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Fourier Series

2.1 Fourier series

The phases exp(inx)/
p
2⇡ for integer n are orthonormal on an interval of

length 2⇡
Z 2⇡

0

e�imx

p
2⇡

einxp
2⇡

dx =

Z 2⇡

0

ei(n�m)x

2⇡
dx = �m,n =

⇢
1 if m = n
0 if m 6= n

(2.1)

in which �n,m is Kronecker’s delta (1.34). So if a function f(x) is a sum of
these phases, called a Fourier series,

f(x) =
1X

n=�1
fn

einxp
2⇡

, (2.2)

then the orthonormality (2.1) of these phases exp(inx)/
p
2⇡ gives the nth

coe�cient fn as the integral

Z 2⇡

0

e�inx

p
2⇡

f(x) dx =

Z 2⇡

0

e�inx

p
2⇡

1X

m=�1
fm

eimx

p
2⇡

dx =
1X

m=�1
�n,mfm = fn.

(2.3)
Fourier series can represent functions f(x) that are square integrable on the
interval 0 < x < 2⇡ (Joseph Fourier 1768–1830).
In Dirac’s notation, we interpret the phases

hx|ni = einxp
2⇡

(2.4)

as the components of the vector |ni in the |xi basis. These components are
inner products hx|ni of |ni and |xi. The orthonormality integral (2.1) shows
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that the inner product of |ni and |mi is unity when n = m and zero when
n 6= m

hm|ni = hm|I|ni =
Z 2⇡

0
hm|xihx|ni dx =

Z 2⇡

0

ei(n�m)x

2⇡
dx = �m,n. (2.5)

Here I is the identity operator of the space spanned by the vectors |ni

I =

Z 2⇡

0
|xihx| dx. (2.6)

Since the vectors |ni are orthonormal, a sum of their outer products |nihn|
also represents the identity operator

I =
1X

n=�1
|nihn| (2.7)

of the space they span. This representation of the identity operator, together
with the formula (2.4) for hx|ni, shows that the inner product f(x) = hx|fi,
which is the component of the vector |fi in the |xi basis, is given by the
Fourier series (2.2)

f(x) = hx|fi = hx|I|fi =
1X

n=�1
hx|nihn|fi

=
1X

n=�1

einxp
2⇡

hn|fi =
1X

n=�1

einxp
2⇡

fn.

(2.8)

Similarly, the other representation (2.6) of the identity operator shows that
the inner products fn = hn|fi, which are the components of the vector |fi
in the |ni basis, are the Fourier integrals (2.3)

fn = hn|fi = hn|I|fi =
Z 2⇡

0
hn|xihx|fi dx =

Z 2⇡

0

e�inx

p
2⇡

hx|fi dx. (2.9)

The two representations (2.6 & 2.7) of the identity operator also give two
ways of writing the inner product hg|fi of two vectors |fi and |gi

hg|fi =
1X

n=�1
hg|nihn|fi =

1X

n=�1
g⇤nfn

=

Z 2⇡

0
hg|xihx|fi dx =

Z 2⇡

0
g⇤(x) f(x) dx.

(2.10)

When the vectors are the same, this identity shows that the sum of the
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squared absolute values of the Fourier coe�cients fn is equal to the integral
of the squared absolute value |f(x)|2

hf |fi =
1X

n=�1
|hn|fi|2 =

1X

n=�1
|fn|2 =

Z 2⇡

0
|hx|fi|2 dx =

Z 2⇡

0
|f(x)|2 dx.

(2.11)

Fourier series (2.2 & 2.8) are periodic with period 2⇡ because the
phases hx|ni are periodic with period 2⇡, exp(in(x+2⇡)) = exp(inx). Thus
even if the function f(x) which we use in (2.3 & 2.9) to make the Fourier
coe�cients fn = hn|fi is not periodic, its Fourier series (2.2& 2.2) will nev-
ertheless be strictly periodic, as illustrated by Figs. 2.2 & 2.4.
The complex conjugate of the Fourier series (2.2 & 2.2) is

f⇤(x) =
1X

n=�1
f⇤
n
e�inx

p
2⇡

=
1X

n=�1
f⇤
�n

einxp
2⇡

(2.12)

so the nth Fourier coe�cient fn(f⇤) for f⇤(x) is the complex conjugate of
the �nth Fourier coe�cient for f(x)

fn(f
⇤) = f⇤

�n(f). (2.13)

Thus if the function f(x) is real, then

fn(f) = fn(f
⇤) = f⇤

�n(f) or fn = f⇤
�n. (2.14)

Example 2.1 (Fourier Series by Inspection). The doubly exponential func-
tion exp(exp(ix)) has the Fourier series

exp
�
eix
�
=

1X

n=0

1

n!
einx (2.15)

in which n! = n(n� 1) . . . 1 is n-factorial with 0! ⌘ 1.

Example 2.2 (Beats). The sum of two sines f(x) = sin!1x + sin!2x of
similar frequencies !1 ⇡ !2 is the product (exercise 2.1)

f(x) = 2 cos 1
2(!1 � !2)x sin 1

2(!1 + !2)x. (2.16)

The first factor cos 1
2(!1 � !2)x is the beat; it modulates the second factor

sin 1
2(!1 + !2)x as illustrated by Fig. 2.1.
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Figure 2.1 The curve sin!1x+ sin!2x for !1 = 30 and !2 = 32.

Example 2.3 (Laplace’s equation). The Fourier series (exercise 2.2)

f(⇢, ✓) =
1X

�1

⇣⇢
a

⌘|n|
"Z 2⇡

0
h(✓0)

e�in✓0

p
2⇡

d✓0
#

ein✓p
2⇡

(2.17)

(Ritt, 1970, p. 3) obeys Laplace’s equation (6.66)

1

⇢

d

d⇢

✓
⇢
df

d⇢

◆
+

1

⇢2
@2f

@✓2
= 0 (2.18)

for ⇢ < a and respects the boundary condition f(a, ✓) = h(✓).

2.2 The interval

In section 6.409, we singled out the interval [0, 2⇡], but to represent a peri-
odic function f(x) of period 2⇡, we could have used any interval of length
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2⇡, such as the interval [�⇡,⇡] or [r, r + 2⇡]

fn =

Z r+2⇡

r
e�inx f(x)

dxp
2⇡

. (2.19)

This integral is independent of its lower limit r when the function f(x) is
periodic with period 2⇡. The choice r = �⇡ is often convenient. With this
choice of interval, the coe�cient fn is the integral (2.3) shifted by �⇡

fn =

Z ⇡

�⇡
e�inx f(x)

dxp
2⇡

. (2.20)

But if the function f(x) is not periodic with period 2⇡, then the Fourier
coe�cients (2.19) do depend upon the choice r of interval.

2.3 Where to put the 2⇡’s

In sections 6.409–2.2, we used the orthonormal functions exp(inx)/
p
2⇡, and

so we had factors of 1/
p
2⇡ in the Fourier equations (2.2, 2.3, 2.9, and 2.8).

One can avoid these square roots by setting dn = fn/
p
2⇡ and writing the

Fourier series (6.409) and the orthonormality relation (2.3) as

f(x) =
1X

n=�1
dn e

inx and dn =
1

2⇡

Z 2⇡

0
dx e�inx f(x) (2.21)

or by setting cn =
p
2⇡ fn and using the rules

f(x) =
1

2⇡

1X

n=�1
cne

inx and cn =

Z ⇡

�⇡
f(x)e�inx dx. (2.22)

The cost of these asymmetrical notations is that factors of 2⇡ pop up (exer-
cise 2.3) in equations (2.10 & 2.11) for the inner products hg|fi and hf |fi.

