
11

Tensors and local symmetries

11.1 Physical points and coordinates

A point on a curved surface or in a curved space also is a point in a higher-
dimensional flat space called an embedding space. For instance, a point on
the curved two-dimensional surface of a sphere also is a point in flat three-
dimensional euclidian space and in four-dimensional spacetime.
On a su�ciently small scale, any reasonably smooth space locally looks

like n-dimensional euclidian space. Such a space is called a manifold. Inci-
dentally, according to Whitney’s embedding theorem, every n-dimensional
connected, smooth manifold can be embedded in 2n-dimensional euclidian
space R2n. So the embedding space for such spaces in general relativity has
no more than eight dimensions.
We use coordinates to label points. For example, we can choose a polar axis

and a meridian and label a point on the sphere by its polar and azimuthal
angles (✓,�) with respect to that axis and meridian. If we use a di↵erent axis
and a di↵erent meridian, then the coordinates (✓0,�0) for the same point will
change. Points are physical, coordinates are metaphysical. When
we change our system of coordinates, the points don’t change, but
their coordinates do.
Most points p have unique coordinates xi(p) and x0i(p) in their coordinate

systems. For instance, polar coordinates (✓,�) are unique for all points on
a sphere — except the north and south poles which are labeled by ✓ = 0
and ✓ = ⇡ and all 0  � < 2⇡. By using more than one coordinate system,
one usually can arrange to label every point uniquely in some coordinate
system. In the flat three-dimensional space in which the sphere is a surface,
each point of the sphere has unique coordinates, ~p = (x, y, z).
We will use coordinate systems that represent the points of a manifold
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uniquely and smoothly at least in local patches, so that the maps

x0i = x0i(p) = x0i(p(x)) = x0i(x) (11.1)

and

xi = xi(p) = xi(p(x0)) = xi(x0) (11.2)

are well defined, di↵erentiable, and one to one in the patches. We’ll often
group the n coordinates xi together and write them collectively as x without
a superscript. Since the coordinates x(p) label the point p, we sometimes will
call them “the point x.” But p and x are di↵erent. The point p is unique
with infinitely many coordinates x, x0, x00, . . . in infinitely many coordinate
systems.

11.2 Scalars

A scalar is a quantity B that is the same in all coordinate systems

B0 = B. (11.3)

If it also depends upon the coordinates x of the spacetime point p, then it
is a scalar field, and

B0(x0) = B(x). (11.4)

11.3 Contravariant vectors

By the chain rule, the change in dx0i due to changes in the unprimed coor-
dinates is

dx0i =
X

k

@x0i

@xk
dxk. (11.5)

This transformation defines contravariant vectors: a quantity Ai is a com-
ponent of contravariant vector if it transforms like dxi

A0i =
X

k

@x0i

@xk
Ak. (11.6)

The coordinate di↵erentials dxi form a contravariant vector. A contravariant
vector Ai(x) that depends on the coordinates x is a contravariant vector
field and transforms as

A0i(x0) =
X

k

@x0i

@xk
Ak(x). (11.7)
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11.4 Covariant vectors

The chain rule for partial derivatives

@

@x0i
=
X

k

@xk

@x0i
@

@xk
(11.8)

defines covariant vectors: a quantity Ci that transforms as

C 0
i =

X

k

@xk

@x0i
Ck (11.9)

is a component of a covariant vector. A covariant vector Ci(x) that de-
pends on the coordinates x and transforms as

C 0
i(x

0) =
X

k

@xk

@x0i
Ck(x) (11.10)

is a covariant vector field.

Example 11.1 (Gradient of a scalar). The derivatives of a scalar field
B0(x0) = B(x) form a covariant vector field because

@B0(x0)

@x0i
=
@B(x)

@x0i
=
X

k

@xk

@x0i
@B(x)

@xk
, (11.11)

which shows that the gradient @B(x)/@xk fits the definition (11.10) of a
covariant vector field.

11.5 Basis vectors

If p(x) is a physical point in a physical space with coordinates x, then the
covariant vectors

ei(x) =
@p(x)

@xi
(11.12)

form a basis for the space. Their inner products define a metric for the space
gik(x) = ei(x) · ek(x).
Basis vectors ei(x) depend upon the coordinates x in general. But when

they are independent of the coordinates, points are linear in the coordinates,
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p(x) = eixi+p(0). Two important examples are euclidian space with euclid-
ian coordinates and Minkowski space with the coordinates (ct,x) of special
relativity.

11.6 Euclidian space in euclidian coordinates

If we use euclidian coordinates to describe points in euclidian space, then
covariant and contravariant vectors are the same.
Euclidian space has a natural inner product (section 1.6), the usual dot

product, which is real and symmetric. In a euclidian space of n dimensions,
we may choose any n fixed, orthonormal basis vectors ei

(ei, e`) ⌘ ei · e` =
nX

k=1

eki e
k
` = �i` (11.13)

and use them to represent any point p as the linear combination

p =
nX

i=1

ei x
i. (11.14)

The dual vectors ei are defined as those vectors whose inner products
with the ej are

(ei, e`) =
nX

k=1

eike`k = �i` (11.15)

zero or one. Here they are the same as the vectors ei, and so we don’t need
to distinguish ei from ei = ei, but we will anyway.
The coe�cients xi are the euclidian coordinates in the ei basis. Since the

basis vectors ei and the dual vectors e` are orthonormal, each xi is an inner
product or dot product

xi = ei · p =
nX

`=1

ei · e` x` =
nX

`=1

�i` x
`. (11.16)

If we use di↵erent orthonormal vectors e0i as a basis

p =
nX

i=1

e0i x
0i (11.17)

then we get new euclidian coordinates x0i = e0i ·p for the same point p. These
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two sets of coordinates are related by the equations

x0i = e0i · p =
nX

`=1

e0i · e` x`

x` = e` · p =
nX

k=1

e` · e0k x0k.
(11.18)

Because the dual vectors ei are the same as the basis vectors e` and are
independent of the euclidian coordinates x, the coe�cients @x0i/@x` and
@x`/@x0i of the transformation laws for contravariant (11.6) and covariant
(11.9) vectors are the same

@x0i

@x`
= e0i · e` =

nX

k=1

e0ike`k =
nX

k=1

e0ike
`
k = e` · e0i =

@x`

@x0i
. (11.19)

So contravariant and covariant vectors transform the same way in
euclidian space with euclidian coordinates.
The relations between x0i and x` imply that

x0i =
nX

`,k=1

�
e0i · e`

� ⇣
e` · e0k

⌘
x0k. (11.20)

Since this holds for all coordinates x0i, we have

nX

`=1

�
e0i · e`

� ⇣
e` · e0k

⌘
= �ik. (11.21)

The coe�cients e0i · e` = e0i · e` form an orthogonal matrix, and the linear
operator

nX

i=1

eie
0iT =

nX

i=1

|eiihe0i| (11.22)

is an orthogonal (real, unitary) transformation. The change x ! x0 is a
rotation and/or a reflection (exercise 11.2).

Example 11.2 (A euclidian space of two dimensions). In two-dimensional
euclidian space, one can describe the same point by euclidian (x, y) and
polar (r, ✓) coordinates. The derivatives

@r

@x
=

x

r
=
@x

@r
and

@r

@y
=

y

r
=
@y

@r
(11.23)
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respect the symmetry (11.19), but (exercise 11.1) the derivatives

@✓

@x
= � y

r2
6= @x

@✓
= �y and

@✓

@y
=

x

r2
6= @y

@✓
= x (11.24)

do not because polar coordinates are not euclidian, and because ✓ is a di-
mensionless angle while x and y are lengths.

11.7 Summation convention

An index that appears twice in the same monomial, once as a subscript and
once as a superscript, is a dummy index that is summed over as in

AiB
i ⌘

nX

i=1

AiB
i. (11.25)

The sum is understood to be over the relevant range of indices, usually from
0 or 1 to 3 or n.

These summation conventions make tensor notation almost as compact
as matrix notation. They make equations easier to read and write.

Example 11.3 (The Kronecker delta). The summation convention and the
chain rule imply that

@x0i

@xk
@xk

@x0`
=
@x0i

@x0`
= �i` =

⇢
1 if i = `
0 if i 6= `.

(11.26)

The repeated index k has disappeared in this contraction.

11.8 Minkowski space and Lorentz transformations

On large scales of distance, our space-time is nearly flat. Flat space-time is
called Minkowski space. It has one time dimension x0 = ct and three space
dimensions x. The flat metric ⌘ is

⌘k` = ⌘k` =

8
<

:

�1 if k = ` = 0
1 if 1  k = `  3
0 if k 6= `

9
=

; or ⌘ =

0

BB@

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA . (11.27)
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This metric defines an inner product between points p and q with coordinates
xk and y`

(p, q) = p · q = xk ⌘k` y
` = x · y � x0y0 (11.28)

which can be positive, zero, or negative (example 1.18). It may be called a
nondegenerate indefinite inner product (1.84). When one time component
x0 or y0 vanishes, this Minkowski inner product is the same as the euclidian
dot product (1.87).
It is convenient to choose four basis vectors e0, e1, e2, e3 whose inner prod-

ucts (ek, e`) are the matrix elements of the flat-space metric ⌘

(ek, e`) = ek · e` = eik ⌘ij e
j
` = ⌘k` (11.29)

for example, eik = �ik. Then every point p in Minkowski space is a linear
combination p = eixi of these basis vectors with coe�cients xi that are the
coordinates of the point p in the ei basis. The four dual vectors

ek = ⌘kj ej (11.30)

are orthonormal to the basis vectors ek because

ek · e` = ⌘kjej · e` = ⌘kj⌘j` = �k` . (11.31)

Because the metric ⌘kj raises indices as in the definition (11.30) of the dual
vectors, the metric ⌘kj lowers indices

e` = ⌘`i e
i = ⌘`i ⌘

ik ek = �k` ek = e`. (11.32)

Dual vectors let us pick out the coordinates of an invariant point

xk = ek · p = ek · ei xi = �ki x
i = xk. (11.33)

We can use any other four basis vectors e0k as long as they obey the rule
(11.29) for inner products

e0k · e0` = ⌘k`. (11.34)

A point p = eixi = e0jx
0j that has coordinates x in the e basis will have

coordinates x0i = e0i · p = e0i · ek xk in the e0 basis. The physical inner
product p · p is the same in both coordinate systems

(p, p) = xi ei · ek xk = xi ⌘ik x
k = x0je0j · e0` x0` = x0j⌘j` x

0`. (11.35)

The equality of the inner products xi⌘ikxk = x0j⌘j`x0` means (exercise 11.3)
that the matrix Li

k = e0i · ek that relates the coordinates x0i = Li
k x

k to the
coordinates xk must obey the relation

⌘ik = Li
k ⌘i` L

`
k or ⌘ = LT ⌘L (11.36)
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in matrix notation which is the condition (10.257) that a matrix L be a
Lorentz transformation.

A few words about matrix notation: A left index i in Li
k labels a row, and

a right index k labels a column. The height of an index—whether it is up
or down—determines whether it is contravariant or covariant but does not
a↵ect its place in a matrix. Transposition interchanges rows and columns

Li
k = LT i

k , so ⌘ik = Li
k ⌘i` L

`
k is ⌘ = LT ⌘L in matrix notation.

Any two sets of basis vectors ei and e0k are related by a Lorentz trans-
formation that is the transpose of the inverse of the Lorentz transformation
x0i = Li

k x
k = e0i · ek xk of the coordinates induced by the change of basis.

For since ekxk = e0ix
0i are the same point, and since x0i = e0i · ek xk = Li

kx
k,

we have ekxk = e0iL
i
kx

k which implies that ek = e0i L
i
k. Multiplying both

sides of this last equation by L�1k
j , we get e0j = L�1k

j ek or e0j = L �1Tk
j ek

which in matrix notation is e0 = L�1T e.

Example 11.4 (An alternative basis). The basis vectors

e00 =

0

BB@

cosh ✓
� sinh ✓

0
0

1

CCA , e01 =

0

BB@

� sinh ✓
cosh ✓

0
0

1

CCA , e02 =

0

BB@

0
0
1
0

1

CCA , e03 =

0

BB@

0
0
0
1

1

CCA (11.37)

induce a Lorentz transformation on the coordinates x0i = Li
kx

k = e0i · ek in
which the basis vectors ek are eik = �ik. Now e00 · e0 = � e00 · e0 = cosh ✓,
e01·e0 = e01·e0 = sinh ✓, e00·e1 = �e00·e1 = sinh ✓, and e01·e1 = e01·e1 = cosh ✓.
So the matrix form of the induced Lorentz transformation is

L =

0

BB@

cosh ✓ sinh ✓ 0 0
sinh ✓ cosh ✓ 0 0
0 0 1 0
0 0 0 1

1

CCA (11.38)

which represents a boost in the x-direction to a speed v/c = tanh ✓.

The inner product (p�q)·(p�q) of the interval p�q between two points is
physical and independent of the coordinates and therefore invariant. Points
p and q that have (p� q) · (p� q) > 0 are spacelike.

Example 11.5 (Spacelike points). If p and q are spacelike, then they occur
at the same time in some Lorentz frame. Let the coordinates of p and q in the
ei basis be (0,0) and (ct, L, 0, 0) with |ct/L| < 1 so that (p � q)2 > 0. The
Lorentz transformation (11.38) will leave the coordinates of p unchanged
but will take those of q to (ct cosh ✓ + L sinh ✓, ct sinh ✓ + L cosh ✓, 0, 0). So
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if v/c = tanh ✓ = �ct/L, then p and q occur at time 0 in the e0 frame with
|v/c| = | tanh ✓| < 1.

Points p and q that have (p� q) · (p� q) < 0 are timelike.

Example 11.6 (Timelike points). If p and q are timelike, then they occur at
the same place in some Lorentz frame. We can use the same coordinates as
in the previous example (11.5) but with |ct/L| > 1 so that (p� q)2 < 0. The
Lorentz transformation (11.38) will leave the coordinates of p unchanged
but will take those of q to (ct cosh ✓+L sinh ✓, ct sinh ✓+L cosh ✓, 0, 0). So if
v/c = tanh ✓ = �L/(ct), p and q occur at the same place 0 in the e0 frame
with |v/c| = | tanh ✓| < 1.

