evaluating this integral is to deform it,
not into two tiny circles about the two poles, but rather into a huge circle
z = Rei✓ and to notice that as R ! 1 the modulus of this integral vanishes

����
I
f(z) dz

���� ⇡
2⇡

R2
! 0. (6.135)

This contour is an example of a ghost contour.

6.14 Ghost contours

Often one needs to do an integral that is not a closed counterclockwise
contour. Integrals along the real axis occur frequently. One sometimes can
convert a line integral into a closed contour by adding a contour along which
the integral vanishes, a ghost contour. We have just seen an example
(6.135) of a ghost contour, and we shall see more of them in what follows.

Example 6.25 (Using ghost contours) Consider the integral

I =

Z 1

�1

1

(x� i)(x� 2i)(x� 3i)
dx. (6.136)

We could do the integral by adding a contour Rei✓ from ✓ = 0 to ✓ = ⇡.
In the limit R ! 1, the integral of 1/[(z � i)(z � 2i)(z � 3i)] along this
contour vanishes; it is a ghost contour. The original integral I and the ghost
contour encircle the three poles, and so we could compute I by evaluating
the residues at those poles. But we also could add a ghost contour around
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the lower half plane. This contour and the real line encircle no poles. So we
get I = 0 without doing any work at all.

Example 6.26 (Fourier transform of a gaussian) During our computation
of the Fourier transform of a gaussian (4.17–4.20), we promised to justify the
shift in the variable of integration from x to x+ik/2m2 in this chapter. So let
us consider the contour integral of the entire function f(z) = exp(�m2z2)
over a rectangular closed contour along the real axis from �R to R and then
from z = R to z = R + ic and then from there to z = �R + ic and then to
z = �R. Since f(z) is analytic within the contour, the integral is zero
I

dz e�m
2
z
2
=

Z
R

�R

dz e�m
2
z
2
+

Z
R+ic

R

dz e�m
2
z
2
+

Z �R+ic

R+ic

dz e�m
2
z
2
+

Z �R

�R+ic

dz e�m
2
z
2
= 0

for all finite positive values of R and so also in the limit R ! 1. The two
contours in the imaginary direction are of length c and are damped by the
factor exp(�m2R2), and so they vanish in the limit R ! 1. They are ghost
contours. It follows then from this last equation in the limit R ! 1 that

Z 1

�1
dx e�m

2(x+ic)2 =

Z 1

�1
dx e�m

2
x
2
=

p
⇡

m
(6.137)

which is the promised result (4.19). Setting c = k/(2m2) and dividing both
sides of (6.137) by

p
2⇡ em

2
c
2
, we see that the Fourier transform of a gaussian

is a gaussian (4.20)

f̃(k) =

Z 1

�1

dxp
2⇡

e�ikx e�m
2
x
2
=

1p
2m

e�k
2
/4m2

. (6.138)

Dividing both sides of this formula by
p
2⇡ and setting x = p/~, k = � ✏q̇,

and m2 = ✏~2/(2m), we get
Z 1

�1
exp

✓
� ✏

p2

2m
+ i ✏

q̇ p

~

◆
dp

2⇡~ =

r
m

2⇡✏~2 exp

✓
�✏

mq̇2

2~2

◆
(6.139)

a formula we’ll use in section 20.5 to derive path integrals for partition
functions.

The earlier relation (6.137) implies (exercise 6.22) that
Z 1

�1
dx e�m

2(x+z)2 =

Z 1

�1
dx e�m

2
x
2
=

p
⇡

m
(6.140)

for m > 0 and arbitrary complex z.

Example 6.27 (A cosine integral) To compute the integral

Ic =

Z 1

0

cosx

q2 + x2
dx, q > 0, (6.141)
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we use the evenness of the integrand to extend the integration

Ic =
1

2

Z 1

�1

cosx

q2 + x2
dx, (6.142)

write the cosine as [exp(ix) + exp(�ix)]/2, and factor the denominators

Ic =
1

4

Z 1

�1

eix

(x� iq)(x+ iq)
dx+

1

4

Z 1

�1

e�ix

(x� iq)(x+ iq)
dx. (6.143)

We promote x to a complex variable z and add the contour z = Rei✓ to the
first integral and z = Re�i✓ to the second integral both over ✓ from 0 to ⇡.
The term exp(iz)dz/(q2+ z2) = exp(iR cos ✓�R sin ✓)iRei✓d✓/(q2+R2e2i✓)
vanishes in the limit R ! 1, so the first contour is a counterclockwise ghost
contour. A similar argument applies to the second (clockwise) contour, and
we have

Ic =
1

4

I
eiz

(z � iq)(z + iq)
dz +

1

4

I
e�iz

(z � iq)(z + iq)
dz. (6.144)

The first integral picks up the pole at iq and the second the pole at �iq, so
by Cauchy’s integral formula (6.40)

Ic =
i⇡

2

✓
e�q

2iq
+

e�q

2iq

◆
=

⇡e�q

2q
. (6.145)

Example 6.28 (Third-harmonic microscopy) An ultra-short laser pulse
intensely focused in a medium generates a third-harmonic electric field E3

in the forward direction proportional to the integral (Boyd, 2000)

E3 / �(3)E3
0

Z 1

�1
ei�k z

dz

(1 + 2iz/b)2
(6.146)

along the axis of the beam as in Fig. 6.6. Here b = 2⇡t20n/� = kt20 in which
n = n(!) is the index of refraction of the medium, � is the wavelength of
the laser light in the medium, and t0 is the transverse or waist radius of the
gaussian beam, defined by E(r) = E exp(�r2/t20).
When the dispersion is normal, that is when dn(!)/d! > 0, the shift in

the wave vector �k = 3![n(!) � n(3!)]/c is negative. Since �k < 0, the
exponential is damped when z = x+ iy is in the lower half plane (LHP)

ei�k z = ei�k (x+iy) = ei�k x e��k y. (6.147)

So as we did in example 6.27, we will add a contour around the lower half
plane (z = Rei✓, ⇡  ✓  2⇡, and dz = iRei✓d✓ ) because in the limit
R ! 1, the integral along it vanishes; it is a ghost contour.
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Third-harmonic microscopy

Figure 6.6 In the limit in which the distance L is much larger than the
wavelength �, the integral (6.146) is non-zero when an edge (solid line) lies
where the beam is focused but not when a feature (. . . ) lies where the beam
is not focused. Only features within the focused region are visible.

The function f(z) = exp(i�k z)/(1+2iz/b)2 has a double pole at z = ib/2
which is in the UHP since the length b > 0, but no singularity in the LHP
y < 0. So the integral of f(z) along the closed contour from z = �R to z = R
and then along the ghost contour vanishes. But since the integral along the
ghost contour vanishes, so does the integral from �R to R. Thus when the
dispersion is normal, the third-harmonic signal vanishes, E3 = 0, as long as
the medium with constant �(3)(z) e↵ectively extends from �1 to 1 so that
its edges are in the unfocused region like the dotted lines of Fig. 6.6. But
an edge with �k > 0 in the focused region like the solid line of the figure
does make a third-harmonic signal E3. Third-harmonic microscopy lets us
see features instead of background.

Example 6.29 (Green and Bessel) Let us evaluate the Fourier transform

I(x) =

Z 1

�1
dk

eikx

k2 +m2
(6.148)

of the function 1/(k2 + m2). If x > 0, then the exponential deceases with
Im k in the upper half plane. So as in example 6.27, the semicircular contour
k = Rei✓ for 0  ✓  ⇡ on which dk = iRei✓d✓ is a ghost contour. So if
x > 0, then we can add this contour to the integral I(x) without changing
it. Thus I(x) is equal to the closed contour integral along the real axis and
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the semicircular ghost contour

I(x) =

I
dk

eikx

k2 +m2
=

I
dk

eikx

(k + im)(k � im)
. (6.149)

This closed contour encircles the simple pole at k = im (and no other sin-
gularity) once counterclockwise, and Cauchy’s integral formula (6.40) gives
the integral (for m > 0) as

I(x) = 2⇡i
ei(im)x

2im
=

⇡

m
e�mx for x > 0. (6.150)

Similarly if x < 0, we can add the semicircular ghost contour k = Rei✓,
⇡  ✓  2⇡, dk = iRei✓d✓ with k running around the perimeter of the lower
half plane and so once clockwise about the pole at k = � im. So for x < 0,
Cauchy’s integral formula (6.40) gives the integral (for m > 0) as

I(x) = � 2⇡i
ei(�im)x

�2im
=

⇡

m
emx for x < 0. (6.151)

We combine the two cases (6.150) and (6.151) into the result
Z 1

�1
dk

eikx

k2 +m2
=

⇡

m
e�m|x|. (6.152)

We can use this formula to develop an expression for the Green’s function
of the laplacian in cylindical coordinates. Setting x

0 = 0 and r = |x| =p
⇢2 + z2 in the Coulomb Green’s function (4.121), we have

G(r) =
1

4⇡r
=

1

4⇡
p
⇢2 + z2

=

Z
d3k

(2⇡)3
1

k
2 e

ik·x. (6.153)

The integral over the z-component of k is (6.152) with m2 = k2x + k2y ⌘ k2

Z 1

�1
dkz

eikzz

k2z + k2
=

⇡

k
e�k|z|. (6.154)

So with kxx+ kyy ⌘ k⇢ cos�, the Green’s function is

1

4⇡
p

⇢2 + z2
=

Z 1

0

⇡dk

(2⇡)3

Z 2⇡

0
d� eik⇢ cos� e�k|z|. (6.155)

The � integral is a representation (6.54 & 10.7) of the Bessel function J0(k⇢)

J0(k⇢) =

Z 2⇡

0

d�

2⇡
eik⇢ cos�. (6.156)
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Thus we arrive at the Coulomb Green’s function

1

4⇡
p
⇢2 + z2

=

Z 1

0

dk

4⇡
J0(k⇢) e

�k|z| (6.157)

in cylindical coordinates (Schwinger et al., 1998a, p. 166).

