
15

Monte Carlo methods

15.1 The Monte Carlo method

The Monte Carlo method is simple, robust, and useful. It was invented by
Enrico Fermi and developed by Metropolis (Metropolis et al., 1953). It has
many applications. One can use it for numerical integration. One can use it
to decide whether an odd signal is random noise or something to evaluate.
One can use it to generate sequences of configurations that are random
but occur according to a probability distribution, such as the Boltzmann
distribution of statistical mechanics. One even can use it to solve virtually
any problem for which one has a criterion to judge the quality of a solution
and a way of generating a suitably huge space of possible solutions. That’s
how evolution invented us.

15.2 Numerical Integration

Suppose one wants to numerically integrate a function f(x) of a vector
x = (x1, . . . , xn) over a region R. One generates a large number N of pseu-
dorandom values for the n coordinates x within a hyperrectangle of length
L that contains the region R, keeps the NR points xk = (x1k, . . . , xnk) that
fall within the region R, computes the average hf(xk)i, and multiplies by
the hypervolume VR of the region

Z

R
f(x) dnx ⇡ VR

NR

NRX

k=1

f(xk). (15.1)

If the hypervolume VR is hard to compute, you can have the Monte Carlo
code compute it for you. The hypervolume VR is the volume Ln of the
enclosing hypercube multiplied by the number NR of times the N points

684 Monte Carlo methods

fall within the region R

VR =
NR
N

Ln. (15.2)

The integral formula (15.1) then becomes

Z

R
f(x) dnx ⇡ Ln

N

NRX

k=1

f(xk). (15.3)

The error falls like 1/
p
NR. So to get better accuracy, one simply runs

the program again with more points; one does not have to write a new code
with finer n-dimensional grids of points that span the region R.

Example 15.1 (Numerical integration). Suppose one wants to integrate
the function

f(x, y) =
e�2x�3y

p
x2 + y2 + 1

(15.4)

over the quarter of the unit disk in which x and y are positive. In this case,
VR is the area ⇡/4 of the quarter disk.
To generate fresh random numbers, one must set the seed for the code that

computes them. The following program sets the seed by using the subroutine
init random seed defined in a fortran95 program in section 14.20. With
some compilers, one can just write “call random seed().”

program integrate

implicit none ! catches typos

integer :: k, N

real(8) :: x, y, sum = 0.0d0, f

real(8), dimension(2) :: rdn

real(8), parameter :: area = atan(1.0d0) ! pi/4

f(x,y) = exp(-2*x - 3*y)/sqrt(x**2 + y**2 + 1.0d0)

write(6,*) ’How many points?’

read(5,*) N

call init_random_seed() ! set new seed

do k = 1, N

10 call random_number(rdn); x= rdn(1); y = rdn(2)

if (x**2+y**2 > 1.0d0) then

go to 10

end if

sum = sum + f(x,y)

end do

! integral = area times mean value < f > of f

15.2 Numerical Integration 685

sum = area*sum/real(N,8)

write(6,*) ’The integral is ’,sum

end program integrate

I ran this code with npoints = 10` for ` = 1, 2, 3, 4, 5, 6, 7, and 8 and found
respectively the results 0.059285, 0.113487, 0.119062, 0.115573, 0.118349,
0.117862, 0.117868, and 0.117898. The integral is approximately 0.1179.