Example 2.4 (Fourier Series for exp(�m|x|)). Let’s compute the Fourier
series for the real function f(x) = exp(�m|x|) on the interval (�⇡,⇡). Using
the shifted interval (2.20) and the 2⇡-placement convention (2.21), we find
that the coe�cient dn is the integral

dn =

Z ⇡

�⇡

dx

2⇡
e�inx e�m|x| (2.23)
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Figure 2.2 The 10-term (dashes) Fourier series (2.25) for the function
exp(�2|x|) on the interval (�⇡,⇡) is plotted from �2⇡ to 2⇡. All Fourier
series are periodic, but the function exp(�2|x|) (solid) is not.

which we may split into the two pieces

dn =

Z 0

�⇡

dx

2⇡
e(m�in)x +

Z ⇡

0

dx

2⇡
e�(m+in)x

=
1

⇡

m

m2 + n2

⇥
1� (�1)n e�⇡m

⇤ (2.24)

which shows that dn = d�n. Since m is real, the coe�cients dn also are
real, dn = d⇤n. They therefore satisfy the condition (2.14) that holds for real
functions, dn = d⇤�n, and give the Fourier series for exp(�m|x|) as

e�m|x| =
1X

n=�1
dne

inx =
1X

n=�1

1

⇡

m

m2 + n2

⇥
1� (�1)n e�⇡m

⇤
einx

=
(1� e�⇡m)

m⇡
+

1X

n=1

2

⇡

m

m2 + n2

⇥
1� (�1)n e�⇡m

⇤
cos(nx).

(2.25)
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In Fig. 2.2, the 10-term (dashes) Fourier series for m = 2 is plotted from
x = �2⇡ to x = 2⇡. The function exp(�2|x|) itself is represented by a solid
line. Although exp(�2|x|) is not periodic, its Fourier series is periodic with
period 2⇡. The 10-term Fourier series represents the function exp(�2|x|)
quite well within the interval [�⇡,⇡].
In what follows, we usually won’t bother to use di↵erent letters to dis-

tinguish between the symmetric (6.409 & 2.3) and asymmetric conventions
(2.21 or 2.22) on the placement of the 2⇡’s.

2.4 Real Fourier series for real functions

The rules (2.1–2.3 & 2.19–2.22) for Fourier series are simple and apply to
functions that are continuous and periodic whether complex or real. If a
function f(x) is real, then its Fourier coe�cients obey the rule (2.14) that
holds for real functions, d�n = d⇤n. Thus d0 is real, d0 = d⇤0, and we may
write the Fourier series (2.21) for a real function f(x) as

f(x) = d0 +
1X

n=1

dn e
inx +

�1X

n=�1
dn e

inx

= d0 +
1X

n=1

⇥
dn e

inx + d�n e
�inx

⇤
= d0 +

1X

n=1

⇥
dn e

inx + d⇤n e
�inx

⇤

= d0 +
1X

n=1

dn (cosnx+ i sinnx) + d⇤n (cosnx� i sinnx)

= d0 +
1X

n=1

(dn + d⇤n) cosnx+ i(dn � d⇤n) sinnx. (2.26)

In terms of the real coe�cients

an = dn + d⇤n and bn = i(dn � d⇤n), (2.27)

the Fourier series (2.26) of a real function f(x) is

f(x) =
a0
2

+
1X

n=1

an cosnx+ bn sinnx. (2.28)

Using the formulas (2.27) for an and (2.21) for dn as well as the reality of
the function f(x), we find that an is

an =

Z 2⇡

0

⇥
e�inx f(x) + einx f⇤(x)

⇤ dx

2⇡
=

Z 2⇡

0

�
e�inx + einx

�

2
f(x)

dx

⇡
.

(2.29)
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So the coe�cient an of cosnx in (2.28) is the cosine integral of f(x)

an =

Z 2⇡

0
cosnx f(x)

dx

⇡
. (2.30)

Similarly, equations (2.27 & 2.21) and the reality of f(x) imply that the
coe�cient bn is the sine integral of f(x)

bn =

Z 2⇡

0
i

�
e�inx � einx

�

2
f(x)

dx

⇡
=

Z 2⇡

0
sinnx f(x)

dx

⇡
. (2.31)

The real Fourier series (2.28) and the cosine (2.30) and sine (2.31) integrals
for the coe�cients an and bn also follow from the orthogonality relations

Z 2⇡

0
sinmx sinnx dx =

⇢
⇡ if n = m 6= 0
0 otherwise,

(2.32)

Z 2⇡

0
cosmx cosnx dx =

8
<

:

⇡ if n = m 6= 0
2⇡ if n = m = 0
0 otherwise, and

(2.33)

Z 2⇡

0
sinmx cosnx dx = 0, (2.34)

which hold for integer values of n and m.
If the function f(x) is periodic with period 2⇡, then instead of the interval

[0, 2⇡], one may choose any interval of length 2⇡ such as [�⇡,⇡].
What if a function f(x) is not periodic? The Fourier series for an aperi-

odic function is itself strictly periodic, is sensitive to its interval (r, r + 2⇡)
of definition, may di↵er somewhat from the function near the ends of the
interval, and usually di↵ers markedly from it outside the interval.

Example 2.5 (The Fourier Series for x2). The function x2 is even and so
the integrals (2.31) for its sine Fourier coe�cients bn all vanish. Its cosine
coe�cients an are given by (2.30)

an =

Z ⇡

�⇡
cosnx f(x)

dx

⇡
=

Z ⇡

�⇡
cosnxx2

dx

⇡
. (2.35)

Integrating twice by parts, we find for n 6= 0

an = � 2

n

Z ⇡

�⇡
x sinnx

dx

⇡
=


2x cosnx

⇡n2

�⇡

�⇡

= (�1)n
4

n2
(2.36)

and

a0 =

Z ⇡

�⇡
x2

dx

⇡
=

2⇡2

3
. (2.37)
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Figure 2.3 The function x2 (solid) and its Fourier series of 7 terms (dot
dash) and 20 terms (dashes). The Fourier series (2.38) for x2 quickly con-
verges well inside the interval (�⇡,⇡).

Equation (2.28) now gives for x2 the cosine Fourier series

x2 =
a0
2

+
1X

n=1

an cosnx =
⇡2

3
+ 4

1X

n=1

(�1)n
cosnx

n2
. (2.38)

This series rapidly converges within the interval [�1, 1] as shown in Fig. 2.3,
but not near the endpoints ±⇡.

Example 2.6 (The Gibbs overshoot). The function f(x) = x on the interval
[�⇡,⇡] is not periodic. So we expect trouble if we represent it as a Fourier
series. Since x is an odd function, equation (2.30) tells us that the coe�cients
an all vanish. By (2.31), the bn’s are

bn =

Z ⇡

�⇡

dx

⇡
x sinnx = 2 (�1)n+1 1

n
. (2.39)
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Figure 2.4 (top) The Fourier series (2.40) for the function x (solid line)
with 10 terms (. . . ) and 100 terms (solid curve) for �2⇡ < x < 2⇡. The
Fourier series is periodic, but the function x is not. (bottom) The di↵erences
between x and the 10-term (. . . ) and the 100-term (solid curve) on (�⇡,⇡)
exhibit a Gibbs overshoot of about 9% at x & �⇡ and at x . ⇡.

As shown in Fig. 2.4, the series

1X

n=1

2 (�1)n+1 1

n
sinnx (2.40)

di↵ers by about 2⇡ from the function f(x) = x for �3⇡ < x < �⇡ and for
⇡ < x < 3⇡ because the series is periodic while the function x isn’t.