Example 6.30 (Yukawa and Green) We saw in example 4.16 that the
Green’s function for Yukawa’s di↵erential operator (4.134) is

GY (x) =

Z
d3k

(2⇡)3
eik·x

k
2 +m2

. (6.158)

Letting k · x = kr cos ✓ in which r = |x|, we find

GY (r) =

Z 1

0

k2dk

(2⇡)2

Z 1

�1

eikr cos ✓

k2 +m2
d cos ✓ =

1

ir

Z 1

0

dk

(2⇡)2
k

k2 +m2

⇣
eikr � e�ikr

⌘

=
1

ir

Z 1

�1

dk

(2⇡)2
k

k2 +m2
eikr =

1

ir

Z 1

�1

dk

(2⇡)2
k

(k � im)(k + im)
eikr.

We add a ghost contour that loops over the upper-half plane and get

GY (r) =
2⇡i

(2⇡)2ir

im

2im
e�mr =

e�mr

4⇡r
(6.159)

which Yukawa proposed as the potential between two hadrons due to the
exchange of a particle of mass m, the pion. Because the mass of the pion is
140 MeV, the range of the Yukawa potential is ~/mc = 1.4⇥ 10�15 m.

Example 6.31 (Green’s function for the laplacian in n dimensions) The
Green’s function for the laplacian �4G(x) = �(n)(x) is

G(x) =

Z
1

k2
eik·x

dnk

(2⇡)n
(6.160)

in n dimensions. We use the formula

1

k2
=

Z 1

0
e��k

2
d� (6.161)

to write it as a gaussian integral

G(x) =

Z
e��k

2+ik·x d�
dnk

(2⇡)n
. (6.162)

We now complete the square in the exponent

��k2 + ik · x = �� (k � ix/2�)2 � x2/4�, (6.163)
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use our gaussian formula (6.137), and with ↵ = x2/4� write the Green’s
function as

G(x) =

Z 1

0
d�

Z
dnk

(2⇡)n
e�x

2
/4�e��(k�ix/2�)2 =

Z 1

0
d�

Z
dnk

(2⇡)n
e�x

2
/4�e�� k

2

=

Z 1

0
e�x

2
/4� d�

(4⇡�)n/2
=

(x2)1�n/2

4⇡n/2

Z 1

0
e�↵↵n/2�2d↵

=
�(n/2� 1)

4⇡n/2(x2)(n/2�1)
. (6.164)

Our formula (5.65) for �(n+ 1
2) says that �(1/2) =

p
⇡, and so this formula

(6.164) for n = 3 gives G(x) = 1/4⇡|x| which is (4.121); since �(1) = 1, it
also gives for n = 4

G(x) =
1

4⇡2x2
. (6.165)

Example 6.32 (The Yukawa Green’s function in n dimensions) The Yukawa
Green’s function which satisfies (�4+m2)G(x) = �(n)(x) in n dimensions
is the integral (6.160) with k2 replaced by k2 +m2

G(x) =

Z
1

k2 +m2
eik·x

dnk

(2⇡)n
. (6.166)

Using the integral formula (6.161), we write it as a gaussian integral

G(x) =

Z
e��(k2+m

2)+ik·x d�dnk

(2⇡)n
. (6.167)

Completing the square as in (6.163), we have

G(x) =

Z
e�x

2
/4�e��(k�ix/2�)2��m

2 d�dnk

(2⇡)n
=

Z
e�x

2
/4�e�� (k2+m

2) d�d
nk

(2⇡)n

=

Z 1

0
e�x

2
/4���m

2 d�

(4⇡�)n/2
. (6.168)

We can relate this to a Bessel function by setting � = (|x|/2m) exp(�y)

G(x) =
1

(4⇡)n/2

✓
2m

x

◆(n/2�1) Z 1

�1
e�mx cosh y+(n/2�1)y dy

=
2

(4⇡)n/2

✓
2m

x

◆(n/2�1) Z 1

0
e�mx cosh y cosh(n/2� 1)y dy

=
2

(4⇡)n/2

✓
2m

x

◆(n/2�1)

Kn/2�1(mx) (6.169)
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where x = |x| =
p
x2 and K is a modified Bessel function of the second kind

(10.77). If n = 3, this is (exercise 6.30) the Yukawa potential (6.159).

Example 6.33 (A Fourier transform) To the integral

J(x) =

Z 1

�1

eikx

(k2 +m2)2
dk (6.170)

we may add ghost contours as in the preceding example, but now the inte-
grand has double poles at k = ±im, and so we must use Cauchy’s integral
formula (6.44) for the case of n = 1, which is Eq.(6.42). For x > 0, we add
a ghost contour in the UHP and find

J(x) =

I
eikx

(k + im)2(k � im)2
dk = 2⇡i

d

dk

eikx

(k + im)2

����
k=im

=
⇡

2m2

✓
x+

1

m

◆
e�mx. (6.171)

If x < 0, then we add a ghost contour in the LHP and find

J(x) =

I
eikx

(k + im)2(k � im)2
dk = �2⇡i

d

dk

eikx

(k � im)2

����
k=�im

=
⇡

2m2

✓
�x+

1

m

◆
emx. (6.172)

Putting the two together, we get

J(x) =

Z 1

�1

eikx

(k2 +m2)2
dk =

⇡

2m2

✓
|x|+ 1

m

◆
e�m|x|. (6.173)

as the Fourier transform of 1/(k2 +m2)2.

Example 6.34 (Integral of a complex gaussian) We can use a ghost con-
tour to do the integral

I =

Z 1

�1
ewx

2
dx (6.174)

in which the real part of the nonzero complex number w = u+ iv = ⇢ei� is
negative or zero

u  0 () ⇡

2
 �  3⇡

2
. (6.175)

We first write the integral I as twice the same integral along half the x-axis

I = 2

Z 1

0
ewx

2
dx. (6.176)
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If we promote x to a complex variable z = rei✓, then wz2 will be negative
if �+2✓ = ⇡, that is, if ✓ = (⇡ � �) /2 where in view of (6.175) ✓ lies in the
interval �⇡/4  ✓  ⇡/4.
The closed pie-shaped contour of Fig. 6.7 (down the real axis from z = 0

to z = R, along the arc z = R exp(i✓0) as ✓0 goes from 0 to ✓, and then down
the line z = r exp(i✓) from z = R exp(i✓) to z = 0) encloses no singularities
of the function f(z) = exp(wz2). Hence the integral of exp(wz2) along that
contour vanishes.
To show that the arc is a ghost contour, we bound it by
����
Z

✓

0
e(u+iv)R2

e
2i✓0

Rd✓0
���� 

Z
✓

0
exp

⇥
uR2 cos 2✓0 � vR2 sin 2✓0

⇤
Rd✓0


Z

✓

0
e�vR

2 sin 2✓0Rd✓0. (6.177)

Here v sin 2✓0 � 0, and so if v is positive, then so is ✓0. Then 0  ✓0  ⇡/4,
and so sin(2✓0) � 4✓0/⇡. Thus since u < 0, we have the upper bound
����
Z

✓

0
e(u+iv)R2

e
2i✓0

Rd✓0
���� 

Z
✓

0
e�4vR2

✓
0
/⇡Rd✓0 =

⇡(e�4vR2
✓
0
/⇡ � 1)

4vR
(6.178)

which vanishes in the limit R ! 1. (If v is negative, then so is ✓0, the
pie-shaped contour is in the fourth quadrant, sin(2✓0)  4✓0/⇡, and the in-
equality (6.178) holds with absolute-value signs around the second integral.)
Since by Cauchy’s integral theorem (6.21) the integral along the pie-

shaped contour of Fig. 6.7 vanishes, it follows that

1

2
I +

Z 0

Rei✓
ewz

2
dz = 0. (6.179)

But the choice ✓ = (⇡ � �) /2 implies that on the line z = r exp(i✓) the
quantity wz2 is negative, wz2 = �⇢r2. Thus with dz = exp(i✓)dr, we have

I = 2

Z
Re

i✓

0
ewz

2
dz = 2ei✓

Z
R

0
e�⇢r

2
dr (6.180)

so that as R ! 1

I = 2ei✓
Z 1

0
e�⇢r

2
dr = ei✓

r
⇡

⇢
=

r
⇡

⇢e�2i✓
. (6.181)

Finally from ✓ = (⇡ � �) /2 and w = ⇢ exp(i�), we find that for Rew  0
Z 1

�1
ewx

2
dx =

r
⇡

�w
(6.182)
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Pie-shaped contour

Figure 6.7 The integral of the entire function exp(wz2) along the pie-
shaped closed contour vanishes by Cauchy’s theorem.

as long as w 6= 0. Shifting x by a complex number b, we still have
Z 1

�1
ew(x�b)2 dx =

r
⇡

�w
(6.183)

as long as Rew < 0. If w = ia 6= 0 and a and b are real, then

Z 1

�1
eia(x�b)2 dx =

r
i⇡

a
or

Z 1

�1
eiax

2�2iabx dx =

r
i⇡

a
e�iab

2
. (6.184)

Setting x = p , a = �✏/(2m~), and b = mq̇ in the last equation, and dividing
both sides by 2⇡~, we find
Z 1

�1
exp

✓
� i ✏

p2

2m~ + i ✏
q̇ p

~

◆
dp

2⇡~ =

r
m

2⇡i✏~ exp

✓
i ✏

mq̇2

2~

◆
(6.185)

a formula we’ll use in section 20.3 to derive path integrals for probability
amplitudes.

Let us try to express the line integral of a not necessarily analytic function
f(x, y) = u(x, y) + iv(x, y) along a closed counterclockwise contour C as an
integral over the surface enclosed by the contour. The contour integral is

I

C
(u+ iv)(dx+ idy) =

I

C
(u dx� v dy) + i

I

C
(v dx+ u dy). (6.186)
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Now since the contour C is counterclockwise, the di↵erential dx is negative at
the top of the curve with coordinates (x, y+(x)) and positive at the bottom
(x, y�(x)). So the first line integral is the surface integral

I

C
u dx =

Z
[u(x, y�(x))� u(x, y+(x))] dx

= �
Z "Z

y+(x)

y�(x)
uy(x, y)dy

#
dx

= �
Z

uy |dxdy| = �
Z
uy da (6.187)

in which da = |dxdy| is a positive element of area. Similarly, we find

i

I

C
v dx = �i

Z
vy |dxdy| = �i

Z
vy da. (6.188)

The dy integrals are then:

�
I

C
v dy = �

Z
vx |dxdy| = �

Z
vx da (6.189)

i

I

C
u dy = i

Z
ux |dxdy| = i

Z
ux da. (6.190)

Combining (6.186–6.190), we find
I

C
(u+ iv)(dx+ idy) = �

Z
(uy + vx) da+ i

Z
(�vy + ux) da. (6.191)

This formula holds whether or not the function f(x, y) is analytic. But if
f(x, y) is analytic on and within the contour C, then it satisfies the Cauchy-
Riemann conditions (6.10) within the contour, and so both surface integrals
vanish. The contour integral then is zero, which is Cauchy’s integral theorem
(6.32).
The contour integral of the function f(x, y) = u(x, y)+iv(x, y) di↵ers from

zero (its value if f(x, y) is analytic in z = x+ iy) by the surface integrals of
uy + vx and ux � vy
����
I

C
f(z)dz

����
2

=

����
I

C
(u+ iv)(dx+ idy)

����
2

=

����
Z
(uy + vx)da

����
2

+

����
Z

(ux � vy)da

����
2

(6.192)
which vanish when f = u + iv satisfies the Cauchy-Riemann conditions
(6.10).

