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How to Be Healthy

Eat fruit, vegetables, nuts, grains, and fish.

e You won’t live forever, but it’ll seem that way.
Drink beer and wine moderately (< 30 grams of alcohol/day).
Get lots of exercise; watch your blood pressure.

Men over 40 (women > 50) should consider aspirin and statins.
Don’t smoke. Don’t eat mammals. Avoid saturated fats.

Avoid trans fats (partially hydrogenated vegetable oils).

S Dr. Elio Riboli http://www.iarc.fr/EPIC/
http / /www.iarc.fr/pageroot/units/ntr.htm
http://www.hsph.harvard.edu/reviews/transfats.html
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Some of the Logic

We evolved from apes, who evolved from fish. Fish eat fish.
Apes eat bananas. Alcohol is a marvelous solvent.

Natural human life: ‘‘solitary, poor, nasty, brutish, and short’’
(Hobbes). Until 1900, meat was rare and expensive.

The fats in vegetables and fish tend to be unsaturated.

Mammal fat contains cholesterol, saturated fats, and trans fats.
They cause heart disease, cancer, and obesity. They form sticky
solid lumps on our dishes and in our arteries.

Cholesterol is the starting point in the synthesis of the sex hor-
mones, which, in excess, drive the cancers of the reproductive
system. Testosterone levels in American men are 30% too high.

Saturated fats are very fattening. Obesity is a national epi-
demic. It causes diabetes, heart disease, and cancer.

Adipose tissue (i.e., fat cells) makes estrogen, even in men.
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The Atoms and Molecules of Life

Cells are mostly made from the most abundant chemical elements, H,
C, O, N, Ca, Mg, Na, K, P, among others.

Such atoms are held together in molecules by covalent and ionic
bonds, although molecules bound by ionic bonds are called salts.

Covalent bonds are the strongest kind of chemical bond. A good
example is the bond between two hydrogen atoms.

The hamiltonian for two interacting hydrogen atoms is H = Hy+ W.
The ‘“free’” hamiltonian Hy is a sum of two isolated-hydrogen-atom

hamiltonians , ,

—) —) e e
HO _ P1 4+ P — — —— — — _ (1)
2m 2m ‘frl — Rl‘ ‘7“2 — R2|
where e is the charge of the electron in units with a = e?/(fic) ~ 1/137,
and the two protons are located at the classical positions R; and Rs.

The perturbation W is

e? e? e? e?

. S—
Ry — R1| |Re+7o— Ry —7m1| |Ro+72— Ryl |Ry— Ry — 71

(2)
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The hamiltonian is invariant under the interchange of , and 7, and
so it commutes with the operator T that interchanges the two electrons.
So its eigenstates can be chosen to be eigenstates of 17" as well as of H.

In fact, since electrons are fermions, their physical states must be
antisymmetric under the interchange of the two electrons. Now H does
not refer to the spin variables, so we can choose the spin state to
be either symmetric (spin one) or antisymmetric (spin zero). The space
wave-function of the coordinates would then under the interchange of
and 7, be respectively antisymmetric or symmetric.

It is very natural to assume that the space wave-function is antisym-
metric. After all, the electrons both have negative charge, and why
should they clump together? But in fact the ground state of the hydrogen
molecule has a space wave-function that is symmetric. The two electrons
actually clump together between the two protons. Hence they attract the
two protons to their central clump of negative charge and so hold the
two hydrogen atoms together.

The binding energy is about —4.75 eV at an interproton separation of
T = |R2 —Rl‘ = 0.74 A
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A useful parametrization of the potential energy of the hydrogen
molecule as a function of r is

d

V(r)=ae " (1 —cr) - cppp—T

(3)

Figure 1: The phenomenological potential (3) with a = 53.8 eV, b = 2.99
A1, ¢c=2453 A1, d=Cs=3.884 eVA®, and e = 47.6 A2 (solid, red) is
finite, fits the RKR spectral points for molecular hydrogen (crosses, blue),
and gives the correct London tail for » > 3 A. The harmonic potential Vy
(dashes, green) is accurate only near its minimum.
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building blocks larger units
of the cell of the cell

SUGARS I# POLYSACCHARIDES I
FATTY ACIDS I» FATS, LIPIDS, MEMBHANESI
AMINO ACIDS I» PROTEINS I
NUCLEOTIDES I‘ NUCLEIC ACIDS I

Figure 2-17. Molecular Biology of the Cell, 4th Edition.