An equivalent C++ code by Sean Cahill is:

#include <math.h>

#include <iostream>

#include <stdlib.h>

using namespace std;

// The function to integrate

double f(const double& x, const double& y)

{

double numer = exp(-2*x - 3*y);

double denom = sqrt(x*x + y*y + 1);

double retval = numer / denom;

return retval;

}

void integrate ()

{

// Declares local constants

const double area = atan(1); // pi/4

// Inits local variables

int n=0;

double sum=0,x=0,y=0;

// Seeds random number generator

srand (time(NULL));

// Gets the value of N

cout << "What is N? ";

cin >> n;

686 Monte Carlo methods

// Loops the given number of times

for (int i=0; i<n; i++)

{

// Loops until criteria met

while (true)

{

// Generates random points between 0 and 1

x = static_cast<double>(rand()) / RAND_MAX;

y = static_cast<double>(rand()) / RAND_MAX;

// Checks if the points are suitable

if ((x*x + y*y) <= 1)

{

// If so, break out of the while loop

break;

}

}

// Updates our sum with the given points

sum += f(x,y);

}

// Integral = area times mean value < f > of f

sum = area * sum / n;

cout << "The integral is " << sum << endl;

}

15.3 Quasirandom numbers

The method of the previous section is easy to use, but one can improve its
accuracy by using quasirandom numbers, which occur with equal density
in every region. Examples on the interval (0, 1) are the Halton sequences
of bases 2 and 3

1/2, 1/4, 3/4, 1/8, 5/8, 7/8, 1/16, 9/16, . . .

1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9, 1/27, . . .
(15.5)

and those invented by Sobol’. If one uses quasirandom numbers instead of
pseudorandom numbers to estimate integrals, then the error falls like 1/N2/3

15.4 Applications to Experiments 687

or 1/N , both of which are faster than the 1/
p
N decrease one gets with

pseudorandom numbers. Codes that generate Halton and Sobol’ sequences
are available in C and Fortran at the website

https://people.sc.fsu.edu/~jburkardt/f_src/rnglib/rnglib.html.

15.4 Applications to Experiments

Physicists accumulate vast quantities of data and sometimes must decide
whether a particular signal is due to a defect in the detector, to a random
fluctuation in the real events that they are measuring, or to a new and
unexpected phenomenon. For simplicity, let us assume that the background
can be ignored and that the real events arrive randomly in time apart from
extraordinary phenomena. One reliable way to evaluate an ambiguous signal
is to run a Monte Carlo program that generates the kinds of real random
events to which one’s detector is sensitive and to use these events to compute
the probability that the unusual signal occurred randomly.

To illustrate the use of random-event generators, we will consider the
work of a graduate student who spent 100 days counting muons produced in
an underground detector by atmospheric GeV neutrinos. Each of the very
large number N of primary cosmic rays that hit the Earth every day can
collide with a nucleus and make a shower of pions which in turn produce
atmospheric neutrinos that can make muons in the detector. The probability
p that a given cosmic ray will make a muon in the detector is very small, but
the number N of primary cosmic rays is very large. In this experiment, their
product pN was hni = 0.1 muons per day. Since N is huge and p tiny, the
probability distribution is Poisson, and so by (14.64) the probability that n
muons would be detected on any particular day is

P (n, hni) = hnin
n!

e�hni (15.6)

in the absence of a failure of the anti-coincidence shield or some other prob-
lem with the detector—or some hard-to-imagine astrophysical event.

The graduate student might have used the following program to generate
1,000,000 random histories of 100 days of events distributed according to
the Poisson distribution (15.6) with hni = 0.1:

program muons

implicit none

integer(8) :: k, m, day, number

688 Monte Carlo methods

integer(8), parameter :: N = 1000000 ! number of data sets

integer(8), dimension(N,100) :: histories

integer(8), dimension(0:100) :: maxEvents = 0, sumEvents = 0

real(8) :: prob, x, numMuons, totMuons

real(8), dimension(0:100) :: p

real(8), parameter :: an = 0.1 ! <n> events per day

prob = exp(-an); p(0) = prob; maxEvents = 0

! p(k) is the probability of fewer than k+1 events per day

do k = 1, 100 ! make Poisson distribution

prob = prob + an**k*exp(-an)/gamma(real(k+1,8))

p(k) = prob

end do

call init_random_seed() ! sets random seed

do k = 1, N ! do N histories

do day = 1, 100 ! do day of kth history

call random_number(x)