Example 6.35 (The integral of a nonanalytic function) The integral for-
mula (6.191) can help us evaluate contour integrals of functions that are not
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analytic. The function

f(x, y) =
1

x+ iy + i✏

1

1 + x2 + y2
(6.193)

is the product of an analytic function 1/(z+ i✏), where ✏ is tiny and positive,
and a nonanalytic real one r(x, y) = 1/(1+z⇤z) . The i✏ pushes the pole in
u+ iv = 1/(z + i✏) into the lower half plane. The real and imaginary parts
of f are

U(x, y) = u(x, y) r(x, y) =
x

x2 + (y + ✏)2
1

1 + x2 + y2
(6.194)

and

V (x, y) = v(x, y) r(x, y) =
�y � ✏

x2 + (y + ✏)2
1

1 + x2 + y2
. (6.195)

We will use (6.191) to compute the contour integral I of f along the real
axis from �1 to 1 and then along the ghost contour z = x+ iy = Rei✓ for
0  ✓  ⇡ and R ! 1 around the upper half plane

I =

I
f(x, y) dz =

Z 1

�1
dx

Z 1

0
dy [�Uy � Vx + i (�Vy + Ux)] . (6.196)

Since u and v satisfy the Cauchy-Riemann conditions (6.10), the terms in the
area integral simplify to �Uy�Vx = �ury�vrx and �Vy+Ux = �vry+urx.
So the integral I is

I =

Z 1

�1
dx

Z 1

0
dy [�ury � vrx + i(�vry + urx)] (6.197)

or explicitly

I =

Z 1

�1
dx

Z 1

0
dy

�2✏x� 2i(x2 + y2 + ✏y)

[x2 + (y + ✏)2] (1 + x2 + y2)2
. (6.198)

We let ✏ ! 0 and find

I = �2i

Z 1

�1
dx

Z 1

0
dy

1

(1 + x2 + y2)2
. (6.199)

Changing variables to ⇢2 = x2 + y2, we have

I = �4⇡i

Z 1

0
d⇢

⇢

(1 + ⇢2)2
= 2⇡i

Z 1

0
d⇢

d

d⇢

1

1 + ⇢2
= �2⇡i (6.200)

which is simpler than evaluating the integral (6.196) directly.
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Example 6.36 (Inverse Laplace transform of 1/(s�k)) To find the inverse
Laplace transform (4.151) of f(s) = 1/(s�k) (4.152), we add a ghost contour
that goes around the upper half-plane encircling the pole at u = i(s� k)

F (t) = est
Z 1

�1

du

2⇡
eiut f(s+ iu) =

est

2⇡

Z 1

�1
du

eiut

s+ iu� k

=
est

2⇡i

I
du

eiut

u� i(s� k)
= estei

2
t(s�k) = ekt.

(6.201)

Example 6.37 (Inverse Laplace transform of f(s) = 1/(s� ia)3) We add
to the inverse Laplace transform (4.151) a contour that goes over the upper
half-plane encircling the pole at u = a�is and use Cauchy’s integral formula
(6.44)

F (t) =
est

2⇡

I
du

eiut

(s+ iu� ia)3
=

est

2⇡i3

I
du

eiut

(u� a� is)3

=
est

2⇡i3

I
du

eiut

(u� a� is)3
= �est

2

d2eiut

du2

����
u=a+is

=
t2

2
eiat

(6.202)

as given by Mathematica’s “InverseLaplaceTransform[1/(s� ia)3, s, t]” and
by Matlab’s “syms s a t; F = 1/(s� i ⇤ a)3; f = ilaplace(F ).”

6.15 Logarithms and cuts

By definition a function f is single valued: it maps every number z in its
domain into a unique number f(z). A function that maps only one number
z in its domain into each number f(z) in its range is said to be one to one.
A one-to-one function f has a well-defined inverse function f�1 which maps
f(z) back to z.
The exponential function is one to one when restricted to the real numbers.

It maps every real number x into a positive number exp(x). It has an inverse
function log(x) that maps every positive number exp(x) back into x. But
the exponential function is not one to one on the complex numbers because
exp(z + 2⇡ni) = exp(z) for every integer n. Because it is many to one,
the exponential function has no inverse function on the complex numbers.
Its would-be inverse function log maps z to log(exp(z)) or z + 2⇡ni which
is not unique. It has in it an arbitrary integer n.
In other words if z = r exp(i✓), then suitable logarithms of z are log(z) =

log(r) + i✓ + i2⇡n because for every integer n

exp(log(r) + i✓ + i2⇡n) = rei✓+i2⇡n = rei✓ = z. (6.203)
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People usually want one of the correct values of a logarithm, rather than
all of them. Two conventions for choosing n are common. In both conven-
tions, n = 0 when z is in the upper half-plane.
In the first convention, the angle ✓ is zero for z along the positive real axis

z > 0, and increases continuously as the point z moves counterclockwise
around the origin, until at points just below the positive real axis, ✓ is
slightly less than 2⇡. In this convention, the value of ✓ drops by 2⇡ as z
crosses the positive real axis moving counterclockwise. This discontinuity
on the positive real axis is called a cut.
The second common convention puts the cut on the negative real axis.

Here the value of ✓ is the same as in the first convention when z is in the
upper half-plane. But in the lower half-plane, as z moves clockwise from the
positive real axis to just below the negative real axis ✓ decreases from 0 to
slighty more than �⇡. As z continues to move clockwise and crosses the cut
on the negative real axis, ✓ jumps by 2⇡.
The two conventions agree in the upper half-plane but di↵er by 2⇡ in the

lower half-plane.
Sometimes it is convenient to place the cut on the positive or negative

imaginary axis — or along a line that makes an arbitrary angle with the
real axis. In any particular calculation, we are at liberty to define the polar
angle ✓ by placing the cut anywhere we like, but we must not change from
one convention to another in the same computation.

6.16 Powers and roots

The logarithm is used to define many functions to which it passes its arbi-
trariness. For instance, z = r exp(i✓) raised to any power a is

za = exp (a log z) = exp [a (log r + i✓ + i2⇡n)] = ra eia✓ ei2⇡na. (6.204)

So za is not unique unless a is an integer. The square root, for example, has
a sign ambiguity
p
z = exp

⇥
1
2(log r + i✓ + i2⇡n)

⇤
=

p
r ei✓/2 ein⇡ = (�1)n

p
r ei✓/2. (6.205)

It changes sign when z crosses a cut. The mth root

m
p
z = z1/m = exp [(log r + i✓ + i2⇡n)/m] = r1/mei✓/mei2⇡n/m (6.206)

changes by exp(±2⇡i/m) when z crosses a cut. And when a = u + iv is a
complex number, za is

za = ea log z = e(u+iv)(log r+i✓+i2⇡n) = ru+iv e(�v+iu)(✓+2⇡n) (6.207)
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which changes by exp[2⇡(�v + iu)] when z crosses a cut.

Example 6.38 (ii) The number i = exp(i⇡/2 + i2⇡n) for any integer n.
So the general value of ii is ii = exp[i(i⇡/2+ i2⇡n)] = exp(�⇡/2�2⇡n).

One can define a sequence of mth-root functions
⇣
z1/m

⌘

n

= exp

✓
log r + i(✓ + 2⇡n)

m

◆
(6.208)

one for each integer n. These functions are the branches of the mth-root
function. One can merge all the branches into one multivalued mth-root
function. Using a convention for ✓, one would extend the n = 0 branch to
the n = 1 branch by winding counterclockwise around the point z = 0. One
would encounter no discontinuity as one passed from one branch to another.
The point z = 0, where any cut starts, is called a branch point because by
winding around it, one passes smoothly from one branch to another. Such
branches, introduced by Riemann, can be associated with any multivalued
analytic function not just with the mth root.

Example 6.39 (Explicit square roots) If the cut in the square root
p
z

is on the negative real axis, then an explicit formula for the square root of
x+ iy is

p
x+ iy =

sp
x2 + y2 + x

2
+ i sign(y)

sp
x2 + y2 � x

2
(6.209)

in which sign(y) = sgn(y) = y/|y|. On the other hand, if the cut in the
square root

p
z is on the positive real axis, then an explicit formula for the

square root of x+ iy is

p
x+ iy = sign(y)

sp
x2 + y2 + x

2
+ i

sp
x2 + y2 � x

2
(6.210)

(exercise 6.31).

Example 6.40 (Cuts) Cuts are discontinuities, so people place them where
they do the least harm. For the function

f(z) =
p
z2 � 1 =

p
(z � 1)(z + 1) (6.211)

the two common conventions work well. If we put the cut in the definition
of the angle ✓ along the positive or negative real axis, then the sign discon-
tinuity (a factor of �1) from

p
z � 1 cancels the one from

p
z + 1 except for

�1  z  1. So the function f(z) then has a discontinuity or a cut only for
�1  z  1.
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But if we used one of the common conventions to define the function

f(z) =
p
z2 + 1 =

p
(z � i)(z + i), (6.212)

then we’d have two semi-infinite cuts. If instead we put the ✓-cut on the
positive or negative imaginary axis, then the function f(z) would have a
single cut running along the imaginary axis from �i to i.