By convention, in special relativity, a point at time t and place x in a
given basis has coordinates x0 = ct and (x1, x2, x3) = x in that basis. The
coordinates form a contravariant 4-vector. In the same basis, the derivatives
@0 = @/@x0 andr form a covariant 4-vector @i = (@/@x0,r). In other words,
the coordinates form contravariant 4-vectors xi and the partial derivatives
form covariant 4-vectors @/@xi without any extra minus signs.
The flat-space metric ⌘ raises and lowers the indices of all vectors

Ai = ⌘ik Ak and A` = ⌘`j A
j (11.39)

not just those of the basis vectors (exercise 11.4).

11.9 Special relativity

The spacetime of special relativity is flat, four-dimensional Minkowski space.
The inner product (p� q) · (p� q) of the interval p� q between two points is
physical and independent of the coordinates and therefore invariant. If the
points p and q are close neighbors with coordinates xi + dxi for p and xi for
q, then that invariant inner product is

(p� q) · (p� q) = ei dx
i · ej dxj = dxi ⌘ij dx

j = dx
2 � (dx0)2 (11.40)

with dx0 = c dt. (At some point in what follows, we’ll measure distance in
light-seconds so that c = 1.) If the points p and q are on the trajectory of
a massive particle moving at velocity v, then this invariant quantity is the
square of the invariant distance

ds2 = dx
2 � c2dt2 =

�
v
2 � c2

�
dt2 (11.41)

which always is negative since v < c. The time in the rest frame of the
particle is the proper time. The square of its di↵erential element is

d⌧2 = � ds2/c2 =
�
1� v2/c2

�
dt2. (11.42)
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A particle of mass zero moves at the speed of light, and so its element d⌧
of proper time is zero. But for a particle of mass m > 0 moving at speed v,
the element of proper time d⌧ is smaller than the corresponding element of
laboratory time dt by the factor

p
1� v2/c2. The proper time is the time in

the rest frame of the particle, d⌧ = dt when v = 0. So if T (0) is the lifetime
of a particle at rest, then the apparent lifetime T (v) when the particle is
moving at speed v is

T (v) = dt =
d⌧p

1� v2/c2
=

T (0)p
1� v2/c2

(11.43)

which is longer — an e↵ect known as time dilation.

Example 11.7 (Time dilation in muon decay ). A muon at rest has a mean
life of T (0) = 2.2⇥ 10�6 seconds. Cosmic rays hitting nitrogen and oxygen
nuclei make pions high in the Earth’s atmosphere. The pions rapidly decay
into muons in 2.6⇥10�8 s. A muon moving at the speed of light from 10 km
takes at least t = 10 km/300, 000 (km/sec) = 3.3⇥ 10�5 s to hit the ground.
Were it not for time dilation, the probability P of such a muon reaching the
ground as a muon would be

P = e�t/T (0) = exp(�33/2.2) = e�15 = 2.6⇥ 10�7. (11.44)

The mass of a muon is 105.66 MeV. So a muon of energy E = 749 MeV
has by (11.51) a time-dilation factor of

1p
1� v2/c2

=
E

mc2
=

749

105.7
= 7.089 =

1p
1� (0.99)2

. (11.45)

So a muon moving at a speed of v = 0.99 c has an apparent mean life T (v)
given by equation (11.43) as

T (v) =
E

mc2
T (0) =

T (0)p
1� v2/c2

=
2.2⇥ 10�6 sp
1� (0.99)2

= 1.6⇥ 10�5 s. (11.46)

The probability of survival with time dilation is

P = e�t/T (v) = exp(�33/16) = 0.12 (11.47)

so that 12% survive. Time dilation increases the chance of survival by a
factor of 460,000—no small e↵ect.



486 Tensors and local symmetries

11.10 Kinematics

From the scalar d⌧ , and the contravariant vector dxi, we can make the 4-
vector

ui =
dxi

d⌧
=

dt

d⌧

✓
dx0

dt
,
dx

dt

◆
=

1p
1� v2/c2

(c,v) (11.48)

in which u0 = c dt/d⌧ = c/
p
1� v2/c2 and u = u0 v/c. The product mui is

the energy-momentum 4-vector pi

pi = mui = m
dxi

d⌧
= m

dt

d⌧

dxi

dt
=

mp
1� v2/c2

dxi

dt

=
mp

1� v2/c2
(c,v) =

✓
E

c
,p

◆
. (11.49)

Its invariant inner product is a constant characteristic of the particle and
proportional to the square of its mass

c2 pi pi = mcuimcui = �E2 + c2 p 2 = �m2 c4. (11.50)

Note that the time-dilation factor is the ratio of the energy of a particle to
its rest energy

1p
1� v2/c2

=
E

mc2
(11.51)

and the velocity of the particle is its momentum divided by its equivalent
mass E/c2

v =
p

E/c2
. (11.52)

The analog of F = ma is

m
d2xi

d⌧2
= m

dui

d⌧
=

dpi

d⌧
= f i (11.53)

in which p0 = E/c, and f i is a 4-vector force.

Example 11.8 (Time dilation and proper time). In the frame of a labo-
ratory, a particle of mass m with 4-momentum pilab = (E/c, p, 0, 0) travels
a distance L in a time t for a 4-vector displacement of xilab = (ct, L, 0, 0).
In its own rest frame, the particle’s 4-momentum and 4-displacement are
pirest = (mc, 0, 0, 0) and xirest = (c⌧, 0, 0, 0). Since the Minkowski inner prod-
uct of two 4-vectors is Lorentz invariant, we have
�
pixi

�
rest

=
�
pixi

�
lab

or pL�Et = �mc2⌧ = �mc2t
p

1� v2/c2. (11.54)



11.11 Electrodynamics 487

So a massive particle’s phase exp(ipixi/~) is exp(�imc2⌧/~).

Example 11.9 (p + p ! 3p + p̄). Conservation of the energy-momentum
4-vector gives p + p0 = 3p0 + p̄0. We set c = 1 and use this equality in the
invariant form (p + p0)2 = (3p0 + p̄0)2. We compute (p + p0)2 = p2 + p20 +
2p · p0 = �2m2

p + 2p · p0 in the laboratory frame in which p0 = (m,0). Thus
(p+p0)2 = �2m2

p�2Epmp. We compute (3p0+p̄0)2 in the frame in which each
of the three protons and the antiproton has zero spatial momentum. There
(3p0 + p̄0)2 = (4m,0)2 = �16m2

p. We get Ep = 7mp of which 6mp = 5.63
GeV is the threshold kinetic energy of the proton. In 1955, when the group
led by Owen Chamberlain and Emilio Segrè discovered the antiproton, the
nominal maximum energy of the protons in the Bevatron was 6.2 GeV.

11.11 Electrodynamics

In electrodynamics and in mksa (si) units, the three-dimensional vector
potential A and the scalar potential � form a covariant 4-vector potential

Ai =

✓
��
c

,A

◆
. (11.55)

The contravariant 4-vector potential is Ai = (�/c,A). The magnetic in-
duction is

B = r⇥A or Bi = ✏ijk@jAk (11.56)

in which @j = @/@xj , the sum over the repeated indices j and k runs from
1 to 3, and ✏ijk is totally antisymmetric with ✏123 = 1. The electric field is

Ei = c

✓
@A0

@xi
� @Ai

@x0

◆
= � @�

@xi
� @Ai

@t
(11.57)

where x0 = ct. In 3-vector notation, E is given by the gradient of � and the
time-derivative of A

E = �r�� Ȧ. (11.58)

In terms of the second-rank, antisymmetric Faraday field-strength tensor

Fij =
@Aj

@xi
� @Ai

@xj
= �Fji (11.59)
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the electric field is Ei = c Fi0 and the magnetic field Bi is

Bi =
1

2
✏ijk Fjk =

1

2
✏ijk

✓
@Ak

@xj
� @Aj

@xk

◆
= (r⇥A)i (11.60)

where the sum over repeated indices runs from 1 to 3. The inverse equation
Fjk = ✏jkiBi for spatial j and k follows from the Levi-Civita identity (1.490)

✏jkiBi =
1

2
✏jki✏inm Fnm =

1

2
✏ijk✏inm Fnm

=
1

2
(�jn �km � �jm �kn) Fnm =

1

2
(Fjk � Fkj) = Fjk. (11.61)

In 3-vector notation and mksa = si units, Maxwell’s equations are a ban
on magnetic monopoles and Faraday’s law, both homogeneous,

r ·B = 0 and r⇥E + Ḃ = 0 (11.62)

and Gauss’s law and the Maxwell-Ampère law, both inhomogeneous,

r ·D = ⇢f and r⇥H = jf + Ḋ. (11.63)

Here ⇢f is the density of free charge and jf is the free current density. By
free, we understand charges and currents that do not arise from polarization
and are not restrained by chemical bonds. The divergence of r⇥H vanishes
(like that of any curl), and so the Maxwell-Ampère law and Gauss’s law
imply that free charge is conserved

0 = r · (r⇥H) = r · jf +r · Ḋ = r · jf + ⇢̇f . (11.64)

If we use this continuity equation to replace r ·jf with � ⇢̇f in its middle

form 0 = r ·jf +r ·Ḋ, then we see that the Maxwell-Ampère law preserves
the Gauss-law constraint in time

0 = r · jf +r · Ḋ =
@

@t
(�⇢f +r ·D) . (11.65)

Similarly, Faraday’s law preserves the constraint r ·B = 0

0 = �r · (r⇥E) =
@

@t
r ·B = 0. (11.66)

In a linear, isotropic medium, the electric displacement D is related
to the electric field E by the permittivity ✏, D = ✏E, and the magnetic
or magnetizing field H di↵ers from the magnetic induction B by the per-
meability µ, H = B/µ.
On a sub-nanometer scale, the microscopic form of Maxwell’s equations
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applies. On this scale, the homogeneous equations (11.62) are unchanged,
but the inhomogeneous ones are

r ·E =
⇢

✏0
and r⇥B = µ0 j + ✏0 µ0 Ė = µ0 j +

Ė

c2
(11.67)

in which ⇢ and j are the total charge and current densities, and ✏0 =
8.854⇥10�12 F/m and µ0 = 4⇡⇥10�7 N/A2 are the electric and magnetic
constants, whose product is the inverse of the square of the speed of light,
✏0µ0 = 1/c2. Gauss’s law and the Maxwell-Ampère law (11.67) imply (exer-
cise 11.7) that the microscopic (total) current 4-vector j = (c⇢, j) obeys the
continuity equation ⇢̇+r · j = 0. Electric charge is conserved.

In vacuum, ⇢ = j = 0, D = ✏0E, and H = B/µ0, and Maxwell’s equa-
tions become

r ·B = 0 and r⇥E + Ḃ = 0

r ·E = 0 and r⇥B =
1

c2
Ė.

(11.68)

Two of these equations r · B = 0 and r · E = 0 are constraints. Taking
the curl of the other two equations, we find

r⇥ (r⇥E) = � 1

c2
Ë and r⇥ (r⇥B) = � 1

c2
B̈. (11.69)

One may use the Levi-Civita identity (1.490) to show (exercise 11.9) that

r⇥ (r⇥E) = r (r · E)�4E and r⇥ (r⇥B) = r (r · B)�4B

(11.70)
in which 4 ⌘ r2. Since in vacuum the divergence of E vanishes, and since
that ofB always vanishes, these identities and the curl-curl equations (11.69)
tell us that waves of E and B move at the speed of light

1

c2
Ë �4E = 0 and

1

c2
B̈ �4B = 0. (11.71)

We may write the two homogeneous Maxwell equations (11.62) as

@iFjk + @kFij + @jFki = @i (@jAk � @kAj) + @k (@iAj � @jAi)

+ @j (@kAi � @iAk) = 0 (11.72)

(exercise 11.10). This relation, known as the Bianchi identity, actually is
a generally covariant tensor equation

✏`ijk@iFjk = 0 (11.73)

in which ✏`ijk is totally antisymmetric, as explained in Sec. 11.36. There are
four versions of this identity (corresponding to the four ways of choosing
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three di↵erent indices i, j, k from among four and leaving out one, `). The
` = 0 case gives the scalar equation r · B = 0, and the three that have
` 6= 0 give the vector equation r⇥E + Ḃ = 0.
In tensor notation, the microscopic form of the two inhomogeneous equa-

tions (11.67)—the laws of Gauss and Ampère—are

@iF
ki = µ0 j

k (11.74)

in which jk is the current 4-vector

jk = (c⇢, j) . (11.75)

The Lorentz force law for a particle of charge q is

m
d2xi

d⌧2
= m

dui

d⌧
=

dpi

d⌧
= f i = q F ij dxj

d⌧
= q F ij uj . (11.76)

We may cancel a factor of dt/d⌧ from both sides and find for i = 1, 2, 3

dpi

dt
= q

�
�F i0 + ✏ijkBkvj

�
or

dp

dt
= q (E + v ⇥B) (11.77)

and for i = 0

dE

dt
= qE · v (11.78)

which shows that only the electric field does work. The only special-relativistic
correction needed in Maxwell’s electrodynamics is a factor of 1/

p
1� v2/c2

in these equations. That is, we use p = mu = mv/
p
1� v2/c2 not p = mv

in (11.77), and we use the total energy E not the kinetic energy in (11.78).
The reason why so little of classical electrodynamics was changed by special
relativity is that electric and magnetic e↵ects were accessible to measure-
ment during the 1800’s. Classical electrodynamics was almost perfect.
Keeping track of factors of the speed of light is a lot of trouble and a

distraction; in what follows, we’ll often use units with c = 1.

11.12 Tensors

Tensors are structures that transform like products of vectors. A first-rank
tensor is a covariant or a contravariant vector. Second-rank tensors also are
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distiguished by how they transform under changes of coordinates:

contravariant M 0ij =
@x0i

@xk
@x0j

@xl
Mkl

mixed N 0i
j =

@x0i

@xk
@xl

@x0j
Nk

l (11.79)

covariant F 0
ij =

@xk

@x0i
@xl

@x0j
Fkl.

We can define tensors of higher rank by extending the these definitions to
quantities with more indices.

Example 11.10 (Some second-rank tensors). If Ak and B` are covariant
vectors, and Cm and Dn are contravariant vectors, then the product CmDn

is a second-rank contravariant tensor, and all four products Ak Cm, Ak Dn,
Bk Cm, and Bk Dn are second-rank mixed tensors, while CmDn as well as
CmCn and DmDn are second-rank contravariant tensors.

Since the transformation laws that define tensors are linear, any linear
combination of tensors of a given rank and kind is a tensor of that rank and
kind. Thus if Fij and Gij are both second-rank covariant tensors, then so is
their sum

Hij = Fij +Gij . (11.80)

A covariant tensor is symmetric if it is independent of the order of its
indices. That is, if Sik = Ski, then S is symmetric. Similarly, a contravariant
tensor is symmetric if permutations of its indices leave it unchanged. Thus
A is symmetric if Aik = Aki.