Figure 2-18. Molecular Biology of the Cell, 4th Edition.
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Figure 2-19. Molecular Biology of the Cell, 4th Edition. Figure 2-20. Molecular Biology of the Cell, 4th Edition.

Sugars form long polymers with and without branches. Cellulose is a
polysaccharide of glucose found in the cell walls of plants; it is the most
abundant organic chemical on Earth. The chitin of insect exoskeletons
and fungal cell walls is also a polysaccharide. Polysaccharides are the
main components of slime, mucus, and gristle. Oligosaccharides covalently
linked to proteins are glycoproteins; linked to lipids, they are glycolipids.
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Figure 2-21. Molecular Biology of the Cell, 4th Edition. Figure 2-22, Molecular Biology of the Cell, 4th Edition.
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Figure 2-23. Molecular Biology of the Cell, 4th Edition.
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Figure 2-24. Molecular Biology of the Cell, 4th Edition.
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Figure 2-25. Molecular Biology of the Cell, 4th Edition. The S'ide Cha'ins Of 5 Of the 20 am'ino

acids used in cells are ionized at or close to the nearly neutral pH’s
found in most parts of cells. In a globular protein, these aa’s are usually
found on the surface, where they can interact with polar water molecules
and with ions.
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Figure 2-26. Molecular Biology of the Cell, 4th Edition. Figure 2-27. Molecular Biology of the Cell, 4th Edition.
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Figure 2-57. Molecular Biology of the Cell, 4th Edition.  Figure 2-58. Molecular Biology of the Cell, 4th Edition. The hyd ro lyS] S Of the

terminal phosphate of ATP vyields ~ 12 kcal/mol.
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This ATP is one of the

5 end

3" end
Figure 2-28. Molecular Biology of the Cell, 4th Edition.
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CTP, GTP, and TTP are also used to make DNA and RNA:

2l ATP :
H2O
~ polynucleotide
i chain containing

) 2
ADE @ two nucleotides

products of
ATP hydrolysis

nucleoside
monophosphate

Figure 2-67. Molecular Biology of the Cell, 4th Edition.
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Cells are digital,
run by programs
written in the
four-letter code
-A CT, G-
of DNA.

Digital control
Is simple

and precise.
Hence,

gene therapy

Is possible.

Human DNA
has 3.2 x 10°

base pairs.

It is 109 cm.

long.
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Figure 4-4. Molecular Biology of the Cell, 4th Edition.

Watson-Crick pairing: A=T has two H-bonds, but C = G has three.
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Figure 4-5. Molecular Biology of the Cell, 4th Edition.
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gene A geneB gene C template S strand
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Figure 4-6. Molecular Biology of the Cell, 4th Edition. Figure 4-8. Molecular Biology of the Cell, 4th Edition.
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Figure 4-9. Molecular Biology of the Cell, 4th Edition. Figure 4-10. Molecular Biology of the Cell, 4th Edition.
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{A) human chromosome 22—48 x 106 nucleotide pairs of DNA
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Figure 4-15. Molecular Biology of the Cell, 4th Edition. Figure 4-17. Molecular Biology of the Cell, 4th Edition.
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Figure 4-19. Molecular Biology of the Cell, 4th Edition.
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Figure 5-4 part 2 of 2. Molecular Biology of the Cell, 4th Edition.
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Figure 5-8. Molecular Biology of the Cell, 4th Edition.
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Figure 5-12. Molecular Biology of the Cell, 4th Edition.  Figure 5-13. Molecular Biology of the Cell, 4th Edition. Figure 5-14. Molecular Biology of the Cell, 4th Edition.
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Figure 5-16. Molecular Biology of the Cell, 4th Edition.
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Figure 5-19 part 1 of 2. Molecular Biology of the Cell, 4th Edition.
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Figure 5-21. Molecular Biology of the Cell, 4th Edition.
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Figure 5-19 part 2 of 2. Molecular Biology of the Cell, 4th Edition.
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Figure 5-20. Molecular Biology of the Cell, 4th Edition.
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Figure 5-24. Molecular Biology of the Cell, 4th Edition.
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Figure 5-26 part 1 of 2. Molecular Biology of the Cell, 4th Edition.
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Figure 5-25 part 1 of 2. Molecular Biology of the Cell, 4th Edition.
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Figure 5-27 part 1 of 2. Molecular Biology of the Cell, 4th Edition.  Figure 5-27 part 2 of 2. Molecular Biology of the Cell, 4th Edition.
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Figure 5-28. Molecular Biology of the Cell, 4th Edition. Figure 5-29. Molecular Biology of the Cell, 4th Edition.  Figure 5-30. Molecular Biology of the Cell, 4th Edition.
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Figure 5-42. Molecular Biology of the Cell, 4th Edition.
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Figure 6-4 part 1 of 2. Molecular Biology of the Cell, 4th Edition.
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Figure 6-6 part 2 of 2. Molecular Biology of the Cell, 4th Edition.
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Figure 6-7. Molecular Biology of the Cell, 4th Edition. Figure 6-8. Molecular Biology of the Cell, 4th Edition.
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Figure 6-9. Molecular Biology of the Cell, 4th Edition.
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Figure 6-10 part 1 of 2. Molecular Biology of the Cell, 4th Edition.  Figure 6-10 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