Example 6.41 (Square-root cut) To evaluate the integral

Is =

Z 1

0

dx

(x+ a)2
p
x
, a > 0, (6.213)

we put the cut on the positive real axis. The integral backwards along and
just below the positive real axis

I� =

Z 0

1

dx

(x+ a)2
p
x� i✏

= �
Z 0

1

dx

(x+ a)2
p
x+ i✏

= Is (6.214)

is the same as Is since a minus sign from the square root cancels the minus
sign due to the backwards direction.

Since

lim
|z|!1

|z|
|z + a|2|

p
z| = 0, (6.215)

the integrals of f(z) = 1/[ (z + a)2
p
z ] along the contours z = R exp(i✓) for

0 < ✓ < ⇡ and for ⇡ < ✓ < 2⇡ vanish as R ! 1. So these contours are
ghost contours. We then add a pair of cancelling integrals along the negative
real axis up to the pole at z = �a and then add a clockwise loop C around
it. As in Fig. 6.8, the integral along this collection of contours encloses no
singularity and therefore vanishes

0 = Is + I� + IG+ + IG� + IC . (6.216)

Thus 2Is = � IC , and so from Cauchy’s integral formula (6.44) for n = 1,
we have

Is = � 1

2
IC = �1

2

I

C

1

(z + a)2
p
z
dz = �i⇡

d

dz
z�1/2

����
z=�a

=
⇡

2a3/2
(6.217)

which one may check with the Mathematica command Assuming[a > 0,
Integrate[ 1/((x+ a)2⇤Sqrt[x]), {x,0,Infinity}]].

Example 6.42 (Contour integral with a cut) Let’s compute the integral

I =

Z 1

0

xa

(x+ 1)2
dx (6.218)
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Ghost contours and a cut

Figure 6.8 The integrals of f(z) = 1/[ (x + a)2
p
z ] as well as that of

f(z) = za/(z + 1)2 along the ghost contours G+ and G� and the contours
C, I�, and I+ vanish because the combined contour encircles no poles of
either f(z). The cut (solid line) runs from the origin to infinity along the
positive real axis.

for �1 < a < 1. We promote x to a complex variable z and put the cut on
the positive real axis. Since

lim
|z|!1

|z|a+1

|z + 1|2 = 0, (6.219)

the integrand vanishes faster than 1/|z|, and we may add two ghost contours,
G+ counterclockwise around the upper half-plane and G� counterclockwise
around the lower half-plane, as shown in Fig. 6.8.

We add a contour C that runs from �1 to the double pole at z = �1,
loops around that pole, and then runs back to �1; the two long contours
along the negative real axis cancel because the cut in ✓ lies on the positive
real axis. So the contour integral along C is just the clockwise integral around
the double pole which by Cauchy’s integral formula (6.42) is

I

C

za

(z � (�1))2
dz = � 2⇡i

dza

dz

����
z=�1

= 2⇡i a e⇡ai. (6.220)
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We also add the integral I� from 1 to 0 just below the real axis

I� =

Z 0

1

(x� i✏)a

(x� i✏+ 1)2
dx =

Z 0

1

exp(a(log(x) + 2⇡i))

(x+ 1)2
dx (6.221)

which is

I� = � e2⇡ai
Z 1

0

xa

(x+ 1)2
dx = � e2⇡ai I. (6.222)

Now the sum of all these contour integrals is zero because it is a closed
contour that encloses no singularity. So we have

0 =
�
1� e2⇡ai

�
I + 2⇡i a e⇡ai (6.223)

or

I =

Z 1

0

xa

(x+ 1)2
dx =

⇡a

sin(⇡a)
(6.224)

as the value of the integral (6.218).

Example 6.43 (Euler’s reflection formula) The beta function (5.77) for
x = z and y = 1� z is the integral

B(z, 1� z) = �(z)�(1� z) =

Z 1

0
tz�1 (1� t)�z dt. (6.225)

Setting t = u/(1 + u), so that u = t/(1� t) and dt = 1/(1 + u)2, we have

B(z, 1� z) =

Z 1

0

uz�1

1 + u
du. (6.226)

We integrate f(u) = uz�1/(1+u) along the contour of the preceding example
(6.42) which includes the ghost contour G = G+ [ G� and runs down both
sides of the cut along the positive real axis. Since f(u) is analytic inside the
contour, the integral vanishes

0 =

Z

I+
f(u) du+

Z

G
f(u) du+

Z

C
f(u) du+

Z

I�
f(u) du. (6.227)

The clockwise contour C is
Z

C

uz�1

1 + u
du = � 2⇡i(�1)z�1 = � 2⇡iei⇡(z�1) = 2⇡iei⇡z. (6.228)

The contour I+ runs just above the positive real axis, and the integral of f(u)
along it is the desired integral B(z, 1� z). The contour I� runs backwards
and just below the cut where u = |u|� i✏
Z

I�
f(u) du = �

Z 1

0

(|u|e2⇡i�✏)z�1

1 + u
du = � e2⇡iz

Z 1

0

uz�1

1 + u
du. (6.229)
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Thus the vanishing (6.227) of the contour integral

0 = B(z, 1� z) + 2⇡i ei⇡z � e2⇡iz B(z, 1� z) (6.230)

gives us Euler’s reflection formula

B(z, 1� z) = �(z)�(1� z) =
⇡

sin⇡z
. (6.231)

Example 6.44 (A Matthews and Walker integral) To do the integral

I =

Z 1

0

dx

1 + x3
(6.232)

we promote x to a complex variable z and consider the function f(z) =
log z/(1 + z3). If we put the cut in the logarithm on the positive real axis,
then f(z) is analytic everywhere except for z � 0 and at z3 = � 1. The
integral of f(z) along the ghost contour z = R exp(i✓) from ✓ = ✏ to ✓ =
2⇡ � ✏ and along both sides of the real axis from z = i✏ to z = R + i✏ and
from z = R� i✏ to z = �i✏ is by the residue theorem (6.119)
I

f(z) dz =

I
log(z)

(z � ei⇡/3)(z � e3i⇡/3)(z � e5i⇡/3)
dz = � 4⇡2i

3
p
3
. (6.233)

Since log(x+i✏) = log(x) and log(x�i✏) = log(x)+2⇡i, while |✏ log(✏)| ! 0
as ✏ ! 0, that same integral approaches �2⇡iI as R ! 1. Thus the integral
(6.232) is I = 2⇡/(3

p
3).

6.17 Conformal mapping

An analytic function f(z) maps curves in the z plane into curves in the f(z)
plane. In general, this mapping preserves angles. To see why, consider the
angle d✓ between two tiny complex lines dz = ✏ exp(i✓) and dz0 = ✏ exp(i✓0)
that radiate from the same point z. The angle between dz and dz0 is the
phase of the ratio

dz0

dz
=

✏ei✓
0

✏ei✓
= ei(✓

0�✓). (6.234)

Let’s use w = ⇢ei� for f(z). Then the analytic function f(z) maps dz into

dw = f(z + dz)� f(z) ⇡ f 0(z) dz = f 0(z) ✏ ei✓ (6.235)
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and dz0 into

dw0 = f(z + dz0)� f(z) ⇡ f 0(z) dz0 = f 0(z) ✏ ei✓
0
. (6.236)

The angle d� = �0 � � between dw and dw0 is the phase of the ratio

dw0

dw
=

ei�
0

ei�
=

f 0(z) dz0

f 0(z) dz
=

dz0

dz
=

ei✓
0

ei✓
= ei(✓

0�✓). (6.237)

So as long as the derivative f 0(z) does not vanish, the angle in the w-plane
is the same as the angle in the z-plane

d� = d✓. (6.238)

Analytic functions preserve angles. They are conformal maps.
What if f 0(z) = 0? In this case, dw ⇡ f

00
(z) dz2/2 and dw0 ⇡ f

00
(z) dz02/2,

and so the angle d� = d�0�d� between dw and dw0 is the phase of the ratio

dw0

dw
=

ei�
0

ei�
=

f
00
(z) dz02

f 00(z) dz2
=

dz02

dz2
= e2i(✓

0�✓). (6.239)

So angles are doubled, d� = 2d✓.
In general, if the first nonzero derivative is f (n)(z), then

dw0

dw
=

ei�
0

ei�
=

f (n)(z) dz0n

f (n)(z) dzn
=

dz0n

dzn
= eni(✓

0�✓) (6.240)

and so d� = nd✓. Angles increase by a factor of n.

Example 6.45 (zn) The function f(z) = zn has only one nonzero deriva-
tive f (k)(0) = n! �nk at the origin z = 0. So at z = 0 the map z ! zn scales
angles by n, d� = nd✓, but at z 6= 0 the first derivative f (1)(z) = nzn�1 is
not equal to zero. So zn is conformal except at the origin.

Example 6.46 (Möbius transformation) The function

f(z) =
az + b

cz + d
(6.241)

maps (straight) lines into lines and circles and maps circles into circles and
lines, unless ad = bc in which case it is the constant b/d.
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6.18 Cauchy’s principal value

Suppose that f(x) is di↵erentiable or analytic at and near the point x = 0,
and that we wish to evaluate the integral

K = lim
✏!0

Z
b

�a

dx
f(x)

x� i✏
(6.242)

for a > 0 and b > 0. First we regularize the pole at x = 0 by using a method
devised by Cauchy

K = lim
�!0


lim
✏!0

✓Z ��

�a

dx
f(x)

x� i✏
+

Z
�

��

dx
f(x)

x� i✏
+

Z
b

�

dx
f(x)

x� i✏

◆�
. (6.243)

In the first and third integrals, since |x| � � > ✏, we may set ✏ = 0

K = lim
�!0

✓Z ��

�a

dx
f(x)

x
+

Z
b

�

dx
f(x)

x

◆
+ lim

�!0
lim
✏!0

Z
�

��

dx
f(x)

x� i✏
. (6.244)

We’ll discuss the first two integrals before analyzing the last one.