A covariant or contravariant tensor is antisymmetric if it changes sign
when any two of its indices are interchanged. So Aik, Bik, and Cijk are
antisymmetric if

Aik = �Aki and Bik = �Bki and

Cijk =Cjki = Ckij = � Cjik = � Cikj = � Ckji.
(11.81)

Example 11.11 (Three important tensors). The Maxwell field strength
Fkl(x) is a second-rank covariant tensor; so is the metric of spacetime gij(x).
The Kronecker delta �ij is a mixed second-rank tensor; it transforms as

�0ij =
@x0i

@xk
@xl

@x0j
�kl =

@x0i

@xk
@xk

@x0j
=
@x0i

@xj
= �ij . (11.82)

So it is invariant under changes of coordinates.
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Example 11.12 (Contractions). Although the product Ak C` is a mixed
second-rank tensor, the product Ak Ck transforms as a scalar because

A0
k C

0k =
@x`

@x0k
@x0k

@xm
A`C

m =
@x`

@xm
A`C

m = �`mA`C
m = A`C

`. (11.83)

A sum in which an index is repeated once covariantly and once contravari-
antly is a contraction as in the Kronecker-delta equation (11.26). In gen-
eral, the rank of a tensor is the number of uncontracted indices.

11.13 Di↵erential forms

By (11.10 & 11.5), a covariant vector field contracted with contravariant co-
ordinate di↵erentials is invariant under arbitrary coordinate transformations

A0 = A0
i dx

0i =
@xj

@x0i
Aj

@x0i

@xk
dxk = �jk Aj dx

k = Ak dx
k = A. (11.84)

This invariant quantity A = Ak dxk is a called a 1-form in the language of
di↵erential forms introduced about a century ago by Élie Cartan (1869–
1951, son of a blacksmith).
The wedge product dx^dy of two coordinate di↵erentials is the directed

area spanned by the two di↵erentials and is defined to be antisymmetric

dx ^ dy = � dy ^ dx and dx ^ dx = dy ^ dy = 0 (11.85)

so as to transform correctly under a change of coordinates. In terms of the
coordinates u = u(x, y) and v = v(x, y), the new element of area is

du ^ dv =

✓
@u

@x
dx+

@u

@y
dy

◆
^
✓
@v

@x
dx+

@v

@y
dy

◆
. (11.86)

Labeling partial derivatives by subscripts (6.20) and using the antisymmetry
(11.85) of the wedge product, we see that du ^ dv is the old area dx ^ dy
multiplied by the Jacobian (section 1.21) of the transformation x, y ! u, v

du ^ dv = (uxdx+ uydy) ^ (vxdx+ vydy)

= ux vx dx ^ dx+ ux vy dx ^ dy + uy vx dy ^ dx+ uy vy dy ^ dy

= (ux vy � uyvx) dx ^ dy

=

����
ux uy
vx vy

���� dx ^ dy = J(u, v;x, y) dx ^ dy. (11.87)
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A contraction H = 1
2Hik dxi ^ dxk of a second-rank covariant tensor with

a wedge product of two di↵erentials is a 2-form. A p -form is a rank-p
covariant tensor contracted with a wedge product of p di↵erentials

K =
1

p!
Ki1...ip dx

i1 ^ . . . dxip . (11.88)

The exterior derivative d di↵erentiates and adds a di↵erential. It turns
a p-form into a (p+ 1)-form. It turns a function f , which is a 0-form, into
a 1-form

df =
@f

@xi
dxi (11.89)

and a 1-form A = Aj dxj into a 2-form dA = d(Aj dxj)= (@iAj) dxi ^ dxj .

Example 11.13 (The Curl). The exterior derivative of the 1-form

A = Ax dx+Ay dy +Az dz (11.90)

is a 2-form that contains the curl (6.48) of A

dA = @yAx dy ^ dx+ @zAx dz ^ dx

+ @xAy dx ^ dy + @zAy dz ^ dy

+ @xAz dx ^ dz + @yAz dy ^ dz

= (@yAz � @zAy) dy ^ dz (11.91)

+ (@zAx � @xAz) dz ^ dx

+ (@xAy � @yAx) dx ^ dy

= (r⇥A)x dy ^ dz + (r⇥A)y dz ^ dx+ (r⇥A)z dx ^ dy.

The exterior derivative of the electromagnetic 1-form A = Aj dxj made
from the 4-vector potential or gauge field Aj is the Faraday 2-form (11.59),
the tensor Fij

dA = d
�
Aj ^ dxj

�
= @iAj dx

i ^ dxj = 1
2 Fij dx

i ^ dxj = F (11.92)

in which @i = @/@xi.
The square dd of the exterior derivative vanishes in the sense that dd

applied to any p-form Q is zero

d
⇥
d
�
Qi...dx

i ^ . . .
�⇤

= d
⇥
(@rQi...) dx

r ^ dxi ^ . . .
⇤

= (@s@rQi...) dx
s ^ dxr ^ dxi ^ . . . = 0

(11.93)

because @s@rQ is symmetric in r and s while dxs ^ dxr is anti-symmetric.
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If Mik is a covariant second-rank tensor with no particular symmetry,
then (exercise 11.8) only its antisymmetric part contributes to the 2-form
Mik dxi ^ dxk and only its symmetric part contributes to Mik dxidxk.

Example 11.14 (The homogeneous Maxwell equations). The exterior deriva-
tive d applied to the Faraday 2-form F = dA gives the homogeneous Maxwell
equations

dF = ddA = 0 (11.94)

also called the Bianchi identity (11.73).

A p-form H is closed if dH = 0. By (11.94), the Faraday 2-form is closed,
dF = 0. A p-form H is exact if it is the di↵erential H = dK of a (p � 1)-
form K. The identity (11.93) or dd = 0 implies that every exact form is
closed. A lemma (section 12.5) due to Poincaré shows that every closed
form is locally exact.
If the Ai in the 1-form A = Aidxi commute with each other, then the 2-

form A^A is identically zero. But if the Ai don’t commute because they are
matrices, operators, or Grassmann variables, then A^A = 1

2 [Ai, Aj ] dxi^dxj
need not vanish.

Example 11.15 (If Ḃ = 0, the electric field is closed and exact). If Ḃ = 0,
then by Faraday’s law (11.62) the curl of the electric field vanishes,r ⇥ E =
0. In terms of the 1-form E = Ei dxi for i = 1, 2, 3, the vanishing of its curl
r ⇥ E is

dE = @jEi dx
j ^ dxi =

1

2
(@jEi � @iEj) dx

j ^ dxi = 0. (11.95)

So E is closed. It also is exact because we can define a quantity V (x) whose
gradient is E = �rV . We first define VP (x) as a line integral of the 1-form
E along an arbitrary path P from some starting point x0 to x

VP (x) = �
Z x

P,x0

Ei dx
i = �

Z

P
E. (11.96)

The potential VP (x) might seem depend on the path P . But the di↵erence
VP 0(x) � VP (x) is a line integral of E from x0 to x along the path P 0 and
then back to x0 along the path P . And by Stokes’s theorem (6.54), the
integral of E around such a closed loop is an integral of the curl r ⇥ E of
E over any surface S whose boundary is that closed loop.

VP 0(x)� VP (x) =

I

P�P 0
Ei dx

i =

Z

S
(r ⇥ E) · da = 0. (11.97)
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In the notation of forms, this is

VP 0(x)� VP (x) =

Z

@S
E =

Z

S
dE = 0. (11.98)

Thus the potential VP (x) = V (x) is independent of the path, and E =
�rV (x), and so the 1-form E = Ei dxi = �@iV dxi = �dV is exact.

The general form of Stokes’s theorem is that the integral of any p-form
H over the boundary @R of any (p + 1)-dimensional, simply connected,
orientable region R is equal to the integral of the (p+ 1)-form dH over R

Z

@R
H =

Z

R
dH. (11.99)

Equation (11.98) is the p = 1 case (George Stokes, 1819–1903).

Example 11.16 (Stokes’s theorem for 0-forms). When p = 0, the region
R = [a, b] is 1-dimensional, H is a 0-form, and Stokes’s theorem is the
formula of elementary calculus

H(b)�H(a) =

Z

@R
H =

Z

R
dH =

Z b

a
dH(x) =

Z b

a
H 0(x) dx. (11.100)

Example 11.17 (Exterior derivatives anticommute with di↵erentials). The
exterior derivative acting on the wedge product of two one-forms A = Aidxi

and B = B`dx` is

d(A ^B) = d(Aidx
i ^B`dx

`) = @k(AiB`) dx
k ^ dxi ^ dx` (11.101)

= (@kAi)B` dx
k ^ dxi ^ dx` +Ai (@kB`) dx

k ^ dxi ^ dx`

= (@kAi)B` dx
k ^ dxi ^ dx` �Ai (@kB`) dx

i ^ dxk ^ dx`

= (@kAi) dx
k ^ dxi ^B`dx

` �Aidx
i ^ (@kB`) dx

k ^ dx`

= dA ^B �A ^ dB.

If A is a p-form, then d(A^B) = dA^B+(�1)pA^dB (exercise 11.11).

11.14 Tensor equations

Maxwell’s homogeneous equations (11.73) relate the derivatives of the field-
strength tensor to each other as

0 = @iFjk + @kFij + @jFki. (11.102)
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They are generally covariant tensor equations (sections 11.34 & 11.36).
They follow from the Bianchi identity (11.94)

dF = ddA = 0. (11.103)

Maxwell’s inhomegneous equations (11.74) relate the derivatives of the field-
strength tensor to the current density ji and to the square root of the mod-
ulus g of the determinant of the metric tensor gij (section 11.18)

@(
p
g F ik)

@xk
= µ0

p
g ji. (11.104)

They are generally covariant tensor equations. We’ll write them as the diver-
gence of a contravariant vector in section 12.25, derive them from an action
principle in section 11.42, and write them as invariant forms in section 12.7.
If we can write a physical law in one coordinate system as a tensor equation

Gkl = 0 (11.105)

then in any other coordinate system, the corresponding tensor equation

G0ij = 0 (11.106)

also is valid since

G0ij =
@x0i

@xk
@x0j

@xl
Gkl = 0. (11.107)

Similarly, physical laws remain the same when expressed in terms of in-
variant forms. A theory written in terms of tensors or forms has
equations that are true in all coordinate systems if they are true
in any coordinate system. Only such generally covariant theories have a
chance at being right because we can’t be sure that our coordinate system is
the right one. One way to make a generally covariant theory is to apply the
principle of stationary action (section 11.41) to an action that is invariant
under all coordinate transformations.

11.15 The quotient theorem

Suppose that the product BA of a quantity B with unknown transformation
properties with all tensors A a given rank and kind is a tensor. Then B must
be a tensor.
The simplest example is when BiAi is a scalar for all contravariant vectors

Ai

B0
iA

0i = BjA
j . (11.108)
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Then since Ai is a contravariant vector

B0
iA

0i = B0
i
@x0i

@xj
Aj = BjA

j (11.109)

or ✓
B0

i
@x0i

@xj
�Bj

◆
Aj = 0. (11.110)

Since this equation holds for all vectors A, we may promote it to the level
of a vector equation

B0
i
@x0i

@xj
�Bj = 0. (11.111)

Multiplying both sides by @xj/@x0k and summing over j, we get

B0
i
@x0i

@xj
@xj

@x0k
= Bj

@xj

@x0k
(11.112)

which shows that the unknown quantity Bi transforms as a covariant vector

B0
k =

@xj

@x0k
Bj . (11.113)

The quotient rule works for tensors A and B of arbitrary rank and kind.
The proof in each case is similar to the one given here.

11.16 The embedding space

The change in a point p(x) on a smooth manifold due to an infinitesimal
change dxi in the coordinates xi of the point is

dp↵(x) =
@p(x)

@xi
dxi = e ↵

i (x) dxi (11.114)

in which the superscript ↵ labels the n coordinates of the embedding space
Rn and the index i labels the coordinates on the manifold. The embedding
space Rn has its own metric I↵� which defines the inner products of basis
vectors as

ei · ek =
nX

↵,�=1

e ↵
i I↵� e

�
j . (11.115)

The metric I↵� of the embedding space usually is a diagonal matrix with
eigenvalues ±1.
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Example 11.18 (A sphere). For the surface of a 2-sphere embedded in
euclidian R3, one can use polar coordinates i = ✓,� and basis vectors

e✓ =
@p(✓,�)

@✓
and e� =

@p(✓,�)

@�
. (11.116)

The natural metric of euclidian R3 is the 3⇥3 identity matrix I which defines
inner products as the usual dot products ei · ej = e1i e

1
j + e2i e

2
j + e3i e

3
j .

Example 11.19 (Spacetime). If we use four coordinates to describe ordi-
nary spacetime as a curved surface in a flat embedding space R8, then we
would have ↵ = 0, 1, . . . , 7 and i = 0, 1, 2, 3. We then could use an 8 ⇥ 8
diagonal matrix I with entries I↵� = �↵�↵� = ±1 to form inner products
ei · ej = e0i�0e

0
j + e1i�1e

1
j + · · ·+ e7i�7e

7
j .