Within the interval (�⇡,⇡), the series with 100 terms is very accurate
except for x & �⇡ and x . ⇡, where it overshoots by about 9% of the 2⇡
discontinuity, a defect called a Gibbs overshoot (J. Willard Gibbs 1839–
1903. Incidentally, Gibbs’s father helped defend the Africans of the schooner
Amistad). Any time we use a Fourier series to represent an aperiodic func-
tion, a Gibbs overshoot will occur near the endpoints of the interval.
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2.5 Stretched intervals

If the interval of periodicity is of length L instead of 2⇡, then we may use
the phases exp(i2⇡nx/

p
L) which are orthonormal on the interval [0, L]

Z L

0
dx

 
ei2⇡nx/Lp

L

!⇤
ei2⇡mx/L

p
L

= �nm. (2.41)

The Fourier series

f(x) =
1X

n=�1
fn

ei2⇡nx/Lp
L

(2.42)

is periodic with period L. The coe�cient fn is the integral

fn =

Z L

0

e�i2⇡nx/L

p
L

f(x) dx, (2.43)

and the sum of their squares |fn|2 is the integral of |f(x)|2

1X

n=�1
|fn|2 =

Z L

0
|f(x)|2 dx. (2.44)

These relations (2.41–2.44) generalize to the interval [0, L] our earlier for-
mulas of section 6.409 for the interval [0, 2⇡].
If the function f(x) is periodic with period L, that is if f(x+nL) = f(x)

for any integer n, then we may shift the domain of integration by any real
number r

fn =

Z L+r

r

e�i2⇡nx/L

p
L

f(x) dx (2.45)

without changing the coe�cients fn. An obvious choice is r = �L/2 for
which (2.42) and (2.43) give

f(x) =
1X

n=�1
fn

ei2⇡nx/Lp
L

and fn =

Z L/2

�L/2

e�i2⇡nx/L

p
L

f(x) dx. (2.46)

If the function f(x) is real, then on the interval [0, L] in place of Eqs.(2.28),
(2.30), & (2.31), one has

f(x) =
a0
2

+
1X

n=1

an cos

✓
2⇡nx

L

◆
+ bn sin

✓
2⇡nx

L

◆
, (2.47)
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an =
2

L

Z L

0
dx cos

✓
2⇡nx

L

◆
f(x), (2.48)

and

bn =
2

L

Z L

0
dx sin

✓
2⇡nx

L

◆
f(x). (2.49)

The corresponding orthogonality relations, which follow from Eqs.(2.32),
(2.33), & (2.34), are:

Z L

0
dx sin

✓
2⇡mx

L

◆
sin

✓
2⇡nx

L

◆
=

⇢
L/2 if n = m 6= 0
0 otherwise,

(2.50)

Z L

0
dx cos

✓
2⇡mx

L

◆
cos

✓
2⇡nx

L

◆
=

8
<

:

L/2 if n = m 6= 0
L if n = m = 0
0 otherwise, and

(2.51)

Z L

0
dx sin

✓
2⇡mx

L

◆
cos

✓
2⇡nx

L

◆
= 0. (2.52)

They hold for integer values of n and m, and they imply Eqs.(2.47)–2.49).

2.6 Fourier series of functions of several variables

On an interval [0, L], the Fourier-series formulas (2.42 & 2.43) are

f(x) =
1X

n=�1
fn

ei2⇡nx/Lp
L

(2.53)

fn =

Z L

0

e�2i⇡nx/L

p
L

f(x) dx. (2.54)

We may generalize these equations from a single variable to m variables
x = (x1, . . . , xm) with n · x = n1x1 + . . .+ nmxm

f(x) =
1X

n1=�1
. . .

1X

nm=�1
fn

ei2⇡n·x/L

Lm/2
(2.55)

fn =

Z L

0
dx1 . . .

Z L

0
dxm

e�2i⇡n·x/L

Lm/2
f(x). (2.56)
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2.7 Integration and di↵erentiation of Fourier series

What happens to the convergence of a Fourier series if we integrate or dif-
ferentiate term by term? If we integrate the series

f(x) =
1X

n=�1
fn

ei2⇡nx/Lp
L

(2.57)

then we get a series

F (x) =

Z x

0
dx0f(x0) =

f0p
L
x� i

p
L

2⇡

1X

n=�1

fn
n

ei2⇡nx/L (2.58)

that converges better because of the extra factor of 1/n. An integrated
function f(x) is smoother, and so its Fourier series converges better.
But if we di↵erentiate the same series, then we get a series

f 0(x) = i
2⇡

L3/2

1X

n=�1
n fn e

i2⇡nx/L (2.59)

that converges less well because of the extra factor of n. A di↵erentiated
function is rougher, and so its Fourier series converges less well.

2.8 How Fourier series converge

A Fourier series represents a function f(x) as the limit of a sequence of
functions fN (x) given by

fN (x) =
NX

n=�N

fn
ei2⇡nx/Lp

L
in which fn =

Z L

0
f(x) e�i2⇡nx/L dxp

L
.

(2.60)
Since the exponentials are periodic with period L, a Fourier series always is
periodic. So if the function f(x) is not periodic, then its Fourier series will
represent the periodic extension fp of f defined by

fp(x+ nL) = f(x) (2.61)

for all integers n and for 0  x  L.
A sequence of functions fN (x) converges to a function f(x) on a closed

interval [a, b] if for every ✏ > 0 and each point a  x  b, there exists an
integer N(✏, x) such that

|f(x)� fN (x)| < ✏ for all N > N(✏, x). (2.62)

If this holds for an N(✏, x) = N(✏) that is independent of x 2 [a, b], then the
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sequence of functions fN (x) converges uniformly to f(x) on the interval
[a, b].

A function f(x) is continuous on an open interval (a, b) if for every
point a < x < b the two limits

f(x� 0) ⌘ lim
0<✏!0

f(x� ✏) and f(x+ 0) ⌘ lim
0<✏!0

f(x+ ✏) (2.63)

agree. If f(x) also has the limits f(a+0) = f(a) and f(b�0) = f(b), then f
is continuous on the closed interval [a, b]. A function continuous on a closed
interval [a, b] is bounded and integrable on that interval.
If a sequence of continuous functions fN (x) converges uniformly to a func-

tion f(x) on a closed interval a  x  b, then we know that |fN (x)�f(x)| < ✏
for N > N(✏), and so
����
Z b

a
fN (x) dx�

Z b

a
f(x) dx

���� 
Z b

a
|fN (x)� f(x)| dx < (b� a) ✏. (2.64)

Thus one may integrate a uniformly convergent sequence of continuous func-
tions on a closed interval [a, b] term by term

lim
N!1

Z b

a
fN (x) dx =

Z b

a
lim

N!1
fN (x) dx =

Z b

a
f(x) dx. (2.65)

So if a Fourier series (6.409) converges uniformly, then the term-by-term
integration implicit in the formula (2.3) for fn is permitted.
A function is piecewise continuous on [a, b] if it is continuous there

except for finite jumps from f(x�0) to f(x+0) at a finite number of points
x. At such jumps, we define the periodically extended function fp to be the
mean fp(x) = [f(x� 0) + f(x+ 0)]/2.
Fourier’s convergence theorem (Courant, 1937, p. 439): The Fourier

series of a function f(x) that is piecewise continuous with a piecewise con-
tinuous first derivative converges to its periodic extension fp(x). This con-
vergence is uniform on every closed interval on which the function f(x) is
continuous (and absolute if the function f(x) has no discontinuities). Exam-
ples 2.12 and 2.13 illustrate this result.
A function whose kth derivative is continuous is in class C

k. On the
interval [�⇡,⇡], its Fourier coe�cients (2.22) are

fn =

Z ⇡

�⇡
f(x) e�inx dx. (2.66)

If f is both periodic and in Ck, then one integration by parts gives

fn =

Z ⇡

�⇡

⇢
d

dx


f(x)

e�inx

�in

�
� f 0(x)

e�inx

�in

�
dx =

Z ⇡

�⇡
f 0(x)

e�inx

in
dx
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and k integrations by parts give

fn =

Z ⇡

�⇡
f (k)(x)

e�inx

(in)k
dx (2.67)

since the derivatives f (`)(x) of a Ck periodic function also are periodic.
Moreover if f (k+1) is piecewise continuous, then

fn =

Z ⇡

�⇡

⇢
d

dx


f (k)(x)

e�inx

�(in)k+1

�
� f (k+1)(x)

e�inx

�(in)k+1

�
dx

=

Z ⇡

�⇡
f (k+1)(x)

e�inx

(in)k+1
dx.