The limit of the first two integrals is Cauchy’s principal value

P

Z
b

�a

dx
f(x)

x
⌘ lim

�!0

✓Z ��

�a

dx
f(x)

x
+

Z
b

�

dx
f(x)

x

◆
. (6.245)

If the function f(x) is nearly constant near x = 0, then the large negative
values of 1/x for x slightly less than zero cancel the large positive values of
1/x for x slightly greater than zero. The point x = 0 is not special; Cauchy’s
principal value about x = y is defined by the limit

P

Z
b

�a

dx
f(x)

x� y
⌘ lim

�!0

✓Z
y��

�a

dx
f(x)

x� y
+

Z
b

y+�

dx
f(x)

x� y

◆
. (6.246)

Using Cauchy’s principal value, we may write K as

K = P

Z
b

�a

dx
f(x)

x
+ lim

�!0
lim
✏!0

Z
�

��

dx
f(x)

x� i✏
. (6.247)

To evaluate the second integral, we use di↵erentiability of f(x) near x = 0
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to write f(x) = f(0)+xf 0(0) and then extract the constants f(0) and f 0(0)

lim
�!0

lim
✏!0

Z
�

��

dx
f(x)

x� i✏
= lim

�!0
lim
✏!0

Z
�

��

dx
f(0) + x f 0(0)

x� i✏

= f(0) lim
�!0

lim
✏!0

Z
�

��

dx

x� i✏
+ f 0(0) lim

�!0
lim
✏!0

Z
�

��

x dx

x� i✏

= f(0) lim
�!0

lim
✏!0

Z
�

��

dx

x� i✏
+ f 0(0) lim

�!0
2�

= f(0) lim
�!0

lim
✏!0

Z
�

��

dx

x� i✏
. (6.248)

Since 1/(z�i✏) is analytic in the lower half-plane, we may deform the straight
contour from x = �� to x = � into a tiny semicircle that avoids the point
x = 0 by setting z = � ei✓ and letting ✓ run from ⇡ to 2⇡

K = P

Z
b

�a

dx
f(x)

x
+ f(0) lim

�!0
lim
✏!0

Z
�

��

dz
1

z � i✏
. (6.249)

We now can set ✏ = 0 and so write K as

K = P

Z
b

�a

dx
f(x)

x
+ f(0) lim

�!0

Z 2⇡

⇡

i�ei✓d✓
1

�ei✓

= P

Z
b

�a

dx
f(x)

x
+ i⇡f(0). (6.250)

Recalling the definition (6.242) of K, we have

lim
✏!0

Z
b

�a

dx
f(x)

x� i✏
= P

Z
b

�a

dx
f(x)

x
+ i⇡f(0) (6.251)

for any function f(x) that is di↵erentiable at x = 0. This is often written as

1

x� i✏
= P

1

x
+ i⇡�(x) and

1

x+ i✏
= P

1

x
� i⇡�(x) (6.252)

and as
1

x� y ± i✏
= P

1

x� y
⌥ i⇡�(x� y). (6.253)

Example 6.47 (An application of Cauchy’s trick) We use (6.252) to eval-
uate the integral

I =

Z 1

�1
dx

1

x+ i✏

1

1 + x2
(6.254)
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as

I = P

Z 1

�1
dx

1

x

1

1 + x2
� i⇡

Z 1

�1
dx

�(x)

1 + x2
. (6.255)

Because the function 1/x(1 + x2) is odd, the principal part is zero. The
integral over the delta function gives unity, so we have I = �i⇡.

Example 6.48 (Cubic form of Cauchy’s principal value) Cauchy’s princi-
pal value of the integral

P

Z
b

�a

f(x)

x3
dx (6.256)

is finite as long as f(z) is analytic at z = 0 with a vanishing first derivative
there, f 0(0) = 0. In this case Cauchy’s integral formula (6.43) says that

Z
b

�a

dx
f(x)

(x� i✏)3
= P

Z
b

�a

dx
f(x)

x3
+ lim

�!0

Z 2⇡

⇡

i�ei✓d✓
f(�ei✓)

(�ei✓)3

= P

Z
b

�a

dx
f(x)

x3
+ i

⇡

2
f 00(0).

(6.257)

Example 6.49 (Cauchy’s principal value) By explicit use of the formula
Z

dx

x2 � a2
= � 1

2a
log

x+ a

x� a
(6.258)

one may show (exercise 6.33) that

P

Z 1

0

dx

x2 � a2
=

Z
a��

0

dx

x2 � a2
+

Z 1

a+�

dx

x2 � a2
= 0 (6.259)

a result we’ll use in section 6.21.

Example 6.50 (sin k/k) To compute the integral

Is =

Z 1

0

dk

k
sin k (6.260)

which we used to derive the formula (4.121) for the Green’s function of the
laplacian in three dimensions, we first express Is as an integral along the
whole real axis

Is =

Z 1

0

dk

2ik

⇣
eik � e�ik

⌘
=

Z 1

�1

dk

2ik
eik (6.261)
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by which we actually mean the Cauchy principal part

Is = lim
�!0

✓Z ��

�1
dk

eik

2ik
+

Z 1

�

dk
eik

2ik

◆
= P

Z 1

�1
dk

eik

2ik
. (6.262)

Using Cauchy’s trick (6.252), we have

Is = P

Z 1

�1
dk

eik

2ik
=

Z 1

�1
dk

eik

2i(k + i✏)
+

Z 1

�1
dk i⇡ �(k)

eik

2i
. (6.263)

To the first integral, we add a ghost contour around the upper half-plane.
For the contour from k = L to k = L + iH and then to k = �L + iH and
then down to k = �L, one may show (exercise 6.36) that the integral of
exp(ik)/k vanishes in the double limit L ! 1 and H ! 1. With this ghost
contour, the first integral therefore vanishes because the pole at k = �i✏ is
in the lower half plane. The delta function in the second integral then gives
⇡/2, so that

Is =

I
dk

eik

2i(k + i✏)
+

⇡

2
=

⇡

2
(6.264)

as stated in (4.120).

Example 6.51 (The Feynman propagator) Adding ±i✏ to the denomina-
tor of a pole term of an integral formula for a function f(x) can slightly shift
the pole into the upper or lower half plane, causing the pole to contribute
if a ghost contour goes around the upper half-plane or the lower half-plane.
Such an i✏ can impose a boundary condition on a Green’s function.

The Feynman propagator �F (x) is a Green’s function for the Klein-
Gordon di↵erential operator (Weinberg, 1995, pp. 274–280)

(m2 �2)�F (x) = �4(x) (6.265)

in which x = (x0,x) and

2 = 4� @2

@t2
= 4� @2

@(x0)2
(6.266)

is the four-dimensional version of the laplacian 4 ⌘ r ·r. Here �4(x) is the
four-dimensional Dirac delta function (4.39)

�4(x) =

Z
d4q

(2⇡)4
exp[i(q · x� q0x0)] =

Z
d4q

(2⇡)4
eiqx (6.267)
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in which qx = q · x � q0x0 is the Lorentz-invariant inner product of the 4-
vectors q and x. There are many Green’s functions that satisfy Eq.(6.265).
Feynman’s propagator �F (x)

�F (x) =

Z
d4q

(2⇡)4
exp(iqx)

q2 +m2 � i✏
=

Z
d3q

(2⇡)3

Z 1

�1

dq0

2⇡

eiq·x�iq
0
x
0

q2 +m2 � i✏
(6.268)

is the one that satisfies boundary conditions that will become evident when
we analyze the e↵ect of its i✏. The quantity Eq =

p
q2 +m2 is the energy

of a particle of mass m and momentum q in natural units with the speed of
light c = 1. Using this abbreviation and setting ✏0 = ✏/2Eq, we may write
the denominator as

q2 +m2 � i✏ = q · q�
�
q0
�2

+m2 � i✏ =
�
Eq � i✏0 � q0

� �
Eq � i✏0 + q0

�
+ ✏02

(6.269)
in which ✏02 is negligible. Dropping the prime on ✏, we do the q0 integral

I(q) = �
Z 1

�1

dq0

2⇡
e�iq

0
x
0 1

[q0 � (Eq � i✏)] [q0 � (�Eq + i✏)]
. (6.270)

As shown in Fig. 6.9, the integrand

e�iq
0
x
0 1

[q0 � (Eq � i✏)] [q0 � (�Eq + i✏)]
(6.271)

has poles at Eq � i✏ and at �Eq + i✏. When x0 > 0, we can add a ghost
contour that goes clockwise around the lower half-plane and get

I(q) = ie�iEqx
0 1

2Eq
for x0 > 0. (6.272)

When x0 < 0, our ghost contour goes counterclockwise around the upper
half-plane, and we get

I(q) = ieiEqx
0 1

2Eq
for x0 < 0. (6.273)

Using the step function ✓(x) = (x+ |x|)/2, we combine (6.272) and (6.273)

�iI(q) =
1

2Eq

h
✓(x0) e�iEqx

0
+ ✓(�x0) eiEqx

0
i
. (6.274)

In terms of the Lorentz-invariant function

�+(x) =
1

(2⇡)3

Z
d3q

2Eq
exp[i(q · x� Eqx

0)] (6.275)

and with a factor of �i, Feynman’s propagator (25.161) is

�i�F (x) = ✓(x0)�+(x) + ✓(�x0)�+(x,�x0). (6.276)
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Ghost contours and the Feynman propagator

Figure 6.9 In equation (6.271), the function f(q0) has poles at ±(Eq � i✏),
and the function exp(�iq0x0) is exponentially suppressed in the lower half
plane if x0 > 0 and in the upper half plane if x0 < 0. So we can add a
ghost contour (. . . ) in the LHP if x0 > 0 and in the UHP if x0 < 0.

The integral (6.275) defining �+(x) is insensitive to the sign of q, and so

�+(�x) =
1

(2⇡)3

Z
d3q

2Eq
exp[i(�q · x+ Eqx

0)] (6.277)

=
1

(2⇡)3

Z
d3q

2Eq
exp[i(q · x+ Eqx

0)] = �+(x,�x0).

Thus we arrive at the standard form of the Feynman propagator

�i�F (x) = ✓(x0)�+(x) + ✓(�x0)�+(�x). (6.278)

The annihilation operators a(q) and the creation operators a†(p) of a
scalar field �(x) satisfy the commutation relations

[a(q), a†(p)] = �3(q � p) and [a(q), a(p)] = [a†(q), a†(p)] = 0. (6.279)

Thus the commutator of the positive-frequency part

�+(x) =

Z
d3pp

(2⇡)32p0
exp[i(p · x� p0x0)] a(p) (6.280)
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of a scalar field � = �+ + �� with its negative-frequency part

��(y) =

Z
d3qp

(2⇡)32q0
exp[�i(q · y � q0y0)] a†(q) (6.281)

is the Lorentz-invariant function �+(x� y)

[�+(x),��(y)] =

Z
d3p d3q

(2⇡)32
p
q0p0

eipx�iqy [a(p), a†(q)]

=

Z
d3p

(2⇡)32p0
eip(x�y) = �+(x� y) (6.282)

in which p(x� y) = p · (x � y)� p0(x0 � y0).
The Lorentz-invariant function �+(x) depends only upon x2 = x

2�(x0)2,
and for spacelike separations, x2 ⌘ r2 > 0, has the value (Weinberg, 1995,
p. 202)

�+(x) =
m

4⇡2r

Z 1

0
du

u sin(mru)p
u2 + 1

=
m

4⇡2r
K1(mr) (6.283)

in which r =
p
x2, u = p/m, and K1(x) is a Hankel function (section 10.6).

