12 Quantum fields and special relativity
obeys the Klein-Gordon equation

(V2= 32 —m?) ¢(z) = (O —m?) ¢(z) = 0. (1.56)

1.8 Zero-point energy

The hamiltonian of a neutral scalar field is
H = 5/6139; 2+ (V)2 + m2p2. (1.57)

Substituting the Fourier expansion (1.55) of the field into this equation, we
find
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Terms proportional to §(p + k) are multiplied by p? +m? — wg and vanish.
We are left with

1= [ @ (s @)+ gonlo)a@)). (159

which is often abbrevviated as

= [ ds® (apatp) + 15°(0))

(1.60)
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The first term may be taken to be the “renormalized” hamiltonian
= [ @i palp). (1.61)
The second term is the zero-point energy density
p=Po L fapy = L [Ty (1.62)
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Substituting the Fourier-series expansion
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a(k) (1.64)

ar
into the hamiltionian (1.57), we find
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Once again, the first term may be taken to be the “renormalized” hamilto-

nian
H= Zwk a};ak. (1.66)
k
To evaluate the second term, we write the Kronecker delta as
; d3x d3x
f iw-(k=k)Z 2 _ [ 22 1.67
Kk / e v v (1.67)
So the zero-point energy is
Eo= ) 3w, (1.68)
k
and the zero-point energy density is
Ey 1 1

The relation (1.64) between the operators of box and continuum quan-
tization reveals that the two forms (1.61) and (1.66) of the renormalized
hamiltonian are more similar than they might seem at first glance

v
H = /d?’k? wyal (k) a(k) = @) /dSk‘ W a,t ag ~ Zwk azak (1.70)
k

which is an instance of the relation

T 3
/d3k ~ (2v) % (1.71)
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This relation (1.71) between integration and summation also reveals that
the two forms (1.62) and (1.69) of the zero-point energy density are more
similar than they might seem at first glance

1 5 1 (2n)3 1 1
0= gom | PR gy 2w e (17)

1.9 Conserved charges

If the field ¢ adds and deletes charged particles, an interaction H(z) that is
a polynomial in ¢ will not commute with the charge operator ) because ¢*
will lower the charge and ¢~ will raise it. The standard way to solve this
problem is to start with two hermitian fields ¢; and ¢s of the same mass.
One defines a complex scalar field as a complex linear combination of the
two fields
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(1.73)
Setting

we have

(p) € + bf (p) e*ip'm} (1.76)
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) P 4 al(p) efip'm} . (1.77)

d3p
¢f(x) = / —— [b p
(2) o
Since the commutation relations of the real creation and annihilation oper-
ators are for 4,7 = 1,2

lai(p), al(p))] = 6 8*(p — P/) and  [ai(p), a;(p)] = 0 = [a](p), a} ()]
(1.78)