Kevin Cahill, UNM

site of nucleotide ~ newly synthesized  ( qder template

addition RNA transcript DNA
strand

.~ path of

~downstream

DNA helix

-

P
exit path
for DNA /
double ’

helix RNA in short  displaced non-

DNA/RNA helix template DNA
strand

direction of transcription
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Figure 6-14. Molecular Biology of the Cell, 4th Edition.
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Figure 6-15. Molecular Biology of the Cell, 4th Edition.
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TFIlH TRANSCRIPTION

Figure 6-16 part 1 of 2. Molecular Biology of the Cell, 4th Edition. Figure 6-16 part 2 of 2. Molecular Biology of the Cell, 4th Editic

Eukaryotes have 3 RNA polymerases; prokaryotes only 1. Eukaryotic RNA poly Il has
12 subunits; prokaryotic RNA poly has 5. The TATA box is a promoter.
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Figure 6-22 part 1 of 2. Molecular Biology of the Cell, 4th Edition. Figure 6-22 part 2 of 2. Molecular Biology of the Cell, 4th Edition.
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Figure 6-23. Molecular Biology of the Cell, 4th Edition. Figure 6-24. Molecular Biology of the Cell, 4th Edition.
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Figure 6-25. Molecular Biology of the Cell, 4th Edition.
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Figure 6-26 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

Figure 6-26 part 2 of 2. Molecular Biology of the Cell, 4th Edition.
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Figure 6-27. Molecular Biology of the Cell, 4th Edition.

Alternative splicing increases the stability of the eukaryotic genome.
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Figure 6-29 part 2 of 2. Molecular Biology of the Cell, 4th Edition.  Figure 6-39. Molecular Biology of the Cell, 4th Edition.

AG|GURAGU (R = A or G) signals the start of many human introns.
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Transcribed genes
are separated by
untranscribed spacers.

Figure 6-41. Molecular Biology of the Cell, 4th Edition.
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Figure 6-47. Molecular Biology of the Cell, 4th Edition. Figure 6-50. Molecular Biology of the Cell, 4th Edition.
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Figure 6-52. Molecular Biology of the Cell, 4th Edition. Figure 6-53. Molecular Biology of the Cell, 4th Edition.
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Figure 6-56. Molecular Biology of the Cell, 4th Edition.
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Figure 6-57. Molecular Biology of the Cell, 4th Edition.

Most cells have 20 aminoacyl-tRNA synthetases. They charge tRNA’s with their
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Figure 6-58 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

A tRNA synthetase adds W to tRNA".
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Figure 6-58 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

Later the tRNA" charged with W binds to its codon in RNA.
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Figure 6-61 part 1 of 2. Molecular Biology of the Cell, 4th Edition.
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Figure 6-61 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

How a ribosome takes aa’s from tRNA’s and makes a protein.
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Figure 6-62. Molecular Biology of the Cell, 4th Edition.

Ribosomes in the cytoplasm of a eucaryotic cell. Some are free in the cytosol (the
main fluid of the cell); others are attached to membranes of the endoplasmic reticulum
(the ER, which is an outgrowth of the membrane of the nucleus).
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Figure 663 part 1 of 2. Molecular Biology of the Cell, 4th Edition
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Figure 6-63 part 2 of 2. Molecular Biology of the Cell, 4th Edition

are determined by rates of sedimentation and are a measure of the
size of a molecule.