11.17 Tangent vectors

The basis vectors (11.114)

e ↵
i (x) ⌘ @p↵(x)

@xi
(11.117)

are tangent to the manifold at p. They are local coordinate basis vectors.
These tangent vectors span a tangent space of as many dimensions as
there are coordinates xi.
In a di↵erent system of coordinates x0, the same displacement (11.114) is

dp = e0i(x
0) dx0i. The basis vectors ei(x) and e0i(x

0)

ei(x) =
@p

@xi
and e0i(x

0) =
@p

@x0i
. (11.118)

are linearly related to each other and transform as covariant vectors

e0i(x
0) =

@p

@x0i
=
@xj

@x0i
@p

@xj
=
@xj

@x0i
ej(x). (11.119)

11.18 The metric tensor

Points are physical, coordinate systems metaphysical. So p, q, p � q, and
(p � q) · (p � q) are all invariant quantities. When p and q = p + dp lie
infinitesimally close to each other on the spacetime manifold, the vector
dp = ei dxi is the sum of the basis vectors multiplied by the changes in
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the coordinates xi. Both dp and the inner product dp · dp are physical and
thus are independent of the coordinates. The inner product ei · ej of two
coordinate basis vectors is defined in terms of the metric the flat embedding
space Rn, which is a diagonal matrix I with eigenvalues ±1; it is a sum over
the n values of ↵ and � that label the coordinates of Rn

ei · ej =
n�1X

↵,�=0

e ↵
i I↵� e

�
j . (11.120)

The squared separation dp2 is

dp2 ⌘ dp · dp = (ei dx
i) · (ej dxj) =

n�1X

↵,�=0

e↵i I↵� e
�
j dxidxj . (11.121)

It is the same in any other coordinate system

dp2 ⌘ dp · dp = (e0i dx
0i) · (e0j dx0j) =

n�1X

↵,�=0

e0↵i I↵� e
0�
j dx0idx0j . (11.122)

This invariant squared separation dp2 defines a 4⇥4 metric gij on spacetime

dp2 = ei · ej dxidxj = gij dx
idxj (11.123)

as the inner products

gij = ei · ej =
n�1X

↵,�=0

e ↵
i I↵� e

�
j . (11.124)

We normally will apply the summation convention (section 11.7) to these
inner indices ↵ and �.
Since the basis vectors ei transform (11.119) as covariant vectors, the

metric gij transforms as a covariant tensor

g0ij = e0↵i I↵� e
0�
j = e↵i I↵� e

�
j

@xk

@x0i
@x`

@x0j
= gk`

@xk

@x0i
@x`

@x0j
, (11.125)

as it must be since the squared separation dp2 is independent of the coordi-
nates

g0ij dx
0idx0j = g0ij

@x0i

@xk
dxk

@x0j

@x`
dx` = gk` dx

kdx`. (11.126)

Thus the metric tensor gij is a rank-2 covariant tensor. By its construc-
tion (11.124), it also is a 4⇥ 4 real symmetric matrix.
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Example 11.20 (Graph paper). Imagine a piece of slightly crumpled graph
paper with horizontal and vertical lines. The lines give us a two-dimensional
coordinate system (x1, x2) that labels each point p(x) on the paper. The vec-
tors e1(x) = @1p(x) and e2(x) = @2p(x) define how a point moves dp(x) =
ei(x) dxi when we change its coordinates by dx1 and dx2. The vectors e1(x)
and e2(x) span a di↵erent tangent space at the intersection of every horizon-
tal line with every vertical line. Each tangent space is like the tiny square of
the graph paper at that intersection. We can think of the two vectors ei(x)
as three-component vectors in the three-dimensional embedding space we
live in. The squared distance between any two nearby points separated by
dp(x) is ds2 ⌘ dp2(x) = e21(x)(dx

1)2 + 2e1(x) · e2(x) dx1dx2 + e22(x)(dx
2)2

in which the inner products gij = ei(x) · ej(x) are defined by the euclidian
metric of the embedding euclidian space R3.

Example 11.21 (The sphere S2). Let the point p be a euclidian 3-vector
representing a point on the two-dimensional surface of a sphere of radius R.
Spherical coordinates label the point p = R(sin ✓ cos�, sin ✓ sin�, cos ✓), the
coordinate basis vectors are

e✓ =
@p

@✓
= R ✓̂ and e� =

@p

@�
= R sin ✓ �̂, (11.127)

and the embedding metric is the 3⇥ 3 identity matrix I↵� = �↵� . The inner
products of the basis vectors are the components (11.124) of the sphere’s
metric tensor

✓
g✓✓ g✓�
g�✓ g��

◆
=

✓
e✓ · e✓ e✓ · e�
e� · e✓ e� · e�

◆
=

✓
R2 0
0 R2 sin2 ✓

◆
(11.128)

which has determinant R4 sin2 ✓. Since e✓ · e� = 0, the squared distance is

ds2 = e✓ · e✓ d✓2 + e� · e� d�2 = R2d✓2 +R2 sin2 ✓d�2. (11.129)

Let us adopt a dimensionless scale factor a, a radial variable r = R sin ✓/a,
and a parameter k = a2/R2. Then R2d✓2 = a2dr2/ cos2 ✓ and cos2 ✓ =
1� sin2 ✓ = 1� a2r2/R2 = 1� kr2. The squared distance then is

ds2 =
a2dr2

1� kr2
+ a2r2d�2, (11.130)

and the r,� metric of the sphere is
✓
grr gr�
g�r g��

◆
= a2

✓
1/(1� kr2) 0

0 r2

◆
. (11.131)
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Example 11.22 (The hyperboloid H2). The hyperboloid H2 in R3 is the
surface defined by R2 = � x2 � y2 + z2. If we label its points as

p = R(sinh ✓ cos�, sinh ✓ sin�, cosh ✓) (11.132)

then its coordinate basis vectors are

e✓ =
@p

@✓
= R (cosh ✓ cos�, cosh ✓ sin�, sinh ✓)

e� =
@p

@�
= R (� sinh ✓ sin�, sinh ✓ cos�, 0).

(11.133)

The embedding metric is I = diag(1, 1,�1), so z is a time coordinate. Since
e✓ · e� = 0, the squared distance between nearby points is

ds2 = e✓ · e✓ d✓2 + e� · e� d�2 = R2 d✓2 +R2 sinh2 ✓ d�2. (11.134)

In terms of the dimensionless scale factor a, the parameter k = (a/R)2, and
the radial variable r = R sinh ✓/a, the squared distance ds2 is

ds2 = a2
dr2

cosh2 ✓
+ a2r2d�2 = a2

✓
dr2

1 + kr2
+ r2 d�2

◆
. (11.135)

Example 11.23 (The sphere S3). The sphere S3 is a 3-dimensional space
in R4 defined by R2 = x2 + y2 + z2 + w2. If we label its points as

p(�, ✓,�) = R(sin� sin ✓ cos�, sin� sin ✓ sin�, sin� cos ✓, cos�), (11.136)

then its coordinate basis vectors are

e� =
@p

@�
= R(cos� sin ✓ cos�, cos� sin ✓ sin�, cos� cos ✓,� sin�)

e✓ =
@p

@✓
= R(sin� cos ✓ cos�, sin� cos ✓ sin�,� sin� sin ✓, 0)

e� =
@p

@�
= R(� sin� sin ✓ sin�, sin� sin ✓ cos�, 0, 0).

(11.137)

The inner metric of the embedding space is I = (1, 1, 1, 1), and in this metric
the basis vectors are orthogonal. In terms of the dimensionless scale factor
a, the parameter k = (a/R)2, and the radial variable r = R sin�/a, the
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squared distance ds2 between two nearby points is

ds2 = e� · e�d�2 + e✓ · e✓d✓2 + e� · e�d�2

= R2
�
d�2 + sin2 � d✓2 + sin2 � sin2 ✓ d�2

�

= a2
✓

dr2

1� sin2 �
+ r2d✓2 + r2 sin2 ✓d�2

◆

= a2
✓

dr2

1� kr2
+ r2d✓2 + r2 sin2 ✓d�2

◆
.

(11.138)

Example 11.24 (The hyperboloid H3). The hyperboloid H3 is a 3-space
in R4 defined by R2 = � x2 � y2 � z2 + w2. If we label its points as

p(�, ✓,�) = R (sinh� sin ✓ cos�, sinh� sin ✓ sin�, sinh� cos ✓, cosh�),
(11.139)

then its coordinate basis vectors are

e� =
@p

@�
= R(cosh� sin ✓ cos�, cosh� sin ✓ sin�, cosh� cos ✓, sinh�)

e✓ =
@p

@✓
= R(sinh� cos ✓ cos�, sinh� cos ✓ sin�,� sinh� sin ✓, 0)

e� =
@p

@�
= R(� sinh� sin ✓ sin�, sinh� sin ✓ cos�, 0, 0).

(11.140)

The inner metric is I = (1, 1, 1,�1), and w is a time coordinate. The basis
vectors are orthogonal. In terms of the dimensionless scale factor a, the
parameter k = (a/R)2, and the radial variable r = R sinh�/a, the squared
distance ds2 between two nearby points is

ds2 = e� · e�d�2 + e✓ · e✓d✓2 + e� · e�d�2

= R2
�
d�2 + sinh2 � d✓2 + sinh2 � sin2 ✓ d�2

�

= a2
✓

dr2

1 + sinh2 �
+ r2d✓2 + r2 sin2 ✓d�2

◆

= a2
✓

dr2

1 + kr2
+ r2d✓2 + r2 sin2 ✓d�2

◆
.

(11.141)

The squared distances (11.138 & 11.141) respectively are the spatial terms
of the closed and open Robinson-Walker metrics (11.402) for dx0 = 0.
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11.19 The principle of equivalence

Since the metric tensor gij(x) is real and symmetric, it can be diagonalized
at any point p(x) by a 4⇥ 4 orthogonal matrix O(x)

OT k
i gk`O

`
j =

0

BB@

e0 0 0 0
0 e1 0 0
0 0 e2 0
0 0 0 e3

1

CCA (11.142)

which arranges the four real eigenvalues ei of the matrix gij(x) in the order
e0  e1  e2  e3. Thus the coordinate transformation

@xk

@x0i
=

OT k
ip
|ei|

(11.143)

takes any spacetime metric gk`(x) with one negative and three positive eigen-
values into the Minkowski metric ⌘ij of flat spacetime

gk`(x)
@xk

@x0i
@x`

@x0j
= g0ij(x

0) = ⌘ij =

0

BB@

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA (11.144)

at the point p(x) = p(x0). The principle of equivalence says that in these
free-fall coordinates x0, the physical laws of gravity-free special relativity
apply in a suitably small region about the point p(x) = p(x0). It follows
from this principle that the metric gij of spacetime accounts for all the
e↵ects of gravity.
In the x0 coordinates, the invariant squared separation dp2 is that of spe-

cial relativity

dp2 = g0ij dx
0idx0j = e0i(x

0) · e0j(x0) dx0idx0j

= e0ai (x
0)⌘abe

0b
j (x

0) dx0idx0j = �ai ⌘ab�
b
j dx

0idx0j

= ⌘ij dx
0idx0j = (dx0)2 � (dx00)2 = ds2.

(11.145)

The x0 coordinates are not unique because every Lorentz transformation
leaves the metric ⌘ invariant. Coordinate systems in which gij(x0) = ⌘ij are
called inertial coordinate systems.
The congruency transformation (1.349 & 11.142–11.144) preserves the

signs of the eigenvalues ei which are the signature (�1, 1, 1, 1) of the metric
tensor.
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11.20 Tetrads

We defined metric tensor (11.124) in terms of four n-vectors ei in the em-
bedding space Rn as gij = ei · ej = eiTI ej in which I is the metric of the
embedding space which is a diagonal matrix with n eigenvalues ±1. If we
instead invert the equation (11.144) that relates the metric tensor to the flat
metric and write

gij =
@x0a

@xi
⌘ab

@x0b

@xj
, (11.146)

then we will have expressed the metric in terms of four 4-vectors

c a
i (x) =

@x0a

@xi
= cai(x) = cai (x) (11.147)

as

gij(x) = c a
i (x) ⌘ab c

b
j(x) (11.148)

in which ⌘ab is the 4 ⇥ 4 metric (11.144) of flat Minkowski space. Whether
the fundamental variables are the four 4-vectors c a

i (x) introduced by Élie
Cartan (1869–1951) or the metric tensor gij is an open question. Cartan’s
four 4-vectors cai (x) are called a moving frame, a tetrad, or a vierbein.

11.21 The contravariant metric tensor

The inverse gik of the covariant metric tensor gkj satisfies

g0ikg0kj = �ij = gikgkj (11.149)

in all coordinate systems. To see how it transforms, we use the transforma-
tion law (11.125) of gkj

�ij = g0ikg0kj = g0ik
@xt

@x0k
gtu

@xu

@x0j
. (11.150)

In matrix notation, this is I = g0�1H gHT which implies g0�1 = H�1T g�1H�1

or in tensor notation

g0i` =
@x0i

@xv
@x0`

@xw
gvw. (11.151)

Thus the inverse gik of the covariant metric tensor is a second-rank con-
travariant tensor called the contravariant metric tensor.
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11.22 Dual vectors and the raising and lowering of indices

The contraction of a contravariant vectorAi with any rank-2 covariant tensor
gives a covariant vector, but we reserve the symbolAi for the covariant vector
that is the contraction of Aj with the metric tensor

Ai = gijA
j . (11.152)

This operation is called lowering the index on Aj .
Similarly, the contraction of a covariant vector Bj with any rank-2 con-

travariant tensor is a contravariant vector, and we reserve the symbol Bi for
contravariant vector that is the contraction

Bi = gijBj (11.153)

of Bj with the inverse of the metric tensor. This is called raising the index
on Bj .
The vectors ei, for instance, are given by

ei = gijej . (11.154)

They are therefore orthonormal or dual to the basis vectors ei

ei · ej = ei · gjkek = gjkei · ek = gjkgik = gjkgki = �ji (11.155)

with respect to the metric ⌘ab of the flat space tangent to the manifold.

11.23 Orthogonal coordinates in Rn

In flat n-dimensional euclidian space, it is convenient to use orthogonal
basis vectors and orthogonal coordinates (6.26–6.27). A change dxi in
the coordinates moves the point p by (11.114)

dp = ei dx
i. (11.156)

The metric gij is the inner product (11.124)

gij = ei · ej . (11.157)

Since the vectors ei are orthogonal, the metric is diagonal

gij = ei · ej = h2i �ij . (11.158)
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The inverse metric

gij = h�2
i �ij (11.159)

raises indices. For instance, the dual vectors

e i = gij ej = h�2
i ei satisfy ei · ek = �ik. (11.160)

The invariant squared distance dp2 between nearby points (11.121) is

dp2 = dp · dp = gij dx
i dxj = h2i (dx

i)2 (11.161)

and the invariant volume element is

dV = dnp = h1 . . . hn dx
1 ^ . . . ^ dxn = g dx1 ^ . . . ^ dxn = g dnx (11.162)

in which g =
p

det gij is the square root of the positive determinant of gij .
The important special case in which all the scale factors hi are unity is

cartesian coordinates in euclidian space (section 11.6).
We also can use basis vectors êi that are orthonormal. By (11.158 &

11.160), these vectors

êi = ei/hi = hi e
i satisfy êi · êj = �ij . (11.163)

In terms of them, a physical and invariant vector V takes the form

V = ei V
i = hi êi V

i = e i Vi = h�1
i êi Vi = êi V i (11.164)

where

V i ⌘ hi V
i = h�1

i Vi (no sum). (11.165)

The dot product is then

V · U = gij V
i U j = V i U i. (11.166)

In euclidian n-space, we even can choose coordinates xi so that the vectors
ei defined by dp = ei dxi are orthonormal. The metric tensor is then the n⇥n
identity matrix gik = ei · ek = Iik = �ik. But since this is euclidian n-space,
we also can expand the n fixed orthonormal cartesian unit vectors ˆ̀ in terms
of the ei(x) which vary with the coordinates as ˆ̀= ei(x)(ei(x) · ˆ̀).