do m = 100, 0, -1

if (x < p(m)) then

number = m

end if

end do

histories(k,day) = number

end do

numMuons = maxval(histories(k,:))

totMuons = sum(histories(k,:))

maxEvents(numMuons) = maxEvents(numMuons) + 1

sumEvents(totMuons) = sumEvents(totMuons) + 1

end do

open(7,file="maxEvents"); open(8,file="totEvents")

do k = 0, 100

write(7,*) k, maxEvents(k); write(8,*) k, sumEvents(k)

end do

end program muons

Figure 15.1 plots the results from this simple Monte Carlo of 1,000,000
runs or histories of 100 days each. The boxes show that the maximum num-
ber of muons detected on a single day was n = 1, 2, and 3 on 62.6%, 35.9%,
and 1.5% of the runs—and was n = 0, 4, 5, and 6 on only 36, 410, 9, and
1 runs. Thus if the actual run detected no muons at all, that would be by
(14.90) about a 4� event, while a run with more than 4 muons on a single

15.4 Applications to Experiments 689

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

A Million Runs of 100 Days Each

Number n of muons detected

lo
g
1
0(
H
is
to

ri
e
s)

in 100 days

in 1 day

Figure 15.1 The number (out of 1,000,000) of histories of 100 days in which
a maximum of n muons is detected on a single day (boxes) and in 100 days
(curve).

day would be an event of more than 4�. Either would be a reason to exam-
ine the apparatus or the heavens; the Monte Carlo can’t tell us which. The
curve shows how many runs had a total of n muons in 100 days; 125,142
histories had 10 muons.
Of course, one could compute the data of Fig. 15.1 by hand without

running a Monte Carlo. But suppose one’s aging phototubes reduced the
mean number of muons detected per day to hni = 0.1(1 � ↵d/100) on day
d? Or suppose one needed the probability of detecting more than one muon
on two days separated by one day of zero muons? In such cases, the analytic
computation would be di�cult and error prone, but the student would need
to change only a few lines in the Monte Carlo program.
An equivalent C++ code by Sean Cahill is:

#include <stdlib.h>

#include <time.h>

690 Monte Carlo methods

#include <math.h>

#include <iostream>

#include <fstream>

#include <iomanip>

#include <vector>

#include <valarray>

using namespace std;

// Calculates the factorial of n

double factorial(const int& n)

{

double f = 1;

int i=0;

for(i = 1; i <= n; i++)

{

f *= i;

}

return f;

}

void muons()

{

// Declares constants

const int N = 1000000; // Number of data sets

const int LOOP_ITR = 101;

const double AN = 0.1; // Number of events per day

// Inits local variables

int k=0, m=0, day=0, num=0, numMuons=0, totMuons=0;

int maxEvents[LOOP_ITR];

int totEvents[LOOP_ITR];

memset (maxEvents, 0, sizeof(int) * LOOP_ITR);

memset (totEvents, 0, sizeof(int) * LOOP_ITR);

// Creates our 2d histories array

vector<valarray<int> > histories(N, LOOP_ITR);

double prob=0,tmpProb=0,fact=0, x=0;

15.4 Applications to Experiments 691

double p[LOOP_ITR];

// probability of no events

p[0] = exp(-AN);

prob = p[0];

// p(k) is the probability of fewer than k+1 events per day

for (k=1; k<=LOOP_ITR; k++)

{

fact = factorial (k);

tmpProb = k * exp(-AN) / fact;

prob += pow(AN, tmpProb);

p[k] = prob;

}

// Random seed

srand (time(NULL));

// Goes through all the histories

for (k=0; k<N; k++)

{

// Goes through all the days

for (day=1; day<LOOP_ITR; day++)

{

// Generates a random number betwen 0 and 1

x = static_cast<double>(rand()) / RAND_MAX;

// Finds an M with p(M) < X

for (m=100; m>=0; m--)

{

if (x < p[m])

{

num = m;

}

}

histories[k][day] = num;

}

// Calculates max and sum

692 Monte Carlo methods

numMuons = histories[k].max();

totMuons = histories[k].sum();

// Updates our records

maxEvents[numMuons]++;

totEvents[totMuons]++;

}

// Opens a data file

ofstream fhMaxEvents, fhSumEvents;

fhMaxEvents.open ("maxEvents.txt");

fhSumEvents.open ("totEvents.txt");

// Sets precision

fhMaxEvents.setf(ios::fixed,ios::floatfield);

fhMaxEvents.precision(7);

fhSumEvents.setf(ios::fixed,ios::floatfield);

fhSumEvents.precision(7);

// Writes the data to a file

for (k=0; k<LOOP_ITR; k++)

{

fhMaxEvents << k << " " << maxEvents[k] << endl;

fhSumEvents << k << " " << totEvents[k] << endl;

}

}

15.5 Statistical Mechanics

The Metropolis algorithm can generate a sequence of states or configurations
of a system distributed according to the Boltzmann probability distribution
(1.391). Suppose the state of the system is described by a vector x of many
components. For instance, if the system is a protein, the vector x might be
the 3N spatial coordinates of the N atoms of the protein. A protein com-
posed of 200 amino acids has about 4000 atoms, and so the vector x would
have some 12,000 components. Suppose E(x) is the energy of configuration
x of the protein in its cellular environment of salty water crowded with

15.5 Statistical Mechanics 693

macromolecules. How do we generate a sequence of “native states” of the
protein at temperature T?

We start with some random or artificial initial configuration x0 and then
make random changes �x in successive configurations x. One way to do this
is to make a small, random change �xi in coordinate xi and then to test
whether to accept this change by comparing the energies E(x) and E(x0)
of the two configurations x and x0, which di↵er by �xi in coordinate xi.
(Estimating these energies is not trivial; Gromacs and tinker can help.)
It is important that the random changes be symmetric, that is, the proba-

bility of choosing to test whether to go from x to x0 when one is at x should
be equal to the probability of choosing to test whether to go from x0 to x
when one is at x0. A simple way to ensure this symmetry is to define x0

i

in terms of xi, a suitable step size �x, and a random number r (uniformly
distributed between 0 and 1) as

x0i = xi +
�
r � 1

2

�
�x. (15.7)

Also, the sequences of configurations should be ergodic; that is, from any
configuration x, one should be able to get to any other configuration x0 by
a suitable sequence of changes �xi = x0

i
� xi.

How do we decide whether to accept or reject �xi? We use the following
Metropolis step: If the energy E0 = E(x0) of the new configuration x0 is
less than the energy E(x) of the current configuration x, then we accept the
new configuration x0. But if E0 > E, then we accept x0 with probability

P (x ! x0) = e�(E0�E)/kT (15.8)

by generating a random number r 2 [0, 1] and accepting x0 if

r < e�(E0�E)/kT . (15.9)

If one does not accept x0, then the system remains in configuration x.
In fortran90, the Metropolis step might be

if (newE <= oldE) then ! accept

x(i) = x(i) + dx

else ! accept conditionally

call random_number(r)

if (r <= exp(- (newE - oldE)/(k*T))) then ! accept

x(i) = x(i) + dx

end if

end if

694 Monte Carlo methods

The next step is to vary another coordinate, such as xi+1. Once one has
varied all of the coordinates, one has finished a sweep through the sys-
tem. After thousands or millions of such sweeps, the protein is said to be
thermalized. Once the protein has thermalized, one can start measuring
its properties, such as its shape. One computes a physical quantity every
hundred or thousand sweeps and takes the average of these measurements.
That average is the mean value of the physical quantity at temperature T .
Why does this work? Consider two configurations x and x0 which respec-

tively have energies E = E(x) and E0 = E(x0) and are occupied with prob-
abilities Pt(x) and Pt(x0) as the system is thermalizing. If E > E0, then the
rate R(x ! x0) of going from x to x0 is the rate v of choosing to test x0 when
one is at x times the probability Pt(x) of being at x, that is, R(x ! x0) =
v Pt(x). The reverse rate R(x0 ! x) is R(x0 ! x) = v Pt(x0) e�(E�E

0)/kT

with the same v since the random walk is symmetric. The net rate from
x ! x0 then is

R(x ! x0)�R(x0 ! x) = v
⇣
Pt(x)� Pt(x

0) e�(E�E
0)/kT

⌘
. (15.10)

This net flow of probability from x0 ! x is positive if and only if

Pt(x)/Pt(x
0) > e�(E�E

0)/kT . (15.11)

The probability distribution Pt(x) therefore flows with each sweep toward
the Boltzmann distribution exp(�E(x)/kT). The flow slows and stops when
the two rates are equal R(x0 ! x) = R(x ! x0) a condition called detailed
balance. At this equilibrium, the distribution Pt(x) satisfies

Pt(x) = Pt(x
0) e�(E�E

0)/kT (15.12)

in which Pt(x0) eE
0
/kT is independent of x. So the thermalizing distribution

Pt(x) approaches the distribution P (x) = c e�E/kT in which c is independent
of x. Since the sum of these probabilities must be unity, we have

X

x

P (x) = c
X

x

e�E(x)/kT = 1 (15.13)

which means that the constant c is the inverse of the partition function

Z(T) =
X

x

e�E(x)/kT . (15.14)

The thermalizing distribution approaches Boltzmann’s distribution (1.391)

Pt(x) ! PB(x) = e�E(x)/kT /Z(T). (15.15)

15.5 Statistical Mechanics 695

Example 15.2 (Z2 Lattice Gauge Theory). First, one replaces spacetime
with a lattice of points in d dimensions. Two nearest neighbor points are
separated by the lattice spacing a and joined by a link. Next, one puts an
element U of the gauge group on each link. For the Z2 gauge group (exam-
ple 10.6), one assigns an action S2 to each elementary square or plaquette
of the lattice with vertices 1, 2, 3, and 4

S2 = 1� U1,2 U2,3 U3,4 U4,1. (15.16)

Then, one replaces E(x)/kT with �S in which the action S is a sum of
all the plaquette actions Sp. More details are available at Michael Creutz’s
website (http://latticeguy.net/lattice.html).

Example 15.3 (SU(3) lattice gauge theory). For each elementary square
of the lattice, the plaquette variable Up is the product of elements U of the
gauge group SU(3) around the square, Up = U1,2 U2,3 U3,4 U4,1. The euclidian
action of the theory is then the sum over all the plaquettes of the lattice of
the traces

S = �
X

p

1� 1

6
Tr

⇣
Up + U †

p

⌘�
(15.17)

in which � = 6/g2 is inversely proportional to the coupling constant g.

Although the generation of configurations distributed according to the
Boltzmann probability distribution (1.391) is one of its most useful appli-
cations, the Monte Carlo method is much more general. It can generate
configurations x distributed according to any probability distribution P (x).

To generate configurations distributed according to P (x), we accept any
new configuration x0 if P (x0) > P (x) and also accept x0 with probability

P (x ! x0) = P (x0)/P (x) (15.18)

if P (x) > P (x0).
This works for the same reason that the Boltzmann version works. Con-

sider two configurations x and x0. After the system has thermalized, the
probabilities Pt(x) and Pt(x0) have reached equilibrium, and so the rate
R(x ! x0) from x ! x0 must equal the rate R(x0 ! x) from x0 ! x. If
P (x0) > P (x), then R(x ! x0) is

R(x ! x0) = v Pt(x) (15.19)

in which v is the rate of choosing �x = x0 � x, while the rate R(x0 ! x) is

R(x0 ! x) = v Pt(x
0)P (x)/P (x0) (15.20)

696 Monte Carlo methods

with the same v since the random walk is symmetric. Equating the two rates
R(x ! x0) = R(x0 ! x), we find that after thermalization

Pt(x) = P (x)Pt(x
0)/P (x0) = c P (x) (15.21)

in which c is independent of x. Thus Pt(x) converges to P (x) at equilibrium.
So far we have assumed that the rate of choosing x ! x0 is the same as

the rate of choosing x0 ! x. In Smart Monte Carlo schemes, physicists
arrange the rates vx!x0 and vx0!x so as to steer the flow and speed-up
thermalization. To compensate for this asymmetry, they change the second
part of the Metropolis step from x ! x0 when P (x) > P (x0) to accept
conditionally with probability

P (x ! x0) = P (x0) vx0!x/ [P (x) vx!x0] . (15.22)

Now if P (x) > P (x0), then R(x0 ! x) is

R(x0 ! x) = vx0!x Pt(x
0) (15.23)

while the rate R(x ! x0) is

R(x ! x0) = vx!x0 Pt(x)P (x0) vx0!x/ [P (x) vx!x0] . (15.24)

Equating the two rates R(x0 ! x) = R(x ! x0), we find

Pt(x) = P (x)Pt(x
0)/P (x0) (15.25)

which implies that Pt(x) converges to

Pt(x) = P (x)/Z (15.26)

in which Z =
R
P (x) dx.

Example 15.4 (Highly multiple integration). You can use the general
Metropolis method (15.18–15.21) to integrate a function f(x) of many vari-
ables x = (x1, . . . , xn) if you can find a positive function g(x) similar to
f(x) whose integral I[g] you know. You just use the probability distribution
P (x) = g(x)/I[g] to find the mean value of I[g]f(x)/g(x):

Z
f(x) dnx = I[g]

Z
f(x)

g(x)

g(x)

I[g]
dnx = I[g]

Z
f(x)

g(x)
P (x) dnx. (15.27)

15.6 Solving Arbitrary Problems 697

15.6 Solving Arbitrary Problems

If you know how to generate a suitably large space of trial solutions to a
problem, and you also know how to compare the quality of any two of your
solutions, then you can use a Monte Carlo method to solve the problem. The
hard parts of this seemingly magical method are characterizing a big enough
space of solutions s and constructing a quality function or functional that
assigns a number Q(s) to every solution in such a way that if s is a better
solution than s0, then

Q(s) > Q(s0). (15.28)

But once one has characterized the space of possible solutions s and has
constructed the quality function Q(s), then one simply generates zillions of
random solutions and selects the one that maximizes the function Q(s) over
the space of all solutions.
If one can characterize the solutions as vectors of a certain dimension,

s = (x1, . . . , xn), then one may use the Monte Carlo method of the previous
section (15.5) by setting P (s) = Q(s).

15.7 Evolution

The reader may think that the use of Monte Carlo methods to solve ar-
bitrary problems is quite a stretch. Yet nature has applied them to the
problem of evolving species that survive. As a measure of the quality Q(s)
of a given solution s, nature used the time derivative of the logarithm of its
population Ṗ (t)/P (t). The space of solutions is the set of possible genomes.
Leaving aside dna methylation, histone acetylation, and other epigenetic
changes, we may idealize each solution or genome as a sequence of nucleotides
s = b1b2 . . . bN some thousands or billions of bases long, each base bk being
adenine, cytosine, guanine, or thymine (A, C, G, or T). Since there are four
choices for each base, the set of solutions is huge. The genome for homo
sapiens has some 3 billion bases (or base pairs, dna being double stranded),
and so the solution space is a set with

N = 43⇥109 = 101.8⇥109 (15.29)

elements. By comparison, a google is only 10100.
In evolution, a Metropolis step begins with a random change in the se-

quence of bases; changes in a germ-line cell can create a new individual.
Some of these changes are due to errors in the normal mechanisms by which
genomes are copied and repaired. The (holo)enzyme dna polymerase copies
dna with remarkable fidelity, making one error in every billion base pairs

698 Monte Carlo methods

copied. Along a given line of descent, only about one nucleotide pair in a
thousand is randomly changed in the germ line every million years. Yet in
a population of 10,000 diploid individuals, every possible nucleotide sub-
stitution will have been tried out on about 20 occasions during a million
years (Alberts et al., 2008).
RNA polymerases transcribe dna into rna, and rnas play many roles:

Ribosomes translate messenger rnas (mrnas) into proteins, which are se-
quences of amino acids; ribosomal rnas (rrnas) combine with proteins to
form ribosomes; long noncoding rnas (ncrnas) regulate the rates at which
di↵erent genes are transcribed; micro rnas (mirnas) regulate the rates at
which di↵erent mrnas are translated into proteins; and other rnas have
other as yet unknown functions. So a change of one base, e.g. from A to C,
might alter a protein or change the expression of a gene or be silent.
Sexual reproduction makes bigger random changes in genomes. In meio-

sis, the paternal and maternal versions of each of our 23 chromosomes are
duplicated, and the four versions swap segments of dna in a process called
genetic recombination or crossing-over. The cell then divides twice produc-
ing four haploid germ cells each with a single paternal, maternal, or mixed
version of each chromosome. Two haploid cells, one from each parent, join
to start a new individual. This second kind of Metropolis step makes evolu-
tion more ergodic, which is why most complex modern organisms use sexual
reproduction.
Other genomic changes occur when a virus inserts its dna into that of a

cell and when transposable elements (transposons) of dna move to di↵erent
sites in a genome.
In evolution, the rest of the Metropolis step is done by the new individual:

if he or she survives and multiplies, then the change is accepted; if he or she
dies without progeny, then the change is rejected. Evolution is slow, but it
has succeeded in turning a soup of simple molecules into humans with brains
of 100 billion neurons, each with 1000 connections to other neurons.
John Holland and others have incorporated analogs of these Metropolis

steps into Monte Carlo techniques called genetic algorithms for solving
wide classes of problems (Holland, 1975; Vose, 1999; Schmitt, 2001).
Evolution also occurs at the cellular level when a cell mutates enough to

escape the control imposed on its proliferation by its neighbors and trans-
forms into a cancer cell.

Further reading

The classic Quarks, Gluons, and Lattices (Creutz, 1983) is a marvelous in-
troduction to the subject; his website (latticeguy.net/lattice.html) is an ex-

Exercises 699

traordinary resource, as is Rubinstein’s Simulation and the Monte Carlo
Method (Rubinstein and Kroese, 2007).

Exercises

15.1 Go to Michael Creutz’s website (latticeguy.net/lattice.html) and get
his C-code for Z2 lattice gauge theory. Compile and run it, and make a
graph that exhibits strong hysteresis as you raise and lower � = 1/kT .

15.2 Modify his code and produce a graph showing the coexistence of two
phases at the critical coupling �t = 0.5 ln(1 +

p
2). Hint: Do a cold

start and then 100 updates at �t, then do a random start and do 100
updates at �t. Plot the values of the action against the update number
1, 2, 3, . . . 100.

15.3 Modify Creutz’s C code for Z2 lattice gauge theory so as to be able
to vary the dimension d of spacetime. Show that for d = 2, there’s no
hysteresis loop (there’s no phase transition). For d = 3, show that any
hysteresis loop is minimal (there’s a second-order phase transition).

15.4 What happens when d = 5?
15.5 Use example 15.4 to compute the ten-dimensional integral

I =

Z
exp

⇥
�
�
x2 + (x2)2

�⇤
d10x (15.30)

over R10 where x2 = x21 + . . .+ x210.