Kevin Cahill, UNM

41



Figure 6-64 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

A bacterial ribosome. The tRNAs are shown bound in the E-site (red, eject), the
P-site (orange, peptidyl), and the A-site (yellow, acceptor). In B, the ribosome is opened
like a book.
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Top view.
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mRNA-
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Figure 6-64 part 2 of 2. Molecular Biology of the Cell, 4th Edition.
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incorrectly base-paired tRNAs
preferentially dissociate

incorrectly base-paired tRNAs
preferentially dissociate

Figure 6-66 part 1 of 2. Molecular Biology of the Cell, 4th Edition. Figure 6-66 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

What happens in the 3 sites of a ribosome.
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Figure 6-67 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

X-ray structure of a bacterial ribosome.

Kevin Cahill, UNM
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Figure 6-67 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

Secondary structure of a bacterial ribosome.
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ribosome-binding sites
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Figure 6-72. Molecular Biology of the Cell, 4th Edition.

A single molecule of procaryotic mRNA can carry several genes. AUG is the codon
for the aa M.
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Figure 6-73 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

UAG is one of 3 stop codons.
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Figure 6-73 part 2 of 2. Molecular Biology of the Cell, 4th Edition.
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peptide bond in glycylalanine

Figure 3-1. Molecular Biology of the Cell, 4th Edition.

This bond is made by the ribosome.
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Figure 3-2 part 1 of 3. Molecular Biology of the Cell, 4th Edition.
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Figure 3-2 part 2 of 3. Molecular Biology of the Cell, 4th Edition.

These bonds are made by the ribosome.
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polypeptide backbone

SCHEMATIC
nonpolar
side chain
SEQUENCE Met — Asp — Leu — Tyr

Figure 3-2 part 3 of 3. Molecular Biology of the Cell, 4th Edition.

AMINO ACID SIDE CHAIN AMINO ACID SIDE CHAIN
Aspartic acid Asp D negative Alanine Ala A nonpolar
Glutamic acid Glu E negative Glycine Gly G nonpolar
Arginine Arg R positive Valine Val V nonpolar
Lysine Lys K positive Leucine Leu L nonpolar
Histidine His H positive Isoleucine lle | nonpolar
Asparagine  Asn N uncharged polar Proline Pro P nonpolar
Glutamine GIn Q uncharged polar Phenylalanine Phe F nonpolar
Serine Ser S uncharged polar Methionine Met M nonpolar
Threonine Thr T uncharged polar Tryptophan Trp W nonpolar
Tyrosine Tyr Y uncharged polar Cysteine Cys C nonpolar
—  POLAR AMINO ACIDS ' NONPOLAR AMINO ACIDS ——

Figure 3-3. Molecular Biclogy of the Cell, 4th Edition.
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Figure 3-4. Molecular Biology of the Cell, 4th Edition.

The upper region leads to (3-strands, which are (-helices and form 3-sheets, and
the lower region leads to «-helices.
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In contact

Figure 3-5. Molecular Biology of the Cell, 4th Edition.

The H-bonds hold «-helices and (3-sheets together.
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Figure 3-6. Molecular Biology of the Cell, 4th Edition.

Polar water molecules repel non-polar aa side-chains and attract polar and charged

aa side-chains.

Kevin Cahill, UNM

54



|

hydrogen bond between hydrogen bond between hydrogen bond between
atoms of two peptide atoms of a peptide two amino acid side
bonds bond and an amino chains

acid side chain

Figure 3-7. Molecular Biology of the Cell, 4th Edition.

H-bonds often run between the O of C=0 and the N of N-H; the N is the donor
atom and the O is the acceptor atom.
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Figure 3-8. Molecular Biology of the Cell, 4th Edition.

Urea denatures proteins, which can fold back into their native structures when
placed in their natural solvent, typically that of the cytosol.
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Figure 3-9 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

Linus Pauling’s «-helix.
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Figure 3-9 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

A (3-sheet.
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A (B) (C)

Figure 3-13. Molecular Biology of the Cell, 4th Edition.

Ribbon models of 3 protein domains. (A) is cytochrome bsg0; (B) is the NAD-binding
domain of lactic dehydrogenase; and (C) is an |G domain.
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