11.24 Polar coordinates

In polar coordinates in flat 2-space, the change dp in a point p due to a
change in its coordinates is dp = r̂ dr + ✓̂ r d✓ so dp = er dr + e✓ d✓ with
er = êr = r̂ and e✓ = r ê✓ = r ✓̂. The metric tensor for polar coordinates is

(gij) = (ei · ej) =
✓
1 0
0 r2

◆
. (11.167)
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The contravariant basis vectors are e r = r̂ and e ✓ = ê✓/r. A physical vector
V is V = V i ei = Vi e i = V r r̂ + V ✓ ✓̂.

11.25 Cylindrical coordinates

For cylindrical coordinates in flat 3-space, the change dp in a point p due
to a change in its coordinates is

dp = ⇢̂ d⇢+ �̂ ⇢ d�+ ẑ dz = e⇢ d⇢+ e� d�+ ez dz (11.168)

with e⇢ = ê⇢ = ⇢̂, e� = ⇢ ê� = ⇢ �̂, and ez = êz = ẑ. The metric tensor for
cylindrical coordinates is

(gij) = (ei · ej) =

0

@
1 0 0
0 ⇢2 0
0 0 1

1

A (11.169)

with determinant det gij ⌘ g = ⇢2. The invariant volume element is

dV = ⇢ dx1 ^ dx2 ^ dx3 =
p
g d⇢ d� dz = ⇢ d⇢ d� dz. (11.170)

The contravariant basis vectors are e
⇢ = ⇢̂, e� = ê�/⇢, and e

z = ẑ. A
physical vector V is

V = V i
ei = Vi e

i = V ⇢ ⇢̂+ V � �̂+ V z ẑ. (11.171)

Incidentally, since

p = (⇢ cos�, ⇢ sin�, z) , (11.172)

the formulas for the basis vectors of cylindrical coordinates in terms of those
of rectangular coordinates are (exercise 11.14)

⇢̂ = cos� x̂+ sin� ŷ

�̂ = � sin� x̂+ cos� ŷ

ẑ = ẑ. (11.173)

11.26 Spherical coordinates

For spherical coordinates in flat 3-space, the change dp in a point p due to
a change in its coordinates is

dp = r̂ dr + ✓̂ r d✓ + �̂ r sin ✓ d� = er dr + e✓ d✓ + e� d� (11.174)
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so er = r̂, e✓ = r ✓̂, and e� = r sin ✓ �̂ or

er = (sin ✓ cos�, sin ✓ sin�, cos ✓)

e✓ = r (cos ✓ cos�, cos ✓ sin�,� sin ✓)

e� = r sin ✓ (� sin�, cos�, 0) .

(11.175)

The metric tensor for spherical coordinates is

(gij) = (ei · ej) =

0

@
1 0 0
0 r2 0
0 0 r2 sin2 ✓

1

A (11.176)

with determinant det gij ⌘ g = r4 sin2 ✓. The invariant volume element is

dV = r2 sin2 ✓ dx1 ^ dx2 ^ dx3 =
p
g dr d✓ d� = r2 sin ✓ dr d✓ d�. (11.177)

The orthonormal basis vectors are êr = r̂, ê✓ = ✓̂, and ê� = �̂. The
contravariant basis vectors are e r = r̂, e ✓ = ✓̂/r, e� = �̂/r sin ✓. A physical
vector V is

V = V i
ei = Vi e

i = V r r̂ + V ✓ ✓̂ + V � �̂. (11.178)

Incidentally, since

p = (r sin ✓ cos�, r sin ✓ sin�, r cos ✓) , (11.179)

the formulas for the basis vectors of spherical coordinates in terms of those
of rectangular coordinates are (exercise 11.15)

er = sin ✓ cos� x̂+ sin ✓ sin� ŷ + cos ✓ ẑ

e✓ = r (cos ✓ cos� x̂+ cos ✓ sin� ŷ � sin ✓ ẑ) (11.180)

e� = r sin ✓ (� sin� x̂+ cos� ŷ) .

11.27 The gradient of a scalar field

If f(x) is a scalar field, then the di↵erence between it and f(x+ dx) defines
the gradient rf as (6.30)

df(x) = f(x+ dx)� f(x) =
@f(x)

@xi
dxi = rf(x) · dp. (11.181)

Since dp = ej dxj , the invariant form

rf = ei
@f

@xi
=

êi
hi

@f

@xi
(11.182)
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satisfies this definition (11.181) of the gradient

rf · dp =
@f

@xi
ei · ejdxj =

@f

@xi
�ij dx

j =
@f

@xi
dxi = df. (11.183)

In two polar coordinates, the gradient is

rf = ei
@f

@xi
=

êi
hi

@f

@xi
= r̂

@f

@r
+
✓̂

r

@f

@✓
. (11.184)

In three cylindrical coordinates, it is (6.32)

rf = ei
@f

@xi
=

êi
hi

@f

@xi
=
@f

@⇢
⇢̂+

1

⇢

@f

@�
�̂+

@f

@z
ẑ (11.185)

and in three spherical coordinates it is (6.33)

rf =
@f

@xi
ei =

êi
hi

@f

@xi
=
@f

@r
r̂ +

1

r

@f

@✓
✓̂ +

1

r sin ✓

@f

@�
�̂. (11.186)

11.28 Levi-Civita’s symbol and tensor

In 3 dimensions, Levi-Civita’s symbol ✏ijk ⌘ ✏ijk is totally antisymmetric
with ✏123 = 1 in all coordinate systems.

We can turn his symbol into something that transforms as a tensor by
multiplying it by the square root of the determinant of a rank-2 covariant
tensor. A natural choice is the metric tensor. Thus the Levi-Civita tensor
⌘ijk is the totally antisymmetric rank-3 covariant (pseudo)tensor

⌘ijk =
p
g ✏ijk (11.187)

in which g = | det gmn| is the absolute value of the determinant of the metric
tensor gmn. The determinant’s definition (1.200) and product rule (1.221)
imply that Levi-Civita’s tensor ⌘ijk transforms as

⌘0ijk =
p
g0 ✏0ijk =

p
g0 ✏ijk =

s����det
✓
@xt

@x0m
@xu

@x0n
gtu

◆���� ✏ijk

=

s����det
✓
@xt

@x0m

◆
det

✓
@xu

@x0n

◆
det (gtu)

���� ✏ijk

=

����det
✓
@x

@x0

◆����
p
g ✏ijk = � det

✓
@x

@x0

◆
p
g ✏ijk

= �
@xt

@x0i
@xu

@x0j
@xv

@x0k
p
g ✏tuv = �

@xt

@x0i
@xu

@x0j
@xv

@x0k
⌘tuv (11.188)
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in which � is the sign of the Jacobian det(@x/@x0). Levi-Civita’s tensor is a
pseudotensor because it doesn’t change sign under the parity transforma-
tion x0i = � xi.
We get ⌘ with upper indices by using the inverse gnm of the metric tensor

⌘ijk = git gju gkv ⌘tuv = git gju gkv
p
g ✏tuv =

p
g ✏ijk det(gmn)

=
p
g ✏ijk/ det(gmn) = s✏ijk/

p
g = s✏ijk/

p
g

(11.189)

in which s is the sign of the determinant det gij = sg.
Similarly in 4 dimensions, Levi-Civita’s symbol ✏ijk` ⌘ ✏ijk` is totally

antisymmetric with ✏0123 = 1 in all coordinate systems. No meaning attaches
to whether the indices of the Levi-Civita symbol are up or down; some
authors even use the notation ✏(ijk`) or ✏[ijk`] to emphasize this fact.
In 4 dimensions, the Levi-Civita pseudotensor is

⌘ijk` =
p
g ✏ijk` (11.190)

where again g = | det gij |. The determinant’s definition (1.200) and product
rule (1.221) imply that it transforms as

⌘0ijk` =
p
g0 ✏ijk` =

����det
✓
@x

@x0

◆����
p
g ✏ijk` = � det

✓
@x

@x0

◆
p
g ✏ijk`

= �
@xt

@x0i
@xu

@x0j
@xv

@x0k
@xw

@x0`
p
g ✏tuvw = �

@xt

@x0i
@xu

@x0j
@xv

@x0k
@xw

@x0`
⌘tuvw

(11.191)

where � is the sign of the Jacobian det(@x/@x0).
Raising the indices on ⌘ with det gij = sg we have

⌘ijk` = git gju gkv g`w ⌘tuvw = git gju gkv g`w
p
g ✏tuvw =

p
g ✏ijk` det(g

mn)

=
p
g ✏ijk`/ det(gmn) = s ✏ijk`/

p
g ⌘ s ✏ijk`/

p
g.

(11.192)

In n dimensions, one may define Levi-Civita’s symbol ✏(i1 . . . in) as to-
tally antisymmetric with ✏(1 . . . n) = 1 and his pseudotensor as ⌘i1...in =p
g ✏(i1 . . . in).

11.29 Notations for derivatives

We have various Notations for derivatives. We can use the variables x, y,
and so forth as subscripts to label derivatives

fx = @xf =
@f

@x
and fy = @yf =

@f

@y
. (11.193)
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If we use indices to label variables, then we can use commas

f,i = @if =
@f

@xi
and f,ik = @k@if =

@2f

@xk@xi
(11.194)

and f,k0 = @f/@x0k. In the next section, we will use a semicolon to mean a
covariant derivative.

11.30 Covariant derivatives and a�ne connections

If F (x) is a vector field, then its invariant description in terms of spacetime-
dependent basis vectors ei(x) is

F (x) = F i(x) ei(x). (11.195)

Since the basis vectors ei(x) vary with x, the derivative of F (x) contains
two terms

@F

@x`
=
@F i

@x`
ei + F i @ei

@x`
. (11.196)

In general, the derivative of a vector ei is not a linear combination of the
basis vectors ek. For instance, on the 2-dimensional surface of a sphere in
3-dimensions, the derivative

@e✓
@✓

= �r̂ (11.197)

points to the sphere’s center and isn’t a linear combination of e✓ and e�.
The inner product of a derivative @ei/@x` with a dual basis vector ek is

the Levi-Civita a�ne connection

�ki` = ek · ei,` = ek · @ei
@x`

(11.198)

which relates spaces that are tangent to the manifold at infinitesimally sep-
arated points. It is called an a�ne connection because the di↵erent tangent
spaces lack a common origin.

In terms of the a�ne connection (11.198 ), the inner product of the deriva-
tive (11.196) with ek is

ek · @F
@x`

= ek · @F
i

@x`
ei + F i ek · @ei

@x`
=
@F k

@x`
+ F i �ki` (11.199)

a combination that is called a covariant derivative (section 11.33)

D`F
k ⌘r`F

k ⌘ @F k

@x`
+ F i �ki` ⌘ F k

;` = ek · @F
@x`

. (11.200)
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It is a second-rank mixed tensor. The covariant derivative of the scalar F is

D`F = ek e
k · @`F =

✓
@F k

@x`
+ F i �ki`

◆
ek = F k

;` ek. (11.201)

Some physicists write the a�ne connection �ki` as

⇢
k
i`

�
= �ki` (11.202)

and call it a Christo↵el symbol of the second kind.
The coordinate basis vectors ei are the spacetime derivatives (11.118) of

the point p, and so the a�ne connection (11.198) is a double derivative of p

�ki` = ek · @ei
@x`

= ek · @2p

@x`@xi
= ek · @2p

@xi@x`
= ek · @e`

@xi
= �k`i (11.203)

and thus is symmetric in its two lower indices

�ki` = �
k
`i. (11.204)

A�ne connections are not tensors. Tensors transform homogeneously;
connections transform inhomogeneously. The connection �ki` transforms as

�0ki` = e0k · @e
0
i

@x0`
=
@x0k

@xp
ep · @x

m

@x0`
@

@xm

✓
@xn

@x0i
en

◆

=
@x0k

@xp
@xm

@x0`
@xn

@x0i
ep · @en

@xm
+
@x0k

@xn
@2xn

@x0`@x0i
(11.205)

=
@x0k

@xp
@xm

@x0`
@xn

@x0i
�pnm +

@x0k

@xn
@2xn

@x0`@x0i
.

Although the connection �ki` is not a tensor, its variation

��ki` = �
k
i`(gnm + �gnm)� �ki`(gnm) (11.206)

is a tensor because the inhomogeneous term in this equation (11.205) cancels
in the di↵erence ��ki`. The electromagnetic field Ai(x) and other gauge fields
are connections.
Since the Levi-Civita connection �ki` is symmetric in i and `, in four-

dimensional spacetime, there are 10 of them for each k, or 40 in all. The 10
correspond to 3 rotations, 3 boosts, and 4 translations.
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11.31 Torsion

We can use Cartan’s tetrads to define a more general covariant derivative.
The quantity F = F kck is a scalar under general coordinate transformations.
It has one flat-space index F a = F kcak which participates under Lorentz
transformations, but we’ll ignore that for the moment. Its k-derivative is

F a
,i = F k

,i c
a
k + F k cak,i. (11.207)

The four 4-vectors cak have four dual vectors cka that obey the rules

cak c
`
a = �`k and cak c

k
b = �ab . (11.208)

The inner product of this equation with the dual vector c`

F a
,i c

`
a = F k

,i c
a
k c

`
a + F k c`a c

a
k,i = F k

,i �
`
k + F k c`a c

a
k,i

= F `
,i + F k c`a c

a
k,i ⌘ F `

,i + F k !`
ki ⌘ F `

;i

(11.209)

is Cartan’s covariant derivative F `
;i of the contravariant vector F k. It is a

mixed tensor F `
;i defined in terms of a more general connection

!`
ki = c`a c

a
k,i (11.210)

that, unlike the Levi-Civita connection �`ki = �
`
ik, is not neccessarily sym-

metric in its two lower indices k and i.
The antisymmetric part of the Cartan connection is the torsion tensor

T `
ki ⌘

1

2

⇣
!`

ki � !`
ik

⌘
(11.211)

which is a tensor.

11.32 Parallel transport

The movement of a vector along a curve on a manifold so that its length
and direction in successive tangent spaces do not change is called Parallel
transport. If the vector is F = F iei, then we want the inner product ek ·dF
of dF with all dual tangent vectors ek to vanish along the curve. But this is
just the condition that the covariant derivative (11.200) of F should vanish
along the curve

ek · @F
@x`

=
@F k

@x`
+ F i �ki` = D`F

k = 0. (11.212)

Example 11.25 (Parallel transport on a sphere). We parallel-transport
the vector v = (0, 1, 0) up from the equator along the line of longitude
� = 0. Along this path, the vector v = (0, 1, 0) is constant, so @✓v = 0 and
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D✓vk = 0. Then we parallel-transport it down from the north pole along the
line of longitude � = ⇡/2 to the equator. Along this path, � = ⇡/2, and the
vector v = e✓/r = (0, cos ✓,� sin ✓) obeys the parallel-transport condition
(11.212) because its ✓-derivative

@v

@✓
=

1

r

@e✓
@✓

=
@

@✓
(0, cos ✓,� sin ✓) = (0,� sin ✓,� cos ✓) = �r̂|�=⇡/2

(11.213)
is perpendicular to the tangent vectors e✓ and e� along the curve � = ⇡/2.
We then parallel-transport v along the equator back to the starting point
� = 0. Along this path, the vector v = (0, 0,�1) is constant, so @�v = 0
and D�vk = 0. The change from v = (0, 1, 0) to v = (0, 0,�1) is due to the
curvature of the sphere.

11.33 Covariant derivatives

In comma notation, the derivative of a contravariant vector field F = F i ei
is

F,` = F i
,` ei + F i ei,` (11.214)

which in general lies outside the space spanned by the basis vectors ei. So
we use the a�ne connections (11.198) to form the inner product

ek · F,` = ek ·
�
F i
,`ei + F iei,`

�
= F i

,` �
k
i + F i �ki` = F k

,` + F i �ki` . (11.215)

This covariant derivative of a contravariant vector field often is writ-
ten with a semicolon

F k
;` = ek · F,` = F k

,` + F i �ki`. (11.216)

It transforms as a mixed second-rank tensor. The invariant change dF pro-
jected onto ek is

ek · dF = ek · F,` dx
` = F k

;` dx
`. (11.217)

In terms of its covariant components, the derivative of a vector V is

V,` = (Vk e
k),` = Vk,` e

k + Vk e
k
,`. (11.218)

To relate the derivatives of the vectors ei to the a�ne connections �ki`, we
di↵erentiate the orthonormality relation

�ki = ek · ei (11.219)

which gives us

0 = ek,` · ei + ek · ei,` or ek,` · ei = � ek · ei,` = � �ki`. (11.220)
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Since ei · ek,` = ��ki`, the inner product of ei with the derivative of V is

ei · V,` = ei ·
⇣
Vk,`e

k + Vk e
k
,`

⌘
= Vi,` � Vk�

k
i`. (11.221)

This covariant derivative of a covariant vector field often is written
with a semicolon

Vi;` = ei · V,` = Vi,` � Vk�
k
i`. (11.222)

It transforms as a rank-2 covariant tensor. Note the minus sign in Vi;` and
the plus sign in F k

;`. The change ei · dV is

ei · dV = ei · V,` dx
` = Vi;` dx

`. (11.223)

Since dV is invariant, ei covariant, and dx` contravariant, the quotient rule
(section 11.15) confirms that the covariant derivative Vi;` of a covariant
vector Vi is a rank-2 covariant tensor.
We used similar logic to derive Cartan’s covariant derivative (11.209) of

a contravariant vector

F k
;` = F k

,` + F i !k
i`. (11.224)

To find his formula for the covariant derivative of a covariant vector, we first
di↵erentiate the scalar V = Vk ck

Va,` = Vk,` c
k
a + Vk c

k
a,` (11.225)

and then use (11.208) to contract it with the dual vector cai

cai Va,` = Vk,` c
k
a c

a
i + Vk c

a
i c

k
a,` = Vk,` �

k
i + Vk c

a
i c

k
a,`

= Vi,` + Vk c
a
i c

k
a,`.

(11.226)

To evaluate cai c
k
a,`, we di↵erentiate the first of the dual-vector relations

(11.208) to show that

cai c
k
a,` = � cka c

a
i,`. (11.227)

Cartan’s covariant derivative of a covariant vector then is

Vi;` = Vi,` � Vk cka c
a
i,` = Vi,` � Vk !

k
i`. (11.228)

11.34 The covariant curl

Because the connection �ki` is symmetric (11.204) in its lower indices, The
covariant curl of a covariant vector Vi is simply its ordinary curl

V`;i � Vi;` = V`,i � Vk �
k
`i � Vi,` + Vk �

k
i` = V`,i � Vi,`. (11.229)
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Thus the Faraday field-strength tensor Fi` which is defined as the curl of
the covariant vector field Ai

Fi` = A`,i �Ai,` (11.230)

is a generally covariant second-rank tensor.
If however we must use Cartan’s covariant derivative (11.209), then we

would define the Faraday field-strength tensor Fi` as

Fi` = A`;i �Ai;` = A`,i �Ai,` +Ak

⇣
!k

i` � !k
`i

⌘
= A`,i �Ai,` + 2AkT

k
i`

(11.231)
in which T k

i` is the torsion tensor (11.211).

Example 11.26 (Orthogonal coordinates). In orthogonal coordinates, the
curl is defined (6.48, 11.91) in terms of the totally antisymmetric Levi-Civita
symbol ✏ijk (with ✏123 = ✏123 = 1), as

r⇥ V =
3X

i=1

(r⇥ V )i êi =
1

h1h2h3

3X

ijk=1

ei ✏
ijk Vk;j (11.232)

which, in view of (11.229) and the antisymmetry of ✏ijk, is

r⇥ V =
3X

i=1

(r⇥ V )i êi =
3X

ijk=1

1

hihjhk
ei ✏

ijk Vk,j (11.233)

or by (11.163 & 11.165)

r⇥ V =
3X

ijk=1

1

hihjhk
hiêi ✏

ijk Vk,j =
3X

ijk=1

1

hihjhk
hiêi ✏

ijk (hkV k),j .

(11.234)
Often one writes this as a determinant

r⇥ V =
1

h1h2h3

������

e1 e2 e3

@1 @2 @3
V1 V2 V3

������
=

1

h1h2h3

������

h1ê1 h2ê2 h3ê3
@1 @2 @3

h1V 1 h2V 2 h3V 3

������
.

(11.235)
In cylindrical coordinates, the curl is

r⇥ V =
1

⇢

������

⇢̂ ⇢ �̂ ẑ
@⇢ @� @z
V ⇢ ⇢V � V z

������
. (11.236)
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In spherical coordinates, it is

r⇥ V =
1

r2 sin ✓

������

r̂ r✓̂ r sin ✓ �̂
@r @✓ @�
V r rV ✓ r sin ✓ V �

������
. (11.237)

In more formal language, the curl is

dV = d
⇣
Vkdx

k
⌘
= Vk,i dx

i ^ dxk =
1

2
(Vk,i � Vi,k) dx

i ^ dxk. (11.238)

11.35 Covariant derivative of a tensor

Let’s write a second-rank contravariant tensor in a coordinate-invariant way
as a sum of direct products of tangent vectors ei

T = T jm ej ⌦ em. (11.239)

Its derivative is

T,k = T jm,k ej ⌦ em + T jm ej,k ⌦ em + T jm ej ⌦ em,k. (11.240)

The covariant derivative T i`;k of the tensor is the inner product of this
derivative with the contravariant or dual tangent vectors ei ⌦ e`

T i`;k = ei ⌦ e` · T,k
= T jm,k ei · ej e` · em + T jm ei · ej,k e` · em + T jm ei · ej e` · em,k

= T jm,k �
i
j �

`
m + T jm ei · ej,k �`m + T jm �ij e

` · em,k (11.241)

= T i`,k +T j` ei · ej,k + T im e` · em,k.

In it we recognize two instances of our formula �ijk = ei · ej,k for the a�ne
connection (11.198). Replacing these inner products with a�ne connections,
we may write the covariant derivative T i`

;k of the tensor as

T i`
;k = T i`

,k + T j` �ijk + T im �`mk. (11.242)

In particular, when T i` = F iG`, this formula says that Covariant deriva-
tives, like ordinary derivatives, obey the Leibniz rule

(F iG`);k = F i
;k G

` + F iG`
;k. (11.243)

Covariant derivatives, like ordinary derivatives, are derivations

(AB);k = A;k B +AB;k. (11.244)
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A similar argument leads to a similar formula for the covariant derivative
of a covariant tensor. A coordinate-independent form of a covariant tensor
Tjm is

T = Tjm ej ⌦ em. (11.245)

Its derivative is

T,k = Tjm,k ej ⌦ em + Tjm ej ,k ⌦em + Tjm ej ⌦ em,k . (11.246)

The covariant derivative Ti`;k of the tensor is the inner product of this deriva-
tive with the covariant tangent vectors ei ⌦ e`

Ti`;k = ei ⌦ e` · T,k
= Ti`,k + Tj` ei · ej ,k +Tim e` · em,k .

(11.247)

In it we see two instances of our other formula ei · ek,` = � �ki` for the
a�ne connection (11.220). Replacing them, we may write we may write the
covariant derivative Ti`;k of the tensor as

Ti`;k = Ti`,k � Tj` �
j
ik � Tim �

m
`k. (11.248)

The rule for a general tensor is to treat every contravariant index as in
(11.242) and every covariant index as in (11.248). The covariant derivative
of a mixed rank-4 tensor, for instance, is

T ab
xy;k = T ab

xy,k + T jb
xy�

a
jk + T am

xy �
b
mk � T ab

jy �
j
xk � T ab

xm�
m
yk. (11.249)

11.36 Covariant derivatives and antisymmetry

Let us apply our rule (11.248) for the covariant derivative of a second-rank
tensor Ai`

Ai`;k = Ai`,k �Am` �
m
ik �Aim �

m
`k (11.250)

to an antisymmetric tensor

Ai` = �A`i. (11.251)

Then by adding together the three cyclic permutations of the indices i`k we
find that the antisymmetry of the tensor and the symmetry (11.204) of the
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a�ne connection �mik = �mki conspire to cancel the quadratic terms leaving
us with

Ai`;k +Aki;` +A`k;i = Ai`,k �Am` �
m
ik �Aim �

m
`k

+ Aki,` �Ami �
m
k` �Akm �

m
i`

+ A`k,i �Amk �
m
`i �A`m �

m
ki

= Ai`,k +Aki,` +A`k,i (11.252)

an identity named after Luigi Bianchi (1856–1928).
The Maxwell field-strength tensor Fi` is antisymmetric by construction

(Fi` = A`,i �Ai,`), and so the Maxwell’s homogeneous equations

1
2 ✏

ijk` Fjk,` = Fjk,` + Fk`,j + F`j,k

= Ak,j` �Aj,k` +A`,kj �Ak,`j +Aj,`k �A`,jk = 0
(11.253)

are tensor equations valid in all coordinate systems. This remains true even
if we use Cartan’s covariant derivative (11.209) to define the Cartan-Faraday
tensor (11.231). It is amazing how right Maxwell was in the middle of the
nineteenth century.

11.37 A�ne connection and metric tensor

To relate the a�ne connection �m`i to the derivatives of the metric tensor
gk`, we lower the contravariant index m to get

�k`i = gkm �
m
`i = gkm �

m
i` = �ki` (11.254)

which is symmetric in its last two indices and which some call a Christo↵el
symbol of the first kind, written [`i, k]. One can raise the index k back
up by using the inverse of the metric tensor

gmk �k`i = gmk gkn �
n
`i = �mn �

n
`i = �

m
`i . (11.255)

Although we can raise and lower these indices, the connections �m`i and �k`i
are not tensors.
The definition (11.198) of the a�ne connection tells us that

�k`i = gkm �
m
`i = gkm em · e`,i = ek · e`,i = �ki` = ek · ei,`. (11.256)

By di↵erentiating the definition gi` = ei · e` of the metric tensor, we find

gi`,k = ei,k · e` + ei · e`,k = e` · ei,k + ei · e`,k = �`ik + �i`k. (11.257)
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Permuting the indices cyclicly, we have

gki,` = �ik` + �ki`

g`k,i = �k`i + �`ki.
(11.258)

If we now subtract relation (11.257) from the sum of the two formulas
(11.258) keeping in mind the symmetry �abc = �acb, then we find that four
of the six terms cancel

gki,` + g`k,i � gi`,k = �ik` + �ki` + �k`i + �`ki � �`ik � �i`k = 2�k`i (11.259)

leaving a formula for �k`i

�k`i =
1
2 (gki,` + g`k,i � gi`,k) . (11.260)

Thus the connection is three derivatives of the metric tensor

�si` = gsk�k`i =
1
2g

sk (gki,` + g`k,i � gi`,k) . (11.261)

11.38 Covariant derivative of the metric tensor

Let us apply our formula (11.248) for the covariant derivative of a covariant
tensor to the metric tensor gi`

gi`;k ⌘ gi`,k � gm` �
m
ik � gin �

n
`k. (11.262)

If we now substitute our formula (11.261) for the connections �lik and �n`k

gi`;k = gi`,k � gm`
1
2g

ms (gis,k + gsk,i � gik,s)� gin
1
2g

ns (gs`,k + gks,` � g`k,s)
(11.263)

and use the fact (11.149) that the metric tensors gi` and g`k are mutually
inverse and symmetric, then we find

gi`;k = gi`,k � 1
2�

s
` (gis,k + gsk,i � gik,s)� 1

2�
s
i (gs`,k + gks,` � g`k,s)

= gi`,k � 1
2 (gi`,k + g`k,i � gik,`)� 1

2 (gi`,k + gki,` � g`k,i) = 0.
(11.264)

The covariant derivative of the metric tensor vanishes. This result follows
from our choice of the Levi-Civita connection (11.198); it is not true for
some other connections.
Covariant derivatives obey the Leibniz rule (11.243), so

�ab;` = (gac gcb);` = gac;` gcb + gac gcb;` = gac;` gcb

= �ai`�
i
b gcb � �kb`�ak gcb = �ab` gcb � �ab` gcb = 0.

(11.265)

The covariant derivative of the inverse metric tensor vanishes, gac;` = 0.
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11.39 Divergence of a contravariant vector

The contracted covariant derivative of a contravariant vector is a scalar
known as the divergence,

r · V = V i
;i = V i

,i + V k �iki. (11.266)

Because gik = gki, in the sum (11.261) over i

�iki =
1
2g

i` (gi`,k + g`k,i � gki,`) (11.267)

the last two terms cancel because they di↵er only by the interchange of the
dummy indices i and `

gi`g`k,i = g`igik,` = gi`gki,`. (11.268)

So the contracted connection collapses to

�iki =
1
2g

i`gi`,k. (11.269)

There is a nice formula for this last expression. To derive it, let g ⌘ gi` be
the 4⇥4 matrix whose elements are those of the covariant metric tensor gi`.
Its determinant, like that of any matrix, is the cofactor sum (1.209) along
any row or column, that is, over ` for fixed i or over i for fixed `

det(g) =
X

i or `

gi`Ci` (11.270)

in which the cofactor Ci` is (�1)i+` times the determinant of the reduced
matrix consisting of the matrix g with row i and column ` omitted. Thus
the partial derivative of det g with respect to the i`th element gi` is

@ det(g)

@gi`
= Ci` (11.271)

in which we allow gi` and g`i to be independent variables for the purposes
of this di↵erentiation. The inverse gi` of the metric tensor g, like the inverse
(1.211) of any matrix, is the transpose of the cofactor matrix divided by its
determinant det(g)

gi` =
C`i

det(g)
=

1

det(g)

@ det(g)

@g`i
. (11.272)

Using this formula and the chain rule, we may write the derivative of the
determinant det(g) as

det(g),k =
@ det(g)

@gi`
gi`,k = det(g) g`i gi`,k (11.273)
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and so since gi` = g`i, the contracted connection (11.269) is

�iki =
1
2g

i`gi`,k =
det(g),k
2 det(g)

=
| det(g)|,k
2| det(g)| =

g,k
2g

=
(
p
g),kp
g

(11.274)

in which g⌘
��det(g)

�� is the absolute value of the determinant of the metric
tensor.
Thus from (11.266 & 11.274), we arrive at our formula for the covariant

divergence of a contravariant vector:

r · V = V i
;i = V i

,i + �
i
kiV

k = V k
,k +

(
p
g),kp
g

V k =
(
p
g V k),kp

g
. (11.275)

Example 11.27 (Maxwell’s inhomogeneous equations). An important ap-
plication of this divergence formula (11.275) is the generally covariant form
(12.162) of Maxwell’s inhomogeneous equations

1
p
g

⇣p
gF k`

⌘

,`
= µ0j

k. (11.276)

Example 11.28 (Energy-momentum tensor). Another application is to the
divergence of the symmetric energy-momentum tensor T ij = T ji

T ij
;i = T ij

,i + �iki T
kj + �jmi T

im

=
(
p
gT kj)kp

g
+ �jmi T

im.
(11.277)

Example 11.29 (Divergence in orthogonal coordinates). In two orthogonal
coordinates, equations (11.158 & 11.165) imply that

p
g = h1h2 and V k =

V k/hk, and so the divergence (11.275) of a vector V is

r · V =
1

h1h2

2X

k=1

✓
h1h2
hk

V k

◆

,k

(11.278)

which in polar coordinates (section 11.24) with hr = 1 and h✓ = r, is

r · V =
1

r

h�
r V r

�
,r
+
�
V ✓

�
,✓

i
=

1

r

h�
r V r

�
,r
+ V ✓,✓

i
. (11.279)

In three orthogonal coordinates, equations (11.158 & 11.165) give
p
g =

h1h2h3 and V k = V k/hk, and so the divergence (11.275) of a vector V is



11.40 The covariant laplacian 523

(11.29)

r · V =
1

h1h2h3

3X

k=1

✓
h1h2h3
hk

V k

◆

,k

. (11.280)

In cylindrical coordinates (section 11.25), h⇢ = 1, h� = ⇢, and hz = 1; so

r · V =
1

⇢

h�
⇢V ⇢

�
,⇢
+
�
V �

�
,�
+
�
⇢V z

�
,z

i

=
1

⇢

h�
⇢V ⇢

�
,⇢
+ V �,� + ⇢V z,z

i
. (11.281)

In spherical coordinates (section 11.26), hr = 1, h✓ = r, h� = r sin ✓, g =
| det g| = r4 sin2 ✓ and the inverse gij of the metric tensor is

(gij) =

0

@
1 0 0
0 r�2 0
0 0 r�2 sin�2 ✓

1

A . (11.282)

So our formula (11.278) gives us

r · V =
1

r2 sin ✓

h�
r2 sin ✓ V r

�
,r
+
�
r sin ✓ V ✓

�
,✓
+
�
r V �

�
,�

i

=
1

r2 sin ✓

h
sin ✓

�
r2V r

�
,r
+ r

�
sin ✓ V ✓

�
,✓
+ rV �,�

i
(11.283)

as the divergence r · V .

11.40 The covariant laplacian

In flat 3-space, we write the laplacian as r ·r = r2 or as 4. In euclidian
coordinates, both mean @2x + @2y + @2z . In flat minkowski space, one often
turns the triangle into a square and writes the 4-laplacian as 2 = 4� @20 .

The gradient f,k of a scalar field f is a covariant vector, and f ,i = gikf,k
is its contravariant form. The invariant laplacian 2f of a scalar field f
is the covariant divergence f ,i

;i . We may use our formula (11.275) for the
divergence of a contravariant vector to write it in these equivalent ways

2f = f ,i
;i = (gikf,k);i =

(
p
g f ,i),ip
g

=
(
p
g gikf,k),ip

g
. (11.284)

Example 11.30 (Invariant Laplacians). In two orthogonal coordinates,
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equations (11.158 & 11.159) imply that
p
g =

p
| det(gij)| = h1h2 and that

f ,i = gik f,k = h�2
i f,i, and so the laplacian (11.284) of a scalar f is

4f =
1

h1h2

 
2X

i=1

h1h2
h2i

f,i

!

,i. (11.285)

In polar coordinates, where h1 = 1, h2 = r, and g = r2, the laplacian is

4f =
1

r

h
(rf,r),r +

�
r�1f,✓

�
,✓

i
= f,rr + r�1f,r + r�2f,✓✓. (11.286)

In three orthogonal coordinates, equations (11.158 & 11.159) imply thatp
g =

p
| det(gij)| = h1h2h3 and that f ,i = gik f,k = h�2

i f,i, and so the
laplacian (11.284) of a scalar f is (6.40)

4f =
1

h1h2h3

 
3X

i=1

h1h2h3
h2i

f,i

!

,i. (11.287)

In cylindrical coordinates (section 11.25), h⇢ = 1, h� = ⇢, hz = 1, g = ⇢2,
and the laplacian is

4f =
1

⇢


(⇢ f,⇢),⇢ +

1

⇢
f,�� + ⇢ f,zz

�
= f,⇢⇢+

1

⇢
f,⇢+

1

⇢2
f,��+f,zz. (11.288)

In spherical coordinates (section 11.26), hr = 1, h✓ = r, h� = r sin ✓, and
g = | det g| = r4 sin2 ✓. So (11.287) gives us the laplacian of f as (6.43)

4f =

�
r2 sin ✓f,r

�
,r
+ (sin ✓f,✓),✓ + (f,�/ sin ✓),�

r2 sin ✓

=

�
r2f,r

�
,r

r2
+

(sin ✓f,✓),✓
r2 sin ✓

+
f,��

r2 sin2 ✓
. (11.289)

If the function f is a function only of the radial variable r, then the laplacian
is simply

4f(r) =
1

r2
⇥
r2f 0(r)

⇤0
=

1

r
[rf(r)]00 = f 00(r) +

2

r
f 0(r) (11.290)

in which the primes denote r-derivatives.

11.41 The principle of stationary action

It follows from a path-integral formulation of quantum mechanics that the
classical motion of a particle is given by the principle of stationary action
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�S = 0. In the simplest case of a free non-relativistic particle, the lagrangian
is L = mẋ

2/2 and the action is

S =

Z t2

t1

m

2
ẋ
2 dt. (11.291)

The classical trajectory is the one that when varied slightly by �x (with
�x(t1) = �x(t2) = 0) does not change the action to first order in �x. We
first note that the change �ẋ in the velocity is the time derivative of the
change in the path

�ẋ = ẋ
0 � ẋ =

d

dt
(x0 � x) =

d

dt
�x. (11.292)

So since �x(t1) = �x(t2) = 0, the stationary path satisfies

0 = �S =

Z t2

t1

mẋ · �ẋ dt =

Z t2

t1

mẋ · d�x
dt

dt

=

Z t2

t1


m

d

dt
(ẋ · �x)�mẍ · �x

�
dt

= m [ẋ · �x]t2t1 �m

Z t2

t1

ẍ · �x dt = �m

Z t2

t1

ẍ · �x dt. (11.293)

If the first-order change in the action is to vanish for arbitrary small varia-
tions �x in the path, then the acceleration must vanish

ẍ = 0 (11.294)

which is the classical equation of motion for a free particle.
If the particle is moving under the influence of a potential V (x), then the

action is

S =

Z t2

t1

⇣m
2
ẋ
2 � V (x)

⌘
dt. (11.295)

Since �V (x) = rV (x) · �x, The principle of stationary action requires that

0 = �S =

Z t2

t1

(�mẍ�rV ) · �x dt (11.296)

or

mẍ = �rV (11.297)

which is the classical equation of motion for a particle of mass m in a po-
tential V .
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The action for a free particle of mass m in special relativity is

S = �m

Z ⌧2

⌧1

d⌧ = �
Z t2

t1

m
p
1� ẋ

2 dt (11.298)

where c = 1 and ẋ = dx/dt. The requirement of stationary action is

0 = �S = � �

Z t2

t1

m
p

1� ẋ
2 dt = m

Z t2

t1

ẋ · �ẋp
1� ẋ

2
dt (11.299)

But 1/
p
1� ẋ

2 = dt/d⌧ and so

0 = �S = m

Z t2

t1

dx

dt
· d�x
dt

dt

d⌧
dt = m

Z ⌧2

⌧1

dx

dt
· d�x
dt

dt

d⌧

dt

d⌧
d⌧

= m

Z ⌧2

⌧1

dx

d⌧
· d�x
d⌧

d⌧. (11.300)

So integrating by parts, keeping in mind that �x(⌧2) = �x(⌧1) = 0, we have

0 = �S = m

Z ⌧2

⌧1


d

d⌧

✓
dx

d⌧
· �x

◆
� d2x

d⌧2
· �x

�
d⌧ = �m

Z ⌧2

⌧1

d2x

d⌧2
· �x d⌧.

(11.301)
To have this hold for arbitrary �x, we need

d2x

d⌧2
= 0 (11.302)

which is the equation of motion for a free particle in special relativity.
What about a charged particle in an electromagnetic field Ai? Its action

is

S = �m

Z ⌧2

⌧1

d⌧ + q

Z x2

x1

Ai(x) dx
i =

Z ⌧2

⌧1

✓
�m+ qAi(x)

dxi

d⌧

◆
d⌧. (11.303)

We now treat the first term in a four-dimensional manner

�d⌧ = �
p
�⌘ikdxidxk =

�⌘ikdxi�dxkp
�⌘ikdxidxk

= �uk�dx
k = �ukd�x

k (11.304)

in which uk = dxk/d⌧ is the 4-velocity (11.48) and ⌘ is the Minkowski metric
(11.27) of flat spacetime. The variation of the other term is

�
�
Ai dx

i
�
= (�Ai) dx

i +Ai �dx
i = Ai,k�x

k dxi +Ai d�x
i (11.305)

Putting them together, we get for �S

�S =

Z ⌧2

⌧1

✓
muk

d�xk

d⌧
+ qAi,k�x

k dx
i

d⌧
+ qAi

d�xi

d⌧

◆
d⌧. (11.306)
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After integrating by parts the last term, dropping the boundary terms, and
changing a dummy index, we get

�S =

Z ⌧2

⌧1

✓
�m

duk
d⌧

�xk + qAi,k�x
k dx

i

d⌧
� q

dAk

d⌧
�xk
◆

d⌧

=

Z ⌧2

⌧1


�m

duk
d⌧

+ q (Ai,k �Ak,i)
dxi

d⌧

�
�xk d⌧. (11.307)

If this first-order variation of the action is to vanish for arbitrary �xk, then
the particle must follow the path

0 = �m
duk
d⌧

+ q (Ai,k �Ak,i)
dxi

d⌧
or

dpk

d⌧
= qF kiui (11.308)

which is the Lorentz force law (11.76).

11.42 Particles and fields in a gravitational field

The invariant action for a particle of mass m moving along a path xi(t) is

S = �m

Z ⌧2

⌧1

d⌧ = �m

Z ⇣
� gi`dx

idx`
⌘ 1

2
. (11.309)

Proceeding as in Eq.(11.304), we compute the variation �d⌧ as

�d⌧ = �
p
�gi`dxidx` =

��(gi`)dxidx` � 2gi`dxi�dx`

2
p
�gi`dxidx`

= � 1
2gi`,k�x

kuiu`d⌧ � gi`u
i�dx`

= � 1
2gi`,k�x

kuiu`d⌧ � gi`u
id�x` (11.310)

in which u` = dx`/d⌧ is the 4-velocity (11.48). The condition of stationary
action then is

0 = �S = �m

Z ⌧2

⌧1

�d⌧ = m

Z ⌧2

⌧1

✓
1
2gi`,k�x

kuiu` + gi`u
id�x

`

d⌧

◆
d⌧ (11.311)

which we integrate by parts keeping in mind that �x`(⌧2) = �x`(⌧1) = 0

0 = m

Z ⌧2

⌧1

✓
1
2gi`,k�x

kuiu` � d(gi`ui)

d⌧
�x`
◆
d⌧

= m

Z ⌧2

⌧1

✓
1
2gi`,k�x

kuiu` � gi`,ku
iuk�x` � gi`

dui

d⌧
�x`
◆
d⌧. (11.312)
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Now interchanging the dummy indices ` and k on the second and third
terms, we have

0 = m

Z ⌧2

⌧1

✓
1
2gi`,ku

iu` � gik,`u
iu` � gik

dui

d⌧

◆
�xkd⌧ (11.313)

or since �xk is arbitrary

0 = 1
2gi`,ku

iu` � gik,`u
iu` � gik

dui

d⌧
. (11.314)

If we multiply this equation of motion by grk and note that gik,`uiu` =
g`k,iuiu`, then we find

0 =
dur

d⌧
+ 1

2g
rk (gik,` + g`k,i � gi`,k)u

iu`. (11.315)

So using the symmetry gi` = g`i and the formula (11.261) for �ri`, we get

0 =
dur

d⌧
+ �ri` u

iu` or 0 =
d2xr

d⌧2
+ �ri`

dxi

d⌧

dx`

d⌧
(11.316)

which is the geodesic equation. In empty space, particles fall along geodesics
independently of their masses.
The right-hand side of the geodesic equation (11.316) is a contravariant

vector because (Weinberg, 1972) under general coordinate transformations,
the inhomogeneous terms arising from ẍr cancel those from �ri`ẋ

iẋ`. Here
and often in what follows we’ll use dots to mean proper-time derivatives.
The action for a particle of mass m and charge q in a gravitational field

�ri` and an electromagnetic field Ai is

S = �m

Z ⇣
� gi`dx

idx`
⌘ 1

2
+ q

Z ⌧2

⌧1

Ai(x) dx
i (11.317)

because the interaction q
R
Aidxi is invariant under general coordinate trans-

formations. By (11.307 & 11.313), the first-order change in S is

�S = m

Z ⌧2

⌧1


1
2gi`,ku

iu` � gik,`u
iu` � gik

dui

d⌧
+ q (Ai,k �Ak,i)u

i

�
�xkd⌧

(11.318)
and so by combining the Lorentz force law (11.308) and the geodesic equation
(11.316) and by writing F riẋi as F r

i ẋ
i, we have

0 =
d2xr

d⌧2
+ �ri`

dxi

d⌧

dx`

d⌧
� q

m
F r

i
dxi

d⌧
(11.319)

as the equation of motion of a particle of mass m and change q. It is striking
how nearly perfect the electromagnetism of Faraday and Maxwell is.
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The action of the electromagnetic field interacting with an electric current
jk in a gravitational field is

S =

Z h
�1

4 Fk` F
k` + µ0Ak j

k
ip

g d4x (11.320)

in which
p
g d4x is the invariant volume element. After an integration by

parts, the first-order change in the action is

�S =

Z 
� @

@x`

⇣
F k`pg

⌘
+ µ0 j

k pg

�
�Ak d

4x, (11.321)

and so the inhomogeneous Maxwell equations in a gravitational field are

@

@x`

⇣p
g F k`

⌘
= µ0

p
g jk. (11.322)

11.43 Equivalence principle and geodesic equation

The principle of equivalence (section 11.19) says that in any gravitational
field, one may choose free-fall coordinates in which all physical laws take the
same form as in special relativity without acceleration or gravitation—at
least over a suitably small volume of spacetime. Within this volume and in
these coordinates, things behave as they would at rest deep in empty space
far from any matter or energy. The volume must be small enough so that
the gravitational field is constant throughout it.

Example 11.31 (Elevators). When a modern elevator starts going down
from a high floor, it accelerates downward at something less than the lo-
cal acceleration of gravity. One feels less pressure on one’s feet; one feels
lighter. After accelerating downward for a few seconds, the elevator assumes
a constant downward speed, and then one feels the normal pressure of one’s
weight on one’s feet. The elevator seems to be slowing down for a stop, but
actually it has just stopped accelerating downward.
What if the cable snapped, and a frightened passenger dropped his laptop?

He could catch it very easily as it would not seem to fall because the elevator,
the passenger, and the laptop would all fall at the same rate. The physics
in the falling elevator would be the same as if the elevator were at rest in
empty space far from any gravitational field. The laptop’s clock would tick
as fast as it would at rest in the absence of gravity.

The transformation from arbitrary coordinates xk to free-fall coordinates
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yi changes the metric gj` to the diagonal metric ⌘ik of flat spacetime ⌘ =
diag(�1, 1, 1, 1), which has two indices and is not a Levi-Civita tensor. Al-
gebraically, this transformation is a congruence (1.351)

⌘ik =
@xj

@yi
gj`

@x`

@yk
. (11.323)

The geodesic equation (11.316) follows from the principle of equiva-
lence (Weinberg, 1972; Hobson et al., 2006). Suppose a particle is moving
under the influence of gravitation alone. Then one may choose free-fall co-
ordinates y(x) so that the particle obeys the force-free equation of motion

d2yi

d⌧2
= 0 (11.324)

with d⌧ the proper time d⌧2 = �⌘ik dyidyk. The chain rule applied to yi(x)
in (11.324) gives

0 =
d

d⌧

✓
@yi

@xk
dxk

d⌧

◆

=
@yi

@xk
d2xk

d⌧2
+

@2yi

@xk@x`
dxk

d⌧

dx`

d⌧
. (11.325)

We multiply by @xm/@yi and use the identity

@xm

@yi
@yi

@xk
= �mk (11.326)

to write the equation of motion (11.324) in the x-coordinates

d2xm

d⌧2
+ �mk`

dxk

d⌧

dx`

d⌧
= 0. (11.327)

This is the geodesic equation (11.316) in which the a�ne connection is

�mk` =
@xm

@yi
@2yi

@xk@x`
. (11.328)

11.44 Weak static gravitational fields

Newton’s equations describe slow motion in a weak static gravitational field.
Because the motion is slow, we neglect ui compared to u0 and simplify the
geodesic equation (11.316) to

0 =
dur

d⌧
+ �r00 (u

0)2. (11.329)
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Because the gravitational field is static, we neglect the time derivatives gk0,0
and g0k,0 in the connection formula (11.261) and find for �r00

�r00 =
1
2 g

rk (g0k,0 + g0k,0 � g00,k) = �1
2 g

rk g00,k (11.330)

with �000 = 0. Because the field is weak, the metric can di↵er from ⌘ij by
only a tiny tensor gij = ⌘ij + hij so that to first order in |hij | ⌧ 1 we
have �r00 = �1

2 h00,r for r = 1, 2, 3. With these simplifications, the geodesic
equation (11.316) reduces to

d2xr

d⌧2
= 1

2 (u
0)2 h00,r or

d2xr

d⌧2
=

1

2

✓
dx0

d⌧

◆2

h00,r. (11.331)

So for slow motion, the ordinary acceleration is described by Newton’s law

d2x

dt2
=

c2

2
rh00. (11.332)

If � is his potential, then for slow motion in weak static fields

g00 = �1 + h00 = �1� 2�/c2 and so h00 = � 2�/c2. (11.333)

Thus, if the particle is at a distance r from a mass M, then � = � GM/r
and h00 = �2�/c2 = 2GM/rc2 and so

d2x

dt2
= �r� = rGM

r
= �GM

r

r3
. (11.334)

How weak are the static gravitational fields we know about? The dimen-
sionless ratio �/c2 is 10�39 on the surface of a proton, 10�9 on the Earth,
10�6 on the surface of the sun, and 10�4 on the surface of a white dwarf.

11.45 Gravitational time dilation

Suppose we have a system of coordinates xi with a metric gik and a clock at
rest in this system. Then the proper time d⌧ between ticks of the clock is

d⌧ = (1/c)
q
�gij dxi dxj =

p
�g00 dt (11.335)

where dt is the time between ticks in the xi coordinates, which is the lab-
oratory frame in the gravitational field g00. By the principle of equivalence
(section 11.19), the proper time d⌧ between ticks is the same as the time
between ticks when the same clock is at rest deep in empty space.
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If the clock is in a weak static gravitational field due to a mass M at a
distance r, then

� g00 = 1 + 2�/c2 = 1� 2GM/c2r (11.336)

is a little less than unity, and the interval of proper time between ticks

d⌧ =
p
�g00 dt =

p
1� 2GM/c2r dt (11.337)

is slightly less than the interval dt between ticks in the coordinate system
of an observer at x in the rest frame of the clock and the mass, and in
its gravitational field. Since dt > d⌧ , the laboratory time dt between ticks
is greater than the proper or intrinsic time d⌧ between ticks of the clock
una↵ected by any gravitational field. Clocks near big masses run slow.
Now suppose we have two identical clocks at di↵erent heights above sea

level. The time T` for the lower clock to make N ticks will be longer than
the time Tu for the upper clock to make N ticks. The ratio of the clock times
will be

T`

Tu
=

p
1� 2GM/c2(r + h)p

1� 2GM/c2r
⇡ 1 +

gh

c2
. (11.338)

Now imagine that a photon going down passes the upper clock which mea-
sures its frequency as ⌫u and then passes the lower clock which measures its
frequency as ⌫`. The slower clock will measure a higher frequency. The ratio
of the two frequencies will be the same as the ratio of the clock times

⌫`
⌫u

= 1 +
gh

c2
. (11.339)

As measured by the lower, slower clock, the photon is blue shifted.

Example 11.32 (Pound, Rebka, and Mössbauer). Pound and Rebka in
1960 used the Mössbauer e↵ect to measure the blue shift of light falling
down a 22.6 m shaft. They found

⌫` � ⌫u
⌫

=
gh

c2
= 2.46⇥ 10�15 (11.340)

(Robert Pound 1919–2010, Glen Rebka 1931–, Rudolf Mössbauer 1929–
2011).

Example 11.33 (Redshift of the sun). A photon emitted with frequency
⌫0 at a distance r from a mass M would be observed at spatial infinity to
have frequency ⌫

⌫ = ⌫0
p
�g00 = ⌫0

p
1� 2MG/c2r (11.341)
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for a redshift of �⌫ = ⌫0� ⌫. Since the Sun’s dimensionless potential ��/c2

is �MG/c2r = �2.12⇥ 10�6 at its surface, sunlight is shifted to the red by
2 parts per million.

11.46 Curvature

The curvature tensor or Riemann tensor is

Ri
mnk = �imn,k � �imk,n + �ikj �

j
nm � �inj �

j
km (11.342)

which we may write as the commutator

Ri
mnk = (Rnk)

i
m = [@k + �k, @n + �n]

i
m

= (�n,k � �k,n + �k �n � �n �k)i m
(11.343)

in which the �’s are treated as matrices

�k =

0

BB@

�0k 0 �0k 1 �0k 2 �0k 3

�1k 0 �1k 1 �1k 2 �1k 3

�2k 0 �2k 1 �2k 2 �2k 3

�3k 0 �3k 1 �3k 2 �3k 3

1

CCA (11.344)

with (�k �n)i m = �ikj �
j
nm and so forth. Just as there are two conventions

for the Faraday tensor Fik which di↵er by a minus sign, so too there are two
conventions for the curvature tensor Ri

mnk. Weinberg (Weinberg, 1972) uses
the definition (11.342); Carroll (Carroll, 2003), Padmanabhan (Padmanab-
han, 2010), Schutz (Schutz, 2009), and Zee (Zee, 2013) use an extra minus
sign.
The Ricci tensor is a contraction of the curvature tensor

Rmk = Rn
mnk (11.345)

and the scalar curvature is a further contraction

R = gmk Rmk. (11.346)

Example 11.34 (Curvature of a sphere). While in four-dimensional space-
time indices run from 0 to 3, on the sphere they are just ✓ and �. There are
only eight possible a�ne connections, and because of the symmetry (11.204)
in their lower indices �i✓� = �i�✓, only six are independent.
The point p on a sphere of radius r has cartesian coordinates

p = r (sin ✓ cos�, sin ✓ sin�, cos ✓) (11.347)
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so the two 3-vectors are

e✓ =
@p

@✓
= r (cos ✓ cos�, cos ✓ sin�, � sin ✓) = r ✓̂

e� =
@p

@�
= r sin ✓ (� sin�, cos�, 0) = r sin ✓ �̂.

(11.348)

The embedding metric is the 3 ⇥ 3 identity matrix, so the metric gij made
of the dot products gij = ei · ej is

(gij) =

✓
r2 0
0 r2 sin2 ✓

◆
. (11.349)

Di↵erentiating the vectors e✓ and e�, we find

e✓,✓ = � r (sin ✓ cos�, sin ✓ sin�, cos ✓) = �r r̂ (11.350)

e✓,� = r cos ✓ (� sin�, cos�, 0) = r cos ✓ �̂ (11.351)

e�,✓ = e✓,� (11.352)

e�,� = � r sin ✓ (cos�, sin�, 0) . (11.353)

The metric with upper indices (gij) is the inverse of the metric (gij)

(gij) =

✓
r�2 0
0 r�2 sin�2 ✓

◆
(11.354)

so the dual vectors ei are

e
✓ = r�1 (cos ✓ cos�, cos ✓ sin�, � sin ✓) = r�1

✓̂

e
� = =

1

r sin ✓
(� sin�, cos�, 0) =

1

r sin ✓
�̂. (11.355)

The a�ne connections are given by (11.198) as

�ijk = �ikj = e
i · ej,k. (11.356)

Since both e
✓ and e

� are perpendicular to r̂, the a�ne connections �✓✓✓ and

��✓✓ both vanish. Also, e�,� is orthogonal to �̂, so ���� = 0 as well. Similarly,

e✓,� is perpendicular to ✓̂, so �✓✓� = �✓�✓ also vanishes.
The two nonzero a�ne connections are

��✓� = e
� · e✓,� = r�1 sin�1 ✓ �̂ · r cos ✓ �̂ = cot ✓ (11.357)

and

�✓�� = e
✓ · e�,�

= � sin ✓ (cos ✓ cos�, cos ✓ sin�, � sin ✓) · (cos�, sin�, 0)
= � sin ✓ cos ✓. (11.358)
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In terms of the two non-zero a�ne connections ��✓� = ���✓ = cot ✓ and

�✓�� = � sin ✓ cos ✓, the two Christo↵el matrices (11.344) are

�✓ =

 
0 0

0 ��✓�

!
=

✓
0 0
0 cot ✓

◆
(11.359)

and

�� =

 
0 �✓��
���✓ 0

!
=

✓
0 � sin ✓ cos ✓

cot ✓ 0

◆
. (11.360)

Their commutator is

[�✓,��] =

✓
0 cos2 ✓

cot2 ✓ 0

◆
= �[��,�✓] (11.361)

and both [�✓,�✓] and [��,��] vanish.
So the commutator formula (11.343) gives for Riemann’s curvature tensor

R✓
✓✓✓ = [@✓ + �✓, @✓ + �✓]

✓
✓ = 0

R�
✓�✓ = [@✓ + �✓, @� + ��]

�
✓ = (��,✓)

�
✓ + [�✓,��]

�
✓

= (cot ✓),✓ + cot2 ✓ = �1

R✓
�✓� = [@� + ��, @✓ + �✓]

✓
� = � (��,✓)

✓
� + [� �,�✓]

✓
�

= cos2 ✓ � sin2 ✓ � cos2 ✓ = � sin2 ✓

R�
��� = [@� + ��, @� + ��]

�
� = 0. (11.362)

The Ricci tensor (11.345) is the contraction Rmk = Rn
mnk, and so

R✓✓ = R✓
✓✓✓ +R�

✓�✓ = �1

R�� = R✓
�✓� +R�

��� = � sin2 ✓.
(11.363)

The curvature scalar (11.346) is the contraction R = gkmRmk, and so since
g✓✓ = r�2 and g�� = r�2 sin�2 ✓, it is

R = g✓✓ R✓✓ + g��R�� