
16

Artificial intelligence

The human brain contains some 1012 cells. A typical neuron gets informa-
tion from hundreds or thousands of other neurons, and sends information
to hundreds or thousands of other neurons. The total number of connec-
tions between neurons is of the order of 1014–1015. Although there are many
kinds of neurons, the typical neuron has three parts: a globular cell body
that contains the cell’s nucleus and most of its organelles, a tail-like struc-
ture called the axon, and several tree-like structures called dendrites. A
neuron sends signals to other neurons along its axon which branches into
hundreds or thousands of axon split ends that stop just before they touch
the dendrites (or cell bodies) of other neurons. The thin gap between the
split end of an axon and the dendrite is a synapse. A neuron’s signal travels
as an electrochemical wave until it reaches a synapse which it crosses as the
di↵using molecules of a neurotransmitter.

16.1 A brief history of artificial intelligence

1842 Ada Lovelace: “The Analytical Engine has no pretensions whatever
to originate anything. It can do whatever we know how to order it
to perform.” The modern view of artificial intelligence is di↵erent.

1950 Alan Turing: the Turing test.

1960 Marvin Minsky: Steps toward artificial intelligence.

1961 James Slagle: A heuristic program that solves symbolic integration
problems in freshman calculus: symbolic automatic integrator (SAINT)

1964–1966 Joseph Weizenbaum: Eliza a program that simulates a psychi-
atrist (tex-edit.com)

programs that can beat some intelligence tests

programs that can analyze forms and learn what an arch is



702 Artificial intelligence

1975 Edward Shortli↵e, Bruce Buchanan, and Stanley Cohen: Mycin, an
expert system based on 600 rules that could recommend what an-
tibiotic to give a patient. Was right 69% of the time, better than
infectious-disease experts.

post 1975 Modern rule-based expert systems perform many useful func-
tions, such as parking airplanes at airports.

1997 IBM’s Deep Blue computer beat the reigning World Chess Champion,
Garry Kasparov. Deep Blue epitomizes the bulldozer approach to
artificial intelligence.

post 1997 Imagination, loops that tie thinking, perception, and action

16.2 Slagle’s symbolic automatic integrator

James Slagle’s Ph.D. thesis submitted to MIT’s math department in 1961
contained a program that was capable of doing almost all of the indefinite
integrals that appeared on MIT’s final exams in calculus. And the program
written in LISP ran on a computer with only 32 kB of memory!
Slagle’s program is a superb example of a rule-based expert system. It

first does problem reduction by applying all safe transformations:

1.
R
�f(x) dx = �

R
f(x) dx

2.
R
c f(x) dx = c

R
f(x) dx

3.
R P

i fi(x) dx =
P

i

R
fi(x) dx, which is an AND node.

4. If in the integral
R
(P (x)/Q(x)) dx the degree of the polynomial P (x)

exceeds that of Q(x), then divide.

The program then looks in its small table of 26 integrals to see if it’s done.
If it’s not done, it tries tricks such as these:

trig substitutions

f(sinx, cosx, tanx, cscx, secx, cotx) = g1(sinx, cosx)

= g2(tanx, cscx) = g3(cotx, secx)
(16.1)

set y = tanx
Z

f(tanx) dx =

Z
f(y)

1 + y2
dy (16.2)

set x = sin y
Z

f(1� x2) dx =

Z
f(cos2 y) cos y dy (16.3)



16.2 Slagle’s symbolic automatic integrator 703

set x = tan y

Z
f(1 + x2) dx =

Z
f(sec2 y) (1 + tan2 y) dy. (16.4)

We apply Slagle’s program to the integral

Z � 5x4

(1� x2)5/2
dx = �

Z
5x4

(1� x2)5/2
dx = � 5

Z
x4

(1� x2)5/2
dx. (16.5)

After making these safe transformations, we set x = sin y and get

Z
x4

(1� x2)5/2
dx =

Z
sin4 y

cos5 y
cos y dy =

Z
sin4 y

cos4 y
dy. (16.6)