For |x| ⌧ 1, K1(x) is approximately

K1(x) =
1

x
+

x

2


log
⇣x
2

⌘
+ � � 1

2

�
+

x3

16


log
⇣x
2

⌘
+ � � 5

4

�
+ · · · . (6.284)

But at timelike separations x2 ⌘ �t2 < 0, the Lorentz-invariant function
�+(x)

�+(x) =
m2

4⇡2

Z 1

0
e�imu

p
�x2 u2 dup

u2 + 1
(6.285)

is a singular distribution.
The Feynman propagator arises most simply as the mean value in the

vacuum of the time-ordered product of the fields �(x) and �(y)

T {�(x)�(y)} ⌘ ✓(x0 � y0)�(x)�(y) + ✓(y0 � x0)�(y)�(x). (6.286)

The operators a(p) and a†(p) respectively annihilate the vacuum ket a(p)|0i =
0 and bra h0|a†(p) = 0, and so by (6.280 & 6.281) do the positive- and
negative-frequency parts of the field �+(z)|0i = 0 and h0|��(z) = 0. Thus
the mean value in the vacuum of the time-ordered product is

h0|T {�(x)�(y)} |0i = h0|✓(x0� y0)�(x)�(y) + ✓(y0� x0)�(y)�(x)|0i
= h0|✓(x0� y0)�+(x)��(y) + ✓(y0� x0)�+(y)��(x)|0i
= h0|✓(x0� y0)[�+(x),��(y)]

+ ✓(y0� x0)[�+(y),��(x)]|0i. (6.287)
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But by (25.158), these commutators are �+(x � y) and �+(y � x). Thus
the mean value in the vacuum of the time-ordered product

h0|T {�(x)�(y)} |0i = ✓(x0 � y0)�+(x� y) + ✓(y0 � x0)�+(y � x)

= �i�F (x� y) (6.288)

is the Feynman propagator (6.276) multiplied by �i.

6.19 Dispersion relations

In many physical contexts, functions occur that are analytic in the upper
half-plane. Suppose for instance that f̂(t) is a transfer function that deter-
mines an e↵ect e(t) due to a cause c(t)

e(t) =

Z 1

�1
dt0 f̂(t� t0) c(t0). (6.289)

If the system is causal, then the transfer function f̂(t�t0) is zero for t�t0 < 0,
and so its Fourier transform

f(z) =

Z 1

�1

dtp
2⇡

f̂(t) eizt =

Z 1

0

dtp
2⇡

f̂(t) eizt (6.290)

will be analytic in the upper half-plane and will shrink as the imaginary
part of z = x+ iy increases.

So let us assume that a function f(z) is analytic in the upper half-plane
and on the real axis and further that

lim
r!1

|f(rei✓)| = 0 for 0  ✓  ⇡. (6.291)

By Cauchy’s integral formula (6.40), if z0 lies in the upper half-plane, then
f(z0) is given by the closed counterclockwise contour integral

f(z0) =
1

2⇡i

I
f(z)

z � z0
dz (6.292)

in which the contour runs along the real axis and then loops over the semi-
circle

lim
r!1

rei✓ for 0  ✓  ⇡. (6.293)

Our assumption (6.291) about the behavior of f(z) in the upper half plane
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implies that this contour (6.293) is a ghost contour because its modulus is
bounded by

lim
r!1

1

2⇡

Z |f(rei✓)|r
r

d✓ = lim
r!1

|f(rei✓)| = 0. (6.294)

So we may drop the ghost contour and write f(z0) as

f(z0) =
1

2⇡i

Z 1

�1

f(x)

x� z0
dx. (6.295)

Letting the imaginary part y0 of z0 = x0 + iy0 shrink to ✏

f(x0) =
1

2⇡i

Z 1

�1

f(x)

x� x0 � i✏
dx (6.296)

and using Cauchy’s trick (6.253), we get

f(x0) =
1

2⇡i
P

Z 1

�1

f(x)

x� x0
dx+

i⇡

2⇡i

Z 1

�1
f(x) �(x� x0) dx (6.297)

or

f(x0) =
1

2⇡i
P

Z 1

�1

f(x)

x� x0
dx+

1

2
f(x0) (6.298)

which is the dispersion relation

f(x0) =
1

⇡i
P

Z 1

�1

f(x)

x� x0
dx. (6.299)

If we separate f(z) = u(z) + iv(z) into its real u(z) and imaginary v(z)
parts, then this dispersion relation (6.299)

u(x0) + iv(x0) =
1

⇡i
P

Z 1

�1

u(x) + iv(x)

x� x0
dx (6.300)

=
1

⇡
P

Z 1

�1

v(x)

x� x0
dx� i

⇡
P

Z 1

�1

u(x)

x� x0
dx

breaks into its real and imaginary parts

u(x0) =
1

⇡
P

Z 1

�1

v(x)

x� x0
dx and v(x0) = � 1

⇡
P

Z 1

�1

u(x)

x� x0
dx (6.301)

which express u and v as Hilbert transforms of each other.
In applications of dispersion relations, the function f(x) for x < 0 some-

times is either physically meaningless or experimentally inaccessible. In such
cases, there may be a symmetry that relates f(�x) to f(x). For instance, if



6.20 Kramers-Kronig relations 269

f(x) is the Fourier transform of a real function f̂(k), then by Eq.(4.28) it
obeys the symmetry relation

f⇤(x) = u(x)� iv(x) = f(�x) = u(�x) + iv(�x), (6.302)

which says that u is even, u(�x) = u(x), and v odd, v(�x) = �v(x). Using
these symmetries, one may show (exercise 6.39) that the Hilbert transfor-
mations (6.301) become

u(x0) =
2

⇡
P

Z 1

0

x v(x)

x2 � x20
dx and v(x0) = � 2x0

⇡
P

Z 1

0

u(x)

x2 � x20
dx (6.303)

which do not require input at negative values of x.

6.20 Kramers-Kronig relations

If we use �E for the current density J and E(t) = e�i!t
E for the electric

field, then Maxwell’s equation r ⇥ B = µJ + ✏µĖ becomes

r ⇥ B = �i!✏µ
⇣
1 + i

�

✏!

⌘
E ⌘ �i!n2✏0µ0E (6.304)

in which the squared index of refraction is

n2(!) =
✏µ

✏0µ0

⇣
1 + i

�

✏!

⌘
. (6.305)

The imaginary part of n2 represents the scattering of light mainly by elec-
trons. At high frequencies in nonmagnetic materials n2(!) ! 1, and so
Kramers and Kronig applied the Hilbert-transform relations (6.303) to the
function n2(!)� 1 in order to satisfy condition (6.291). Their relations are

Re(n2(!0)) = 1 +
2

⇡
P

Z 1

0

! Im(n2(!))

!2 � !2
0

d! (6.306)

and

Im(n2(!0)) = � 2!0

⇡
P

Z 1

0

Re(n2(!))� 1

!2 � !2
0

d!. (6.307)

What Kramers and Kronig actually wrote was slightly di↵erent from these
dispersion relations (6.306 & 6.307). H. A. Lorentz had shown that the index
of refraction n(!) is related to the forward scattering amplitude f(!) for the
scattering of light by a density N of scatterers (Sakurai, 1982)

n(!) = 1 +
2⇡c2

!2
Nf(!). (6.308)
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They used this formula to infer that the real part of the index of refraction
approached unity in the limit of infinite frequency and applied the Hilbert
transform (6.303)

Re[n(!)] = 1 +
2

⇡
P

Z 1

0

!0 Im[n(!0)]

!02 � !2
d!0. (6.309)

The Lorentz relation (6.308) expresses the imaginary part Im[n(!)] of the
index of refraction in terms of the imaginary part of the forward scattering
amplitude f(!)

Im[n(!)] = 2⇡(c/!)2N Im[f(!)]. (6.310)

And the optical theorem relates Im[f(!)] to the total cross-section

�tot =
4⇡

|k| Im[f(!)] =
4⇡c

!
Im[f(!)]. (6.311)

Thus we have Im[n(!)] = cN�tot/(2!), and by the Lorentz relation (6.308)
Re[n(!)] = 1 + 2⇡(c/!)2NRe[f(!)]. Insertion of these formulas into the
Kramers-Kronig integral (6.309) gives a dispersion relation for the real part
of the forward scattering amplitude f(!) in terms of the total cross-section

Re[f(!)] =
!2

2⇡2c
P

Z 1

0

�tot(!0)

!02 � !2
d!0. (6.312)

6.21 Phase and group velocities

Suppose A(x, t) is the amplitude

A(x, t) =

Z
ei(p·x�Et)/~A(p) d3p =

Z
ei(k·x�!t)B(k) d3k (6.313)

where B(k) = ~3A(~k) varies slowly compared to the phase exp[i(k·x�!t)].
The phase velocity vp is the linear relation x = vp t between x and t that
keeps the phase � = p · x� Et constant as a function of the time

0 = p · dx� E dt = (p · vp � E) dt () vp =
E

p
p̂ =

!

k
k̂ (6.314)

in which p = |p|, and k = |k|. For light in the vacuum, vp = c = (!/k) k̂.
For a particle of mass m > 0, the phase velocity exceeds the speed of light,
vp =

p
c2p2 +m2c4/p � c.