(2.68)

Since f (k+1)(x) is piecewise continuous on the closed interval [�⇡,⇡], it is
bounded there in absolute value by, let us say, M . So the Fourier coe�cients
of a Ck periodic function with f (k+1) piecewise continuous are bounded by

|fn| 
1

nk+1

Z ⇡

�⇡
|f (k+1)(x)| dx  2⇡M

nk+1
. (2.69)

We often can carry this derivation one step further. In most simple exam-
ples, the piecewise continuous periodic function f (k+1)(x) actually is piece-
wise continuously di↵erentiable between its successive jumps at xj . In this
case, the derivative f (k+2)(x) is a piecewise continuous function plus a sum
of a finite number of delta functions with finite coe�cients. Thus we can
integrate once more by parts. If for instance the function f (k+1)(x) jumps J

times between �⇡ and ⇡ by �f (k+1)
j , then its Fourier coe�cients are

fn =

Z ⇡

�⇡
f (k+2)(x)

e�inx

(in)k+2
dx

=
JX

j=1

Z xj+1

xj

f (k+2)
pc (x)

e�inx

(in)k+2
dx+

JX

j=1

�f (k+1)
j

e�inxj

(in)k+2

(2.70)

in which the subscript pc means piecewise continuous. The Fourier coe�-
cients (2.70) then are bounded by

|fn| 
2⇡M

nk+2
(2.71)

in which M is related to the maximum absolute values of f (k+2)
pc (x) and of

the �f (k+1)
j . The Fourier series of periodic Ck functions converge rapidly if

k is big.
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Example 2.7 (Fourier Series of a C0 Function). The function defined by

f(x) =

8
<

:

0 �⇡  x < 0
x 0  x < ⇡/2
⇡ � x ⇡/2  x  ⇡

(2.72)

is continuous on the interval [�⇡,⇡] and its first derivative is piecewise
continuous on that interval. By (2.69), its Fourier coe�cients fn should be
bounded by M/n. In fact they are (exercise 2.10) bounded by 2

p
2/⇡/n2

fn =

Z ⇡

�⇡
f(x)e�inx dxp

2⇡
=

(�1)n+1

p
2⇡

(in � 1)2

n2
(2.73)

in agreement with the stronger inequality (2.71).

Example 2.8 (Fourier Series for a C1 Function). The function defined by
f(x) = 1 + cos 2x for |x|  ⇡/2 and f(x) = 0 for |x| � ⇡/2 has a periodic
extension fp that is continuous with a continuous first derivative and a
piecewise continuous second derivative. Its Fourier coe�cients (2.66)

fn =

Z ⇡/2

�⇡/2
(1 + cos 2x) e�inx dxp

2⇡
=

8 sinn⇡/2p
2⇡(4n� n3)

satisfy the inequalities (2.69) and (2.71) for k = 1.

Example 2.9 (The Fourier Series for cosµx). The Fourier series for the
even function f(x) = cosµx has only cosines with coe�cients (2.30)

an =

Z ⇡

�⇡
cosnx cosµx

dx

⇡
=

Z ⇡

0
[cos(µ+ n)x+ cos(µ� n)x]

dx

⇡

=
1

⇡


sin(µ+ n)⇡

µ+ n
+

sin(µ� n)⇡

µ� n

�
=

2

⇡

µ(�1)n

µ2 � n2
sinµ⇡.

(2.74)

Thus whether or not µ is an integer, the series (2.28) gives us

cosµx =
2µ sinµ⇡

⇡

✓
1

2µ2
� cosx

µ2 � 12
+

cos 2x

µ2 � 22
� cos 3x

µ2 � 32
+� . . .

◆
(2.75)

which is continuous at x = ±⇡ (Courant, 1937, chap. IX).

Example 2.10 (The Sine as an Infinite Product). In our series (2.75) for
cosµx, we set x = ⇡, divide by sinµ⇡, replace µ with x, and so find for the
cotangent the expansion

cot⇡x =
2x

⇡

✓
1

2x2
+

1

x2 � 12
+

1

x2 � 22
+

1

x2 � 32
+ . . .

◆
(2.76)
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or equivalently

cot⇡x� 1

⇡x
= �2x

⇡

✓
1

12 � x2
+

1

22 � x2
+

1

32 � x2
+ . . .

◆
. (2.77)

For 0  x  q < 1, the absolute value of the nth term on the right is less
than 2q/(⇡(n2 � q2)). Thus this series converges uniformly on [0, x], and so
we may integrate it term by term. We find (exercise 2.13)

⇡

Z x

0

✓
cot⇡t� 1

⇡t

◆
dt = ln

sin⇡x

⇡x
=

1X

n=1

Z x

0

�2t dt

n2 � t2
=

1X

n=1

ln


1� x2

n2

�
.

(2.78)
Exponentiating, we get the infinite-product formula

sin⇡x

⇡x
= exp

" 1X

n=1

ln

✓
1� x2

n2

◆#
=

1Y

n=1

✓
1� x2

n2

◆
(2.79)

for the sine from which one can derive the infinite product (exercise 2.14)

cos⇡x =
1Y

n=1

 
1� x2

(n� 1
2)

2

!
(2.80)

for the cosine (Courant, 1937, chap. IX).

2.9 Measure and Lebesgue integration

Suppose S is a set of points x that lie in an interval a  x  b of length b�a.
All the points of S may also lie inside several subintervals [ai, bi], i = 1, 2, . . .,
the sum of whose lengths is b1� a1+ b2� a2+ . . .. Now consider all possible
such sets of subintervals [ai, bi] that contain all the points of S and let m be
the greatest lower bound of the sum of their lengths. We may do the same
for the complementary set S0 consisting of all points of [a, b] that do not lie
in the set S. That is, we may let m0 be the greatest lower bound of the sum
of the lengths of all possible sets of subintervals [ci, di] that contain all the
points of S0. If m+m0 = b� a, then the set S is measurable and m is its
measure. Every countable set xi, i = 1, 2, . . ., has measure zero.
Suppose now that for a  x  b, all the values f(x) of a function f lie in

some finite interval J . We partition this interval J into disjoint subintervals
Jk and let Sk be the set of points of [a, b] that f maps into each subinterval
Jk. If for every subinterval Jk, the set Sk is measurable, then the function
f(x) is measurable or summable on [a, b]. Suppose that f is measurable
on this interval and let m(Sk) be the measure the set Sk. Then for each
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subinterval Jk, we may pick any point xk 2 Sk and approximate the integral
of f over the interval [a, b] by the sum f(x1)m(S1)+f(x2)m(S2)+ . . .. This
sum converges (Courant and Hilbert, 1955, pp. 108–111) to the Lebesgue
integral as we refine the partition of the interval J into subintervals Jk such
that the length L of the longest subinterval goes to zero

lim
L!0

1X

k=1

f(xk)m(Sk) =

Z b

a
f(x) dx (2.81)