We now transform this to
Z

tan4 y dy or

Z
1

cot4 y
dy (16.7)

which is an OR node. The program is an and/or tree or a goal tree. We set
z = tan y and get

Z
tan4 y dy =

Z
z4

1 + z2
dz. (16.8)

Because the degree of the numerator exceeds that of the denominator, we
follow rule 4 and divide:

Z
z4

1 + z2
dz =

Z ✓
z2 � 1 +

1

z2 + 1

◆
dz. (16.9)

We now use the sum rule (3) and do each integral separately:

I1 =

Z
z2 dz =

z3

3

I2 =

Z
�1 dz = �z

I3 =

Z
dz

z2 + 1
= arctan z.

(16.10)

Finally since z = tan y = tan(arcsinx), we have

Z �5x4

(1� x2)5/2
dx = � 5

3
tan3(arcsinx)+5 tan(arcsinx)�5 arcsinx. (16.11)



704 Artificial intelligence

16.3 Neural networks

As of this writing, early 2018, most things that a human can do in one second
can be done by artificial intelligence. The main technique is the training and
use of neural networks. The more data one has, the better one can train a
neural network. And the more data one has, the more neurons one needs to
optimally use the training data. So the trend is toward huge data sets and
large neural networks.
A single neuron takes input signals ai from other neurons i = 1, . . . , n,

giving weight wi to signal ai. It fires if the sum of the n weighted inputs
wiai exceeds its bias b. The signal the neuron sends out is then

a = 1
2 (w1a1 + · · ·+ wnan � b+ |w1a1 + · · ·+ wnan � b|) (16.12)

which often is written as

a = ReLU (w1a1 + · · ·+ wnan � b) . (16.13)

Computer scientists used to use the more complicated sigmoid function
�(x) = 1/(1 + exp(�x)), but they have found that the simpler function
ReLU(x) = (x+ |x|)/2 works just as well.
The neurons of a typical network are organized into layers ` = 1, . . . ,m of

neurons with n` neurons labeled by the index j = 1, . . . , n`. In this notation,
the signal emitted by the jth neuron of layer ` is

a`j = ReLU
⇣
w`
j1a

`�1
1 + · · ·+ w`

jn`�1
a`�1
n`�1

� b`j

⌘
. (16.14)

If there are m layers of neurons, then the prediction of the network is the
nm nonnegative numbers amj . If the task of the network is to classify vectors
x into C categories, then the probability the network assigns to vector x’s
being in the ith category is

p(i|x) = amiPC
k=1 a

m
k

. (16.15)

For example, a vector x might represent the darkness of the pixels of an
image of the number 2 handwritten on a white sheet of paper. A perfect
network would give p(i|x) = �i2.
If the neural network assigns probability 0  p(i|x)  1 to image x’s

belonging to the ith category while the correct category is `(x) then the
squared error made by the neural network is

E2(x) =
CX

i=1

|p(i|x)� �i`(x)|2 (16.16)



16.4 A linear unbiased neural network 705

summed over the C categories. The squared error made by the neural net-
work on N images {x} = {x1, x2, . . . , xN} would be

E2({x}, {v}) = 1

N

NX

k=1

CX

i=1

|p(i|xk)� �i`(xk)|
2. (16.17)

One trains a neural network by adjusting its parameters w`
jk and b`j so

as to lower its error E({x}). If the network has m layers of n neurons, then
the w`

jk and the b`j constitute M = mn(n + 1) adjustable parameters, or

3,003,000 if n = 103 and m = 3. We can number the parameters w`
jk and b`j

with a single index `, setting v1 = w1
11, v2 = w1

12, . . . , vM = bmn . The error
of the network will depend upon these parameters, so we should write it as
E({x}, {v}).
One can use the Monte Carlo method (section 15.6) of simulated annealing

to find the parameters {v} that minimize the error E({x}, {v}).
Another procedure is to compute the partial derivatives of the squared

error E2({x}, {v}) with respect to the parameters {v} so as to form its
gradient

rE2({x}, {v}) =
✓
@E2({x}, {v})

@v1
, . . . ,

@E2({x}, {v})
@vM

◆
. (16.18)

One then changes the parameters {v} by a suitably small negative multiple
� ✏ of the gradient rE2({x}, {v})

v0i = vi � ✏
@E2({x}, {v})

@vi
. (16.19)

16.4 A linear unbiased neural network

If we simplify our neural network by replacing the function ReLU(x) by x
and setting all the biases to zero, then the most elaborate neural network
reduces to a linear map, y = Ax, in which the real matrix A maps an
unknown vector x into a category y.

