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obeys the Klein-Gordon equation

(r2 � @2
0 �m2)�(x) ⌘ (2�m2)�(x) = 0. (1.56)

1.8 Zero-point energy

The hamiltonian of a neutral scalar field is

H = 1
2

Z
d3x �̇2 + (r�)2 +m2�2. (1.57)

Substituting the Fourier expansion (1.55) of the field into this equation, we
find

H = 1
2

Z
d3x

d3pp
(2⇡)32p0

d3kp
(2⇡)32k0

⇥
nh

�i!pa(p) e
ip·x + i!pa

†(p) e�ip·x
i h

�i!ka(k) e
ik·x + i!ka

†(k) e�ik·x
i

+
h
ip a(p) eip·x � ip a†(p) e�ip·x

i
·
h
ik a(k) eik·x � ik a†(k) e�ik·x

i

+ m2
h
a(p) eip·x + a†(p) e�ip·x

i h
a(k) eik·x + a†(k) e�ik·x

io

(1.58)

Terms proportional to �(p+ k) are multiplied by p2 +m2 � !2
p and vanish.

We are left with

H =

Z
d3p

✓
!p a

†(p)a(p) +
1

2
!p [a(p), a

†(p)]

◆
. (1.59)

which is often abbrevviated as

H =

Z
d3p p0

⇣
a†(p)a(p) + 1

2�
3(0)

⌘

=

Z
d3p p0

✓
a†(p)a(p) +

1

2

V

(2⇡)3

◆
.

(1.60)

The first term may be taken to be the “renormalized” hamiltonian

H =

Z
d3p p0 a†(p)a(p). (1.61)

The second term is the zero-point energy density

⇢ =
E0

V
=

1

16⇡3

Z
d3p p0 =

1

4⇡2

Z 1

0
dp p2

p
p2 +m2. (1.62)

Substituting the Fourier-series expansion

�(x) =
X

k

1p
2!k V

h
ak e

i(k·x�!kt) + a†k e
�i(k·x�!kt)

i
(1.63)
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in which (4.189 of PM)

ak ⌘
r

(2⇡)3

V
a(k) (1.64)

into the hamiltionian (1.57), we find

H =
1

2

Z
d3x

X

k,p

p
!k!p

V

⇣
aka

†
pe

ix·(k�p) + a†pake
�ix·(k�p)

⌘

=
1

2

X

k,p

p
!k!p

⇣
aka

†
p + a†pak

⌘
�k,p

=
X

k,p

p
!k!p

⇣
a†
k
ap +

1
2�k,p

⌘
�k,p

=
X

k

!k

⇣
a†
k
ak +

1
2�k,k

⌘
.

(1.65)

Once again, the first term may be taken to be the “renormalized” hamilto-
nian

H =
X

k

!k a
†
k
ak. (1.66)

To evaluate the second term, we write the Kronecker delta as

�k,k =

Z
eix·(k�k)d

3x

V
=

Z
d3x

V
= 1. (1.67)

So the zero-point energy is

E0 =
X

k

1
2!k, (1.68)

and the zero-point energy density is

⇢ =
E0

V
=

1

V

X

k

1
2 !k. (1.69)

The relation (1.64) between the operators of box and continuum quan-
tization reveals that the two forms (1.61) and (1.66) of the renormalized
hamiltonian are more similar than they might seem at first glance

H =

Z
d3k !k a

†(k) a(k) =
V

(2⇡)3

Z
d3k !k a

†
k
ak ⇠

X

k

!k a
†
k
ak (1.70)

which is an instance of the relation
Z

d3k ⇠ (2⇡)3

V

X

k

(1.71)
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This relation (1.71) between integration and summation also reveals that
the two forms (1.62) and (1.69) of the zero-point energy density are more
similar than they might seem at first glance

⇢ =
1

16⇡3

Z
d3k !k ⇠ 1

2(2⇡)3
(2⇡)3

V

X

k

!k =
1

V

X

k

1
2!k. (1.72)

1.9 Conserved charges

If the field � adds and deletes charged particles, an interaction H(x) that is
a polynomial in � will not commute with the charge operator Q because �+

will lower the charge and �� will raise it. The standard way to solve this
problem is to start with two hermitian fields �1 and �2 of the same mass.
One defines a complex scalar field as a complex linear combination of the
two fields

�(x) =
1p
2
(�1(x) + i�2(x))

=

Z
d3pp

(2⇡)32p0


1p
2
(a1(p) + ia2(p)) e

ip·x +
1p
2

⇣
a†1(p) + ia†2(p)

⌘
e�ip·x

�
.

(1.73)

Setting

a(p) =
1p
2
(a1(p) + ia2(p)) and b†(p) =

1p
2

⇣
a†1(p) + ia†2(p)

⌘
(1.74)

so that

b(p) =
1p
2
(a1(p)� ia2(p)) and a†(p) =

1p
2

⇣
a†1(p)� ia†2(p)

⌘
(1.75)

we have

�(x) =

Z
d3pp

(2⇡)32p0

h
a(p) eip·x + b†(p) e�ip·x

i
(1.76)

and

�†(x) =

Z
d3pp

(2⇡)32p0

h
b(p) eip·x + a†(p) e�ip·x

i
. (1.77)

Since the commutation relations of the real creation and annihilation oper-
ators are for i, j = 1, 2

[ai(p), a
†
j
(p0)] = �ij �

3(p� p0) and [ai(p), aj(p
0)] = 0 = [a†

i
(p), a†

j
(p0)]
(1.78)