The more physical group velocity vg is the linear relation x = vg t
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between x and t that maximizes the amplitude A(x, t) by keeping the phase
� = p · x� Et constant as a function of the momentum p

rp(p · x� Et) = x�rpE(p) t = 0. (6.315)

This condition of stationary phase gives the group velocity as

vg = rpE(p) = rk!(k). (6.316)

If E = p
2/(2m), then vg = p/m. For a relativistic particle with E =p

c2p2 +m2c4, the group velocity is vg = c2p/E  c.
When light traverses a medium with a complex index of refraction n(k),

the wave vector k becomes complex, and its (positive) imaginary part repre-
sents the scattering of photons in the forward direction, mainly by electrons.
For simplicity, we’ll consider the propagation of light through a medium in
one dimension, that of the forward direction of the beam. Then the (real)
frequency !(k) and the (complex) wave number k are related by a complex
index of refraction n(k) = kc/!(k), and the phase velocity of the light is

vp =
!

Re(k)
=

c

Re(n(k))
. (6.317)

If we regard the index of refraction as a function of the frequency !,
instead of the wave number k, then by di↵erentiating the real part of the
relation !n(!) = ck with respect to !, we find

nr(!) + !
dnr(!)

d!
= c

dkr
d!

(6.318)

in which the subscript r means real part. Thus the group velocity (6.316) of
the light is

vg =
d!

dkr
=

c

nr(!) + ! dnr/d!
. (6.319)

Optical physicists call the denominator the group index of refraction

ng(!) = nr(!) + !
dnr(!)

d!
(6.320)

so that as in the expression (6.317) for the phase velocity vp = c/nr(!), the
group velocity is vg = c/ng(!).

In some media, the derivative dnr/d! is large and positive, and the group
velocity vg of light there can be much less than c (Steinberg et al., 1993;
Wang and Zhang, 1995)—as slow as 17 m/s (Hau et al., 1999). This e↵ect is
called slow light. In certain other media, the derivative dn/d! is so negative
that the group index of refraction ng(!) is less than unity, and in them the
group velocity vg exceeds c ! This e↵ect is called fast light. In some media,
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the derivative dnr/d! is so negative that dnr/d! < � nr(!)/!, and then
ng(!) is not only less than unity but also less than zero. In such a medium,
the group velocity vg of light is negative! This e↵ect is called backwards
light.
Sommerfeld and Brillouin (Brillouin, 1960, ch. II & III) anticipated fast

light and concluded that it would not violate special relativity as long as
the signal velocity—defined as the speed of the front of a square pulse—
remained less than c. Fast light does not violate special relativity (Stenner
et al., 2003; Brunner et al., 2004) (Léon Brillouin 1889–1969, Arnold Som-
merfeld 1868–1951).
Slow, fast, and backwards light can occur when the frequency ! of the

light is near a peak or resonance in the total cross-section �tot for the
scattering of light by the atoms of the medium. To see why, recall that the
index of refraction n(!) is related to the forward scattering amplitude f(!)
and the density N of scatterers by the formula (6.308)

n(!) = 1 +
2⇡c2

!2
Nf(!) (6.321)

and that the real part of the forward scattering amplitude is given by the
Kramers-Kronig integral (6.312) of the total cross-section

Re(f(!)) =
!2

2⇡2c
P

Z 1

0

�tot(!0) d!0

!02 � !2
. (6.322)

So the real part of the index of refraction is

nr(!) = 1 +
cN

⇡
P

Z 1

0

�tot(!0) d!0

!02 � !2
. (6.323)

If the amplitude for forward scattering is of the Breit-Wigner form

f(!) = f0
�/2

!0 � ! � i�/2
(6.324)

then by (6.321) the real part of the index of refraction is

nr(!) = 1 +
⇡c2Nf0�(!0 � !)

!2 [(! � !0)2 + �2/4]
(6.325)

and by (6.319) the group velocity is

vg = c

2

41 + ⇡c2Nf0�!0

!2

h
(! � !0)

2 � �2/4
i

[(! � !0)2 + �2/4]2

3

5
�1

. (6.326)

This group velocity vg is less than c whenever (!�!0)2 > �2/4. But we get
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fast light vg > c, if (! � !0)2 < �2/4, and even backwards light, vg < 0, if
! ⇡ !0 with 4⇡c2Nf0/�!0 � 1. Robert W. Boyd’s papers explain how to
make slow and fast light (Bigelow et al., 2003) and backwards light (Gehring
et al., 2006).
We can use the principal-part identity (6.259) to subtract

0 =
cN

⇡
�tot(!)P

Z 1

0

1

!02 � !2
d!0 (6.327)

from the Kramers-Kronig integral (6.323) so as to write the index of refrac-
tion in the regularized form

nr(!) = 1 +
cN

⇡
P

Z 1

0

�tot(!0)� �tot(!)

!02 � !2
d!0 (6.328)

which we can di↵erentiate and use in the group-velocity formula (6.319)

vg(!) = c


1 +

cN

⇡
P

Z 1

0

[�tot(!0)� �tot(!)] (!02 + !2)

(!02 � !2)2
d!0
��1

. (6.329)

6.22 Method of Steepest Descent

Integrals like

I(r) =

Z
b

a

dz h(z) exp(rf(z)) (6.330)

often are dominated by the exponential. We’ll first assume that the real part
u(z) of f(z) has one rather than many saddle points (6.341) between a and
b. Then the value of the integral I(r) is independent of the contour between
the end points a and b but is sensitive to r and to the real part u(z) of
f(z) = u(z) + iv(z). But since f(z) is analytic, its real and imaginary parts
u(z) and v(z) are harmonic functions which have no minima or maxima,
only saddle points (6.56).
For simplicity, we’ll assume that the real part u(z) of f(z) has only one

saddle point between the points a and b. (If it has more than one, we must
repeat the computation that follows.) If w is the saddle point, then ux =
uy = 0 at z = w which by the Cauchy-Riemann equations (6.10) implies
that vx = vy = 0. Thus the derivative of the function f also vanishes at the
saddle point f 0(w) = 0, and so near w we may approximate f(z) as

f(z) ⇡ f(w) +
1

2
(z � w)2f

00
(w). (6.331)

Let’s write the second derivative as f
00
(w) = ⇢ ei� and choose our contour
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through the saddle point w to be a straight line z = w + s ei✓ with ✓ fixed
for z near w. As we vary s along this line, we want

(z � w)2f
00
(w) = s2 ⇢ e2i✓ ei� < 0 (6.332)

so we keep 2✓ + � = ⇡ which ensures that near z = w

f(z) ⇡ f(w)� 1

2
⇢ s2. (6.333)

Since z = w + s ei✓, its di↵erential is dz = ei✓ ds, and the integral I(r) is

I(r) ⇡
Z 1

�1
h(w) exp

⇢
r


f(w) +

1

2
(z � w)2f

00
(w)

��
dz (6.334)

= h(w) ei✓ erf(w)
Z 1

�1
exp

�
�1

2r⇢s
2
�
ds = h(w) ei✓ erf(w)

r
2⇡

r⇢
.

Moving the phase ei✓ inside the square root

I(r) ⇡ h(w) erf(w)

r
2⇡

r⇢ e�2i✓
(6.335)

and using f
00
(w) = ⇢ ei� and 2✓ + � = ⇡ to show that

⇢ e�2i✓ = ⇢ ei��i⇡ = �⇢ ei� = �f
00
(w), (6.336)

we get our formula for the saddle-point integral (6.330)

I(r) ⇡
✓

2⇡

�rf 00(w)

◆1/2

h(w) erf(w). (6.337)

Example 6.52 (Stirling’s formula for n!) An exact formula for n!

n! = (�1)n
dny�1

dyn

����
y=1

(6.338)

is the integral

n! = (�1)n
dn

dyn

Z 1

0
e�y z dz

����
y=1

=

Z 1

0
zne�z dz =

Z 1

0
en log z�z dz.

(6.339)
Comparing it to the integral (6.330) for I(r), we set f(z) = n log z � z as
well as r = 1 and h(z) = 1. The saddle point w is where f 0(w) = 0 which is
at w = n. Since f 00(n) = �1/n, our steepest-descent approximation (6.337)
to n! gives us Stirling’s formula

n! ⇡ en logn�n

Z 1

�1
e�s

2
/(2n)ds =

p
2⇡n

⇣n
e

⌘
n

. (6.340)
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If there are n saddle points wj for j = 1, . . . , n, then the steepest-descent
approximation to the integral I(r) is the sum

I(r) ⇡
NX

j=1

✓
2⇡

�rf 00(wj)

◆1/2

h(wj) e
rf(wj). (6.341)

6.23 Applications to string theory

This section is optional on a first reading.
String theory may or may not have anything to do with physics, but it

does provide many amusing applications of complex-variable theory. The
coordinates � and ⌧ of the world sheet of a string form a complex variable
z = e2(⌧�i�). The product of two operators U(z) and V (w) often has poles
in z � w as z ! w but is well defined if z and w are radially ordered

R{U(z)V (w)} ⌘ U(z)V (w) ✓(|z|� |w|) + V (w)U(z) ✓(|w|� |z|) (6.342)

in which ✓(x) = (x + |x|)/2|x| is the step function. Since the modulus of
z = e2(⌧�i�) depends only upon ⌧ , radial order is time order in ⌧z and ⌧w.
The modes Ln of the principal component of the energy-momentum tensor

T (z) are defined by its Laurent series

T (z) =
1X

n=�1

Ln

zn+2
(6.343)

and the inverse relation

Ln =
1

2⇡i

I
zn+1 T (z) dz. (6.344)

Thus the commutator of two modes involves two loop integrals

[Lm, Ln] =


1

2⇡i

I
zm+1 T (z) dz,

1

2⇡i

I
wn+1 T (w) dw

�
(6.345)

which we may deform as long as we cross no poles. Let’s hold w fixed and
deform the z loop so as to keep the T ’s radially ordered when z is near w as
in Fig. 6.10. The operator-product expansion of the radially ordered product
R{T (z)T (w)} is

R{T (z)T (w)} =
c/2

(z � w)4
+

2

(z � w)2
T (w) +

1

z � w
T 0(w) + . . . (6.346)

in which the prime means derivative, c is a constant, and the dots denote
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Radial order

Figure 6.10 The two counterclockwise circles about the origin preserve ra-
dial order when z is near w by veering slightly to |z| > |w| for the product
U(z)V (w) and to |z| < |w| for the product V (w)U(z).

terms that are analytic in z and w. The commutator introduces a minus sign
that cancels most of the two contour integrals and converts what remains
into an integral along a tiny circle Cw about the point w as in Fig. 6.10

[Lm, Ln] =

I
dw

2⇡i
wn+1

I

Cw

dz

2⇡i
zm+1


c/2

(z � w)4
+

2T (w)

(z � w)2
+

T 0(w)

z � w

�
.

(6.347)
After doing the z-integral, which is left as a homework exercise (6.42), one
may use the Laurent series (6.343) for T (w) to do the w-integral, which
one may choose to be along a tiny circle about w = 0, and so find the
commutator

[Lm, Ln] = (m� n)Lm+n +
c

12
m(m2 � 1) �m+n,0 (6.348)

of the Virasoro algebra.

Example 6.53 (Using ghost contours to sum series) Consider the integral

I =

I

C

csc⇡z

(z � a)2
dz

along the counterclockwise rectangular contour C from z = N + 1/2 � iY
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to z = N + 1/2 + iY to z = �N � 1/2 + iY to z = �N � 1/2 � iY and
back to z = N + 1/2 � iY in which N is a positive integer, and a is not
an integer. In the twin limits N ! 1 and Y ! 1, the integral vanishes
because on the contour 1/|z � a|2 ⇡ 1/N2 or 1/Y 2 while | csc⇡z|  1. We
now shrink the contour down to tiny circles about the poles of csc⇡z at all
the integers, z = n, and about the nonintegral value, z = a. By Cauchy’s
integral formula (6.42), the tiny contour integral around z = a is

I

a

csc⇡z

(z � a)2
dz = 2⇡i

d csc⇡z

dz

����
z=a

= � 2⇡2i
cos⇡a

sin2 ⇡a
.

In the twin limits N ! 1 and Y ! 1, the tiny counterclockwise integrals
around the poles of 1/ sin⇡z at z = n⇡ are (exercise 6.45)

1X

n=�1

I

n

csc⇡z

(z � a)2
dz = 2i

1X

n=�1
(�1)n

1

(n� a)2
.

We thus have the sum rule
1X

n=�1
(�1)n

1

(n� a)2
= ⇡2 cot⇡a csc⇡a.

Further reading

For examples of conformal mappings see (Lin, 2011, section 3.5.7).

Exercises

6.1 Compute the two limits (6.6) and (6.7) of example 6.2 but for the
function f(x, y) = x2 � y2 + 2ixy. Do the limits now agree? Explain.

6.2 Show that if f(z) is analytic in a disk, then the integral of f(z) around
a tiny (isosceles) triangle of side ✏ ⌧ 1 inside the disk is zero to order
✏2.

6.3 Show that the product f(z) g(z) of two functions is analytic at z if both
f(z) and g(z) are analytic at z.

6.4 Derive the two integral representations (6.54) for Bessel’s functions
Jn(t) of the first kind from the integral formula (6.53). Hint: Think of
the integral (6.53) as running from �⇡ to ⇡.

6.5 Do the integral I

C

dz

z2 � 1

in which the contour C is counterclockwise about the circle |z| = 2.
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6.6 The function f(z) = 1/z is analytic in the region |z| > 0. Compute
the integral of f(z) counterclockwise along the unit circle z = ei✓ for
0  ✓  2⇡. The contour lies entirely within the domain of analyticity
of the function f(z). Did you get zero? Why? If not, why not?

6.7 Let P (z) be the polynomial

P (z) = (z � a1)(z � a2)(z � a3) (6.349)

with roots a1, a2, and a3. Let R be the maximum of the three moduli
|ak|. (a) If the three roots are all di↵erent, evaluate the integral

I =

I

C

dz

P (z)
(6.350)

along the counterclockwise contour z = 2Rei✓ for 0  ✓  2⇡. (b) Same
exercise, but for a1 = a2 6= a3.

6.8 Compute the integral of the function f(z) = eaz/(z2 � 3z + 2) along
the counterclockwise contour C⇤ that follows the perimeter of a square
of side 6 centered at the origin. That is, find

I =

I

C⇤

eaz

z2 � 3z + 2
dz. (6.351)

6.9 Use Cauchy’s integral formula (6.44) and Rodrigues’s expression (6.45)
for Legendre’s polynomial Pn(x) to derive Schlaefli’s formula (6.46).

6.10 Use Schlaefli’s formula (6.46) for the Legendre polynomials and Cauchy’s
integral formula (6.40) to compute the value of Pn(�1).

6.11 Evaluate the counterclockwise integral around the unit circle |z| = 1
I ⇣

3 sinh2 2z � 4 cosh3 z
⌘ dz

z
. (6.352)

6.12 Evaluate the counterclockwise integral around the circle |z| = 2
I

z3

z4 � 1
dz. (6.353)

6.13 Evaluate the contour integral of the function f(z) = sinwz/(z � 5)3

along the curve z = 6 + 4(cos t+ i sin t) for 0  t  2⇡.
6.14 Evaluate the contour integral of the function f(z) = sinwz/(z � 5)3

along the curve z = � 6 + 4(cos t+ i sin t) for 0  t  2⇡.
6.15 Is the function f(x, y) = x2 + iy2 analytic?
6.16 Is the function f(x, y) = x3�3xy2+3ix2y�iy3 analytic? Is the function

x3 � 3xy2 harmonic? Does it have a minimum or a maximum? If so,
what are they?
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6.17 Is the function f(x, y) = x2 + y2 + i(x2 + y2) analytic? Is x2 + y2 a
harmonic function? What is its minimum, if it has one?

6.18 Derive the first three nonzero terms of the Laurent series for f(z) =
1/(ez � 1) about z = 0.

6.19 Assume that a function g(z) is meromorphic in R and has a Laurent
series (6.106) about a point w 2 R. Show that as z ! w, the ratio
g0(z)/g(z) becomes (6.104).

6.20 Use a contour integral to evaluate the integral

Ia =

Z
⇡

0

d✓

a+ cos ✓
, a > 1. (6.354)

6.21 Find the poles and residues of the functions 1/ sin z and 1/ cos z.
6.22 Derive the integral formula (6.140) from (6.137).
6.23 Show that if Rew < 0, then for arbitrary complex z

Z 1

�1
ew(x+z)2 dx =

r
⇡

�w
. (6.355)

6.24 Find the value of the integral

I =

Z 1

�1

1

(x� i)(x� 2i)(x+ 3i)
dx. (6.356)

6.25 Use a ghost contour to evaluate the integral
Z 1

�1

x sinx

x2 + a2
dx.

Show your work; do not just quote the result of a commercial math
program.

6.26 For a > 0 and b2 � 4ac < 0, use a ghost contour to do the integral
Z 1

�1

dx

ax2 + bx+ c
. (6.357)

6.27 Show that Z 1

0
cos ax e�x

2
dx =

1

2

p
⇡ e�a

2
/4. (6.358)

6.28 Show that Z 1

�1

dx

1 + x4
=

⇡p
2
. (6.359)

6.29 Evaluate the integral
Z 1

0

cosx

1 + x4
dx. (6.360)
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6.30 Show that the Yukawa Green’s function (6.169) reproduces the Yukawa
potential (6.159) when n = 3. Use K1/2(x) =

p
⇡/2x e�x (10.80).

6.31 Derive the two explicit formulas (6.209) and (6.210) for the square root
of a complex number.

6.32 What is (�i)i? What is the most general value of this expression?
6.33 Use the indefinite integral (6.258) to derive the principal-part formula

(6.259).
6.34 The Bessel function Jn(x) is given by the integral

Jn(x) =
1

2⇡i

I

C

e(x/2)(z�1/z) dz

zn+1
(6.361)

along a counterclockwise contour about the origin. Find the generating
function for these Bessel functions, that is, the function G(x, z) whose
Laurent series has the Jn(x)’s as coe�cients

G(x, z) =
1X

n=�1
Jn(x) z

n. (6.362)

6.35 Show that the Heaviside step function ✓(y) = (y + |y|)/(2|y|) is given
by the integral

✓(y) =
1

2⇡i

Z 1

�1
eiyx

dx

x� i✏
(6.363)

in which ✏ is an infinitesimal positive number.
6.36 Show that the integral of exp(ik)/k along the contour from k = L to

k = L + iH and then to k = �L + iH and then down to k = �L
vanishes in the double limit L ! 1 and H ! 1.

6.37 Use a ghost contour and a cut to evaluate the integral

I =

Z 1

�1

dx

(x2 + 1)
p
1� x2

(6.364)

by imitating example 6.44. Be careful when picking up the poles at
z = ±i. If necessary, use the explicit square root formulas (6.209) and
(6.210).

6.38 Redo the previous exercise (6.37) by defining the square roots so that
the cuts run from �1 to �1 and from 1 to 1. Take advantage of the
evenness of the integrand and integrate on a contour that is slightly
above the whole real axis. Then add a ghost contour around the upper
half plane.

6.39 Show that if u is even and v is odd, then the Hilbert transforms (6.301)
imply (6.303).
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6.40 Show why the principal-part identity (6.259) lets one write the Kramers-
Kronig integral (6.323) for the index of refraction in the regularized
form (6.328).

6.41 Use the formula (6.319) for the group velocity and the regularized
expression (6.328) for the real part of the index of refraction nr(!) to
derive formula (6.329) for the group velocity.

6.42 (a) Perform the z-integral in Eq.(6.347). (b) Use the result of part (a)
to find the commutator [Lm, Ln] of the Virasoro algebra. Hint: use
the Laurent series (6.343).

6.43 Assume that ✏(z) is analytic in a disk that contains a tiny circular
contour Cw about the point w as in Fig. 6.10. Do the contour integral

I

Cw

✏(z)


c/2

(z � w)4
+

2T (w)

(z � w)2
+

T 0(w)

z � w

�
dz

2⇡i
(6.365)

and express your result in terms of ✏(w), T (w), and their derivatives.
6.44 Show that if the coe�cients ak of the equation 0 = a0+a1z+ . . .+anzn

are real, then its n roots zk are real or come in pairs that are complex
conjugates, z` and z⇤

`
, of each other.

6.45 Show that if a is not an integer, then the sum of the tiny counterclock-
wise integrals about the points z = n of example 6.53 is

1X

n=�1

I

n

csc⇡z

(z � a)2
dz = 2i

1X

n=�1
(�1)n

1

(n� a)2
.

6.46 Use the trick of example 6.53 with csc⇡z ! cot⇡z to show that

1X

n=�1

1

(n� a)2
=

⇡2

sin2 ⇡a

as long as a is not an integer.