Suppose X is a matrix that represents the training set of vectors, so that
the ith element of its kth column is the ith element of the kth training vector
x(k), that is, Xik = x(k)i . Let T be the matrix of correct assignments of the
training vectors X. That is, Tik is the correct assignment of the training
vector x(k). Ideally, we then should like to have AX = T . If the training
matrix X were a square nonsingular matrix, we could set A = T X�1, but if
we have lots of training vectors, more than there are categories to which we
seek to assign them, then X has more columns than rows. The rows of X



706 Artificial intelligence

typically are long and linearly independent. The matrix XXT then has an
inverse, and we may use the form (1.433) of the Moore-Penrose pseudomatrix
X+ = XT (XXT)�1. Our best guess for the matrix A then is

A = T X+ = T XT (XXT)�1. (16.20)

This method (16.20) does not work, however, when the matrix XXT is
singular as in the mnist database of handwritten numbers.

Example 16.1 (Reading handwritten numbers) The mnist website http:
//yann.lecun.com/exdb/mnist/ lists four files that one can use to train
and test a neural network. The gzipped file train-images-idx3-ubyte.gz con-
tains 60,000 images x(i) of handwritten numbers. Each image x(i) is a real
28-by-28 matrix, which is equivalent to a real vector in a space of 784 di-
mensions. The file train-labels-idx1-ubyte.gz contains the 60,000 labels that
the 60,000 handwritten numbers of the train-images file represent. The files
t10k-images-idx3-ubyte.gz and t10k-labels-idx1-ubyte.gz are similar files of
10,000 di↵erent handwritten integers and their labels. Unfortunately, these
files are in high-endian format, so people using Intel processors must trans-
late these files into low-endian format.
We seek a matrix Aik with 10 rows, i = 0, . . . , 9, and 784 columns, k =

1, . . . , 784. The singular-value decomposition of this matrix should be of the
form

A =
9X

`=0

|`ih¯̀| (16.21)

in which the ith element of the vector |`i is �i`, and the vector |¯̀i is the
normalized sum of all the 60,000 training vectors x(i, `) that represent the
integer `. We make it in two steps

|˜̀i =
60,000X

i=1

|x(i, `)i and |¯̀i = |˜̀iq
h˜̀|˜̀i

. (16.22)

This unbiased linear neural network correctly identifies 82.16% of the
handwritten test images of the mnist website.

Further reading

• A link (http://hubel.med.harvard.edu/book/bcontex.htm) to David
Hubel’s book Eye, Brain, and Vision.

• A link (https://playground.tensorflow.org/) good website on neural
networks. You can play with them there.

• A link (https://www.tensorflow.org) to the TensorFlow website.



16.4 A linear unbiased neural network 707

• A link (http://neuralnetworksanddeeplearning.com/index.html) to
Michael Nielsen’s book, Neural Networks and Deep Learning .

• A link (http://www.deeplearningbook.org) to Deep Learning by Ian
Goodfellow and Yoshua Bengio and Aaron Courville.

• Kevin Murphy’s book Machine Learning: A Probabilistic Perspective is
available at http://b-ok.org.

• The Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani,
and Jerome Friedman is available at http://b-ok.xyz/book/659984/

d8d61d.
• Andrew Ng’s course Machine Learning is at https://www.coursera.org/
learn/machine-learning.

• The excellent lectures of MIT Professor Patrick Winston are available
online (https://ocw.mit.edu/6-034F10) and were used in sections 16.1
and 16.2.

• The website https://dspace.mit.edu/handle/1721.1/11997makes James
Slagle’s MIT PhD thesis available.