(Henri Lebesgue, 1875–1941).
Lebesgue integration generalizes Riemann integration and provides a more

natural basis for discussions of convergence. One important theorem result-
ing from measure theory is that of Riesz and Fischer (Hardy and Rogosinski,
1944, p. 16): If a sum

1X

n=�1
|fn|2 < 1 (2.82)

converges, then (1) there is a function f that is square integrable in the
sense of Lebesgue (f is L2 on [a, b])

Z b

a
|f(x)|2 dx < 1, (2.83)

whose Fourier coe�cients are

fn =

Z b

a

e�2⇡inx/(b�a)

p
b� a

f(x) dx, (2.84)

(2) the series

fN (x) =
NX

n=�N

fn
e2⇡inx/(b�a)

p
b� a

(2.85)

converges to f(x) in the mean, that is, as N ! 1
Z b

a
|fN (x)� f(x)|2 dx ! 0, (2.86)

and (3)
Z b

a
|f(x)|2 dx =

1X

n=�1
|fn|2 (2.87)

which is (2.44) for L = b� a.
Fourier series can represent a much wider class of functions than those

that are continuous. If a function f(x) is square integrable on an interval
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[a, b], then its N -term Fourier series fN (x) will converge to f(x) in the
mean, that is

lim
N!1

Z b

a
dx |f(x)� fN (x)|2 = 0. (2.88)

2.10 Quantum-mechanical examples

Suppose a particle of massm is trapped in an infinitely deep one-dimensional
square well of potential energy

V (x) =

⇢
0 if 0 < x < L
1 otherwise.

(2.89)

The hamiltonian operator is

H = � ~2
2m

d2

dx2
+ V (x), (2.90)

in which ~ is Planck’s constant divided by 2⇡. This tiny bit of action,
~ = 1.055 ⇥ 10�34 J s, sets the scale at which quantum mechanics becomes
important. Quantum-mechanical corrections to classical predictions can be
big in processes whose action is less than ~.
An eigenfunction  (x) of the hamiltonian H with energy E satisfies the

equation H (x) = E (x) which breaks into two simple equations:

� ~2
2m

d2 (x)

dx2
= E (x) for 0 < x < L (2.91)

and

� ~2
2m

d2 (x)

dx2
+ 1 (x) = E (x) for x < 0 and for x > L. (2.92)

Every solution of these equations with finite energy E must vanish outside
the interval 0 < x < L. So we must find solutions of the first equation (2.91)
that satisfy the boundary conditions

 (x) = 0 for x  0 and x � L. (2.93)

For any integer n 6= 0, the function

 n(x) =

r
2

L
sin
⇣⇡nx

L

⌘
for x 2 [0, L] (2.94)
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and  n(x) = 0 for x /2 (0, L) satisfies the boundary conditions (2.93). When
inserted into equation (2.91)

� ~2
2m

d2

dx2
 n(x) =

~2
2m

⇣n⇡
L

⌘2
 n(x) = En n(x) (2.95)

it reveals its energy to be En = (n⇡~/L)2/2m.
These eigenfunctions  n(x) are complete in the sense that they span

the space of all functions f(x) that are square-integrable on the interval
(0, L) and vanish at its end points. They provide for such functions the sine
Fourier series

f(x) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
(2.96)

which is periodic with period 2L and is the Fourier series for a function that
is odd f(�x) = �f(x) on the interval (�L,L) and zero at both ends.

Example 2.11 (Time Evolution of an Initially Piecewise Continuous Wave
Function). Suppose now that at time t = 0 the particle is confined to the
middle half of the well with the square wave function

 (x, 0) =

r
2

L
for

L

4
< x <

3L

4
(2.97)

and zero otherwise. This piecewise continuous C�1 wave function is discon-
tinuous at x = L/4 and at x = 3L/4. Since the functions hx|ni =  n(x) are
orthonormal on [0, L]

Z L

0
dx

r
2

L
sin
⇣⇡nx

L

⌘ r 2

L
sin
⇣⇡mx

L

⌘
= �nm (2.98)

the coe�cients fn in the Fourier series

 (x, 0) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
(2.99)

are the inner products

fn = hn| , 0i =
Z L

0
dx

r
2

L
sin
⇣⇡nx

L

⌘
 (x, 0). (2.100)

They are proportional to 1/n in accord with (2.71)

fn =
2

L

Z 3L/4

L/4
dx sin

⇣⇡nx
L

⌘
=

2

⇡n


cos
⇣⇡n

4

⌘
� cos

✓
3⇡n

4

◆�
. (2.101)

Figure 2.5 plots the square wave function  (x, 0) (2.97, straight solid lines)
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Fourier Series for a Piecewise Continuous Wave Function

Figure 2.5 The piecewise continuous wave function  (x, 0) for L = 2 (2.97,
straight solid lines) and its Fourier series (2.99) with 10 terms (solid curve)
and 100 terms (dashes). Gibbs overshoots occur near the discontinuities at
x = 1/2 and x = 3/2.

and its 10-term (solid curve) and 100-term (dashes) Fourier series (2.99) for
an interval of length L = 2. Gibbs’s overshoot reaches 1.093 at x = 0.52 for
100 terms and 1.0898 at x = 0.502 for 1000 terms (not shown), amounting
to about 9% of the unit discontinuity at x = 1/2. A similar overshoot occurs
at x = 3/2.

How does  (x, 0) evolve with time? Since  n(x), the Fourier component
(2.94), is an eigenfunction of H with energy En, the time-evolution operator
U(t) = exp(�iHt/~) takes  (x, 0) into

 (x, t) = e�iHt/~  (x, 0) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
e�iEnt/~. (2.102)
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Figure 2.6 For an interval of length L = 2, the probability distributions
P (x, t) = | (x, t)|2 of the 1000-term Fourier series (2.103) for the wave
function  (x, t) at t = 0 (thick curve), t = 10�3 ⌧ (medium curve), and
⌧ = 2mL2/~ (thin curve). The jaggedness of P (x, t) arises from the two
discontinuities in the initial wave function  (x, 0) (2.104) at x = L/4 and
x = 3L/4.

Because En = (n⇡~/L)2/2m, the wave function at time t is

 (x, t) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
e�i~(n⇡)2t/(2mL2). (2.103)

It is awkward to plot complex functions, so Fig. 2.6 displays the probability
distributions P (x, t) = | (x, t)|2 of the 1000-term Fourier series (2.103) for
the wave function  (x, t) at t = 0 (thick curve), t = 10�3 ⌧ (medium curve),
and ⌧ = 2mL2/~ (thin curve). The discontinuities in the initial wave function
 (x, 0) cause both the Gibbs overshoots at x = 1/2 and x = 3/2 seen in the
series for  (x, 0) plotted in Fig. 2.5 and the choppiness of the probability
distribution P (x, t) exhibited in Fig.(2.6).
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Fourier Series of a Continuous Function

Figure 2.7 The continuous wave function  (x, 0) (2.104, solid) and its 10-
term Fourier series (2.107–2.108, dashes) are plotted for the interval [0, 2].

Example 2.12 (Time Evolution of a Continuous Function). What does the
Fourier series of a continuous function look like? How does it evolve with
time? Let us take as the wave function at t = 0 the C0 function

 (x, 0) =
2p
L

sin

✓
2⇡(x� L/4)

L

◆
for

L

4
< x <

3L

4
(2.104)

and zero otherwise. This initial wave function is a continuous function with
a piecewise continuous first derivative on the interval [0, L], and it satisfies
the periodic boundary condition  (0, 0) =  (L, 0). It therefore satisfies the
conditions of Fourier’s convergence theorem (Courant, 1937, p. 439), and so
its Fourier series converges uniformly (and absolutely) to  (x, 0) on [0, L].
As in Eq.(2.100), the Fourier coe�cients fn are given by the integrals

fn =

Z L

0
dx

r
2

L
sin
⇣⇡nx

L

⌘
 (x, 0), (2.105)
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Figure 2.8 For the interval [0, 2], the probability distributions P (x, t) =
| (x, t)|2 of the 1000-term Fourier series (2.110) for the wave function
 (x, t) at t = 0, 10�2 ⌧ , 10�1 ⌧ , ⌧ = 2mL2/~, 10⌧ , and 100⌧ are plotted as
successively thinner curves.

which now take the form

fn =
2
p
2

L

Z 3L/4

L/4
dx sin

⇣⇡nx
L

⌘
sin

✓
2⇡(x� L/4)

L

◆
. (2.106)

Doing the integral, one finds for fn that for n 6= 2

fn = �
p
2

⇡

4

n2 � 4
[sin(3n⇡/4) + sin(n⇡/4)] (2.107)

while c2 = 0. These Fourier coe�cients satisfy the inequalities (2.69) and
(2.71) for k = 0. The factor of 1/n2 in fn guarantees the absolute convergence
of the series

 (x, 0) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
(2.108)
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because asymptotically the coe�cient fn is bounded by |fn|  A/n2 where
A is a constant (A = 144/(5⇡

p
L) will do) and the sum of 1/n2 converges

to the Riemann zeta function (4.105)

1X

n=1

1

n2
= ⇣(2) =

⇡2

6
. (2.109)

Figure 2.7 plots the 10-term Fourier series (2.108) for  (x, 0) for L = 2.
Because this series converges absolutely and uniformly on [0, 2], the 100-
term and 1000-term series were too close to  (x, 0) to be seen clearly in the
figure and so were omitted.
As time goes by, the wave function  (x, t) evolves from  (x, 0) to

 (x, t) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
e�i~(n⇡)2t/(2mL2). (2.110)

in which the Fourier coe�cients are given by (2.107). Because  (x, 0) is
continuous and periodic with a piecewise continuous first derivative, its evo-
lution in time is much calmer than that of the piecewise continuous square
wave (2.97). Figure 2.8 shows this evolution in successively thinner curves
at times t = 0, 10�2 ⌧ , 10�1 ⌧ , ⌧ = 2mL2/~, 10⌧ , and 100⌧ . The curves at
t = 0 and t = 10�2 ⌧ are smooth, but some wobbles appear at t = 10�1 ⌧
and at t = ⌧ due to the discontinuities in the first derivative of  (x, 0) at
x = 0.5 and at x = 1.5.

Example 2.13 (Time Evolution of a Smooth Wave Function). Finally, let’s
try a wave function  (x, 0) that is periodic and infinitely di↵erentiable on
[0, L]. An infinitely di↵erentiable function is said to be smooth or C1. The
infinite square-well potential V (x) of equation (2.89) imposes the periodic
boundary conditions  (0, 0) =  (L, 0) = 0, so we try

 (x, 0) =

r
2

3L


1� cos

✓
2⇡x

L

◆�
. (2.111)

Its Fourier series

 (x, 0) =

r
1

6L

⇣
2� e2⇡ix/L � e�2⇡ix/L

⌘
(2.112)

has coe�cients that satisfy the upper bounds (2.69) by vanishing for |n| > 1.
The coe�cients of the Fourier sine series for the wave function  (x, 0) are
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Fourier Series of a Smooth Function

Figure 2.9 The wave function  (x, 0) (2.111) is infinitely di↵erentiable, and
so the first 10 terms of its uniformly convergent Fourier series (2.114) o↵er
a very good approximation to it.

given by the integrals (2.100)

fn =

Z L

0
dx

r
2

L
sin
⇣⇡nx

L

⌘
 (x, 0)

=
2p
3L

Z L

0
dx sin

⇣⇡nx
L

⌘
1� cos

✓
2⇡x

L

◆�

=
8 [(�1)n � 1]

⇡
p
3n(n2 � 4)

(2.113)

with all the even coe�cients zero, c2n = 0. The fn’s are proportional to 1/n3

which is more than enough to ensure the absolute and uniform convergence
of its Fourier sine series

 (x, 0) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
. (2.114)
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Figure 2.10 The probability distributions P (x, t) = | (x, t)|2 of the 1000-
term Fourier series (2.115) for the wave function  (x, t) at t = 0, 10�2 ⌧ ,
10�1 ⌧ , ⌧ = 2mL2/~, 10⌧ , and 100⌧ are plotted as successively thinner
curves. The time evolution is calm because the wave function  (x, 0) is
smooth.

As time goes by, it evolves to

 (x, t) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
e�i~(n⇡)2t/(2mL2) (2.115)

and remains absolutely convergent for all times t.
The e↵ects of the absolute and uniform convergence with fn / 1/n3 are

obvious in the graphs. Figure 2.9 shows (for L = 2) that only 10 terms
are required to nearly overlap the initial wave function  (x, 0). Figure 2.10
shows that the evolution of the probability distribution | (x, t)|2 with time is
smooth, with no sign of the jaggedness of Fig. 2.6 or the wobbles of Fig. 2.8.
Because  (x, 0) is smooth and periodic, it evolves calmly as time passes.
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2.11 Dirac’s delta function

A Dirac delta function is a (continuous, linear) map from a space of suitably
well-behaved functions into the real or complex numbers. It is a functional
that associates a number with each function in the function space. Thus
�(x� y) associates the number f(y) with the function f(x). We may write
this association as

f(y) =

Z
f(x) �(x� y) dx. (2.116)

Delta functions pop up all over physics. Multiplying the identity operator
(2.6)

I =

Z 2⇡

0
|xihx| dx (2.117)

from the right by |fi and from the left by hy|, we get

f(y) = hy|fi = hy|I|fi =
Z 2⇡

0
hy|xihx|fi dx =

Z 2⇡

0
hy|xif(x) dx (2.118)

which says that the inner product hy|xi is a delta function

hy|xi = hx|yi = �(x� y). (2.119)

Using both Fourier-series formulas (2.2) and (2.3), we get

f(x) =
1X

n=�1
fn

einxp
2⇡

=
1X

n=�1

Z 2⇡

0

e�iny

p
2⇡

f(y)
einxp
2⇡

dy. (2.120)

Interchanging and rearranging, we have

f(x) =

Z 2⇡

0

 1X

n=�1

ein(x�y)

2⇡

!
f(y) dy. (2.121)

But the phases einx are periodic with period 2⇡, so we also have

f(x+ 2⇡`) =

Z 2⇡

0

 1X

n=�1

ein(x�y)

2⇡

!
f(y) dy (2.122)

in which the function f of the left-hand side of this equation is the periodic
extension (2.61) fp of f if f is not itself periodic with period 2⇡. Thus we
arrive at the Dirac comb

1X

n=�1

ein(x�y)

2⇡
=

1X

`=�1
�(x� y � 2⇡`) (2.123)
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Figure 2.11 The sum of the first 100,000 terms of the series (2.124) for the
Dirac comb is plotted for �15  x  15. Both Dirac spikes and Gibbs
overshoots are visible.

or more simply

1X

n=�1

einx

2⇡
=

1

2⇡
+

1

⇡

1X

n=1

cos(nx) =
1X

`=�1
�(x� 2⇡`). (2.124)

Example 2.14 (Dirac’s Comb). The sum of the first 100,000 terms of this
cosine series (2.124) for the Dirac comb is plotted for the interval (�15, 15)
in Fig. 2.11. Gibbs overshoots appear at the discontinuities. The integral of
the first 100,000 terms from -15 to 15 is 5.0000.

The stretched Dirac comb is
1X

n=�1

e2⇡in(x�y)/L

L
=

1X

`=�1
�(x� y � `L). (2.125)

Example 2.15 (Parseval’s Identity). Using our formula (2.43) for the Fourier
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coe�cients of a stretched interval, we can relate a sum of products f⇤
n gn of

the Fourier coe�cients of the functions f(x) and g(x) to an integral of the
product f⇤(x) g(x)

1X

n=�1
f⇤
n gn =

1X

n=�1

Z L

0
dx

ei2⇡nx/Lp
L

f⇤(x)

Z L

0
dy

e�i2⇡ny/L

p
L

g(y). (2.126)

This sum contains Dirac’s comb (2.125) and so

1X

n=�1
f⇤
n gn =

Z L

0
dx

Z L

0
dy f⇤(x) g(y)

1

L

1X

n=�1
ei2⇡n(x�y)/L

=

Z L

0
dx

Z L

0
dy f⇤(x) g(y)

1X

`=�1
�(x� y � `L).

(2.127)

But because only the ` = 0 tooth of the comb lies in the interval [0, L], we
have more simply

1X

n=�1
f⇤
n gn =

Z L

0
dx

Z L

0
dy f⇤(x) g(y) �(x�y) =

Z L

0
dx f⇤(x) g(x). (2.128)

In particular, if the two functions are the same, then
1X

n=�1
|fn|2 =

Z L

0
dx |f(x)|2 (2.129)

which is Parseval’s identity. Thus if a function is square integrable on
an interval, then the sum of the squares of the absolute values of its Fourier
coe�cients is the integral of the square of its absolute value.

Example 2.16 (Derivatives of Delta Functions). Delta functions and other
generalized functions or distributions map smooth functions that vanish at
infinity into numbers in ways that are linear and continuous. Derivatives of
delta functions are defined so as to allow integrations by parts. Thus the
nth derivative of the delta function �(n)(x � y) maps the function f(x) to
(�1)n times its nth derivative f (n)(y) at y
Z
�(n)(x�y) f(x) dx =

Z
�(x�y) (�1)n f (n)(x) dx = (�1)n f (n)(y) (2.130)

with no surface term.

Example 2.17 (The Equation xf(x) = a). Dirac’s delta function some-
times appears unexpectedly. For instance, the general solution to the equa-
tion x f(x) = a(x) is f(x) = a(x)/x + b(x) �(x) in which b(x) is a con-
stant (Dirac, 1967, sec. 15), (Waxman and Peck, 1998) or x b(x) = 0 at
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x = 0. Similarly, the general solution to the equation x2 f(x) = a(x) is
f(x) = a(x)/x2 + b(x) �(x)/x+ c(x) �0(x) in which �0(x) is the derivative of
the delta function, b(x) is continuous, c(x) has a continuous first derivative,
and x b(x) = x c(x) = x2 c0(x) = 0 at x = 0.

2.12 The Harmonic Oscillator

The hamiltonian for the harmonic oscillator is

H =
p2

2m
+

1

2
m!2q2. (2.131)

The commutation relation [q, p] ⌘ qp � pq = i~ implies that the lowering
and raising operators

a =

r
m!

2~

✓
q +

ip

m!

◆
and a† =

r
m!

2~

✓
q � ip

m!

◆
(2.132)

obey the commutation relation [a, a†] = 1. In terms of a and a†, which also
are called the annihilation and creation operators, the hamiltonian H has
the simple form

H = ~!
⇣
a†a+ 1

2

⌘
. (2.133)

There is a unique state |0i that is annihilated by the operator a, as may
be seen by solving the di↵erential equation

hq0|a|0i =
r

m!

2~ hq0|
✓
q +

ip

m!

◆
|0i = 0. (2.134)

Since hq0|q = q0hq0| and

hq0|p|0i = ~
i

dhq0|0i
dq0

(2.135)

the resulting di↵erential equation is

dhq0|0i
dq0

= �m!

~ q0hq0|0i. (2.136)

Its suitably normalized solution is the wave function for the ground state of
the harmonic oscillator

hq0|0i =
⇣m!
⇡~

⌘1/4
exp

✓
�m!q02

2~

◆
. (2.137)
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For n = 0, 1, 2, . . ., the nth eigenstate of the hamiltonian H is

|ni = 1p
n!

⇣
a†
⌘n

|0i (2.138)

where n! ⌘ n(n� 1) . . . 1 is n-factorial and 0! = 1. Its energy is

H|ni = ~!
�
n+ 1

2

�
|ni. (2.139)

The identity operator is

I =
1X

n=0

|nihn|. (2.140)

An arbitrary state | i has an expansion in terms of the eigenstates |ni

| i = I| i =
1X

n=0

|nihn| i (2.141)

and evolves in time like a Fourier series

| , ti = e�iHt/~| i = e�iHt/~
1X

n=0

|nihn| i = e�i!t/2
1X

n=0

e�in!t|nihn| i

(2.142)
with wave function

 (q, t) = hq| , ti = e�i!t/2
1X

n=0

e�in!thq|nihn| i. (2.143)

The wave functions hq|ni of the energy eigenstates are related to the Hermite
polynomials (example 8.6)

Hn(x) = (�1)nex
2 dn

dxn
e�x2

(2.144)

by a change of variables x =
p

m!/~ q ⌘ sq and a normalization factor

hq|ni =
p
s e�(sq)2/2

p
2nn!

p
⇡

Hn(sq) =
⇣m!
⇡~

⌘1/4 e�m!q2/2~
p
2nn!

Hn

✓⇣m!
~

⌘1/2
q

◆
.

(2.145)

The coherent state |↵i

|↵i = e�|↵|2/2e↵a
† |0i = e�|↵|2/2

1X

n=0

↵n

p
n!
|ni (2.146)
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is an eigenstate a|↵i = ↵|↵i of the lowering (or annihilation) operator a
with eigenvalue ↵. Its time evolution is simply

|↵, ti = e�i!t/2e�|↵|2/2
1X

n=0

�
↵e�i!t

�n
p
n!

|ni = e�i!t/2 |↵e�i!ti. (2.147)

2.13 Nonrelativistic Strings

If we clamp the ends of a nonrelativistic string at x = 0 and x = L, then
the amplitude y(x, t) will obey the boundary conditions

y(0, t) = y(L, t) = 0 (2.148)

and the wave equation

v2
@2y

@x2
=
@2y

@t2
(2.149)

as long as y(x, t) remains small. The functions

yn(x, t) = sin
n⇡x

L

✓
an cos

n⇡vt

L
+ bn sin

n⇡vt

L

◆
(2.150)

satisfy this wave equation (2.149) and the boundary conditions (2.148). They
represent waves traveling along the x-axis with speed v.
The space SL of functions f(x) that satisfy the boundary condition (2.148)

is spanned by the functions sin(n⇡x/L). One may use the integral formula
Z L

0
sin

n⇡x

L
sin

m⇡x

L
dx =

L

2
�nm (2.151)

to derive for any function f 2 SL the Fourier series

f(x) =
1X

n=1

fn sin
n⇡x

L
(2.152)

with coe�cients

fn =
2

L

Z L

0
sin

n⇡x

L
f(x)dx (2.153)

and the representation

1X

m=�1
�(x� z � 2mL) =

2

L

1X

n=1

sin
n⇡x

L
sin

n⇡z

L
(2.154)

for the Dirac comb on SL.
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2.14 Periodic boundary conditions

Periodic boundary conditions often are convenient. For instance, rather than
study an infinitely long one-dimensional system, we might study the same
system, but of length L. The ends cause e↵ects not present in the infinite
system. To avoid them, we imagine that the system forms a circle and impose
the periodic boundary condition

 (x± L, t) =  (x, t). (2.155)

Analogous conditions in three dimensions are

 (x+ kL, y + `L, z +mL, t) =  (x, y, z, t) (2.156)

for all integers k, `, and m.
The eigenstates |pi of the free hamiltonian H = p

2/2m have wave func-
tions

 p(x) = hx|pi = eix·p/~/(2⇡~)3/2. (2.157)

The periodic boundary conditions (2.156) require that each component pi
of momentum satisfy Lpi/~ = 2⇡ni or

p =
2⇡~n
L

=
hn

L
(2.158)

where n is a vector of integers, which may be positive or negative or zero.
Periodic boundary conditions naturally arise in the study of solids. The

atoms of a perfect crystal are at the vertices of a Bravais lattice

xi = x0 +
3X

i=1

niai (2.159)

in which the three vectors ai are the primitive vectors of the lattice and
the ni are three integers. The hamiltonian of such an infinite crystal is
invariant under translations in space by

3X

i=1

niai. (2.160)

To keep the notation simple, let’s restrict ourselves to a cubic lattice with
lattice spacing a. Then since the momentum operator p generates transla-
tions in space, the invariance of H under translations by an

exp(ian · p)H exp(�ian · p) = H (2.161)

implies that eian·p and H are compatible normal operators [eian·p, H] = 0.
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As explained in section 1.31, it follows that we may choose the eigenstates
of H also to be eigenstates of eian·p

eiap·n/~| i = eiak·n | i (2.162)

which implies that

 (x+ an) = hx+ an| i = hx|eiap·n/~| i = hx|eiak·n/~| i = eiak·n  (x).
(2.163)

Setting

 (x) = eik·x u(x) (2.164)

we see that condition (2.163) implies that u(x) is periodic

u(x+ an) = u(x). (2.165)

For a general Bravais lattice, this Born–von Karman periodic boundary
condition is

u

 
x+

3X

i=1

niai, t

!
= u(x, t). (2.166)

Equations (2.163) and (2.165) are known as Bloch’s theorem.

Exercises

2.1 Show that sin!1x+ sin!2x is the same as (2.16).

2.2 Show that the Fourier series (2.17) obeys Laplace’s equation (2.18) for
⇢ < a and respects the boundary condition f(a, ✓) = h(✓).

2.3 Find the forms that equations (2.10 & 2.11) for the inner products
hg|fi and hf |fi take when one uses the asymmetrical notations (2.21
& 2.22).

2.4 Find the Fourier series for the function exp(ax) on the interval �⇡ <
x  ⇡.

2.5 Find the Fourier series for the function (x2�⇡2)2 on the same interval
(�⇡,⇡].

2.6 Find the Fourier series for the function (1+cosx) sin ax on the interval
(�⇡,⇡].

2.7 Show that the Fourier series for the function x cosx on the interval
[�⇡,⇡] is

x cosx = �1

2
sinx+ 2

1X

n=2

(�1)n n

n2 � 1
sinnx. (2.167)
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2.8 (a) Show that the Fourier series for the function |x| on the interval
[�⇡,⇡] is

|x| = ⇡

2
� 4

⇡

1X

n=0

cos(2n+ 1)x

(2n+ 1)2
. (2.168)

(b) Use this result to find a neat formula for ⇡2/8. Hint: set x = 0.

2.9 Show that the Fourier series for the function | sinx| on the interval
[�⇡,⇡] is

| sinx| = 2

⇡
� 4

⇡

1X

n=1

cos 2nx

4n2 � 1
. (2.169)

2.10 Show that the Fourier coe�cients of the C0 function (2.72) on the
interval [�⇡,⇡] are given by (2.73).

2.11 Find by inspection the Fourier series for the function exp[exp(�ix)].

2.12 Fill in the steps in the computation (2.36) of the Fourier series for x2.

2.13 Do the first integral in equation (2.78). Hint: di↵erentiate ln
�
sin⇡x
⇡x

�
.

2.14 Use the infinite-product formula (2.79) for the sine and the relation
cos⇡x = sin 2⇡x/(2 sin⇡x) to derive the infinite-product formula (2.80)
for the cosine. Hint:

1Y

n=1

"
1� x2

1
4n

2

#
=

1Y

n=1

"
1� x2

1
4(2n� 1)2

#"
1� x2

1
4(2n)

2

#
. (2.170)

2.15 What’s the general solution to the equation x3f(x) = a(x)?

2.16 Suppose we wish to approximate the real square-integrable function
f(x) by the Fourier series with N terms

fN (x) =
a0
2

+
NX

n=1

(an cosnx+ bn sinnx) . (2.171)

Then the error

EN =

Z 2⇡

0
[f(x)� fN (x)]2 dx (2.172)

will depend upon the 2N+1 coe�cients an and bn. The best coe�cients
minimize this error and satisfy the conditions

@EN

@an
=
@EN

@bn
= 0. (2.173)

By using these conditions, find them.
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2.17 Find the Fourier series for the function

f(x) = ✓(a2 � x2) (2.174)

on the interval [�⇡,⇡] for the case a2 < ⇡2. The Heaviside step
function ✓(x) is zero for x < 0, one-half for x = 0, and unity for
x > 0 (Oliver Heaviside, 1850–1925). The value assigned to ✓(0) seldom
matters, and you need not worry about it in this problem.

2.18 Derive or infer the formula (2.125) for the stretched Dirac comb.
2.19 Use the commutation relation [q, p] = i~ to show that the annihila-

tion and creation operators (2.132) satisfy the commutation relation
[a, a†] = 1.

2.20 Show that the state |ni = (a†)n|0i/
p
n! is an eigenstate of the hamil-

tonian (2.133) with energy ~!(n+ 1/2).

2.21 Show that the coherent state |↵i (2.146) is an eigenstate of the anni-
hilation operator a with eigenvalue ↵.

2.22 Derive equations (2.153 & 2.154) from the expansion (2.152) and the
integral formula (2.151).

2.23 Consider a string like the one described in section 2.13, which satisfies
the boundary conditions (2.148) and the wave equation (2.149). The
string is at rest at time t = 0

y(x, 0) = 0 (2.175)

and is struck precisely at t = 0 and x = a so that

@y(x, t)

@t

����
t=0

= Lv0�(x� a). (2.176)

Find y(x, t) and ẏ(x, t), where the dot means time derivative.
2.24 Same as exercise (2.23), but now the initial conditions are

u(x, 0) = f(x) and u̇(x, 0) = g(x) (2.177)

in which f(0) = f(L) = 0 and g(0) = g(L) = 0. Find the motion of the
amplitude u(x, t) of the string.

2.25 (a) Find the Fourier series for the function f(x) = x2 on the interval
[�⇡,⇡]. (b) Use your result at x = ⇡ to show that

1X

n=1

1

n2
=
⇡2

6
(2.178)

which is the value of Riemann’s zeta function (4.105) ⇣(x) at x = 2.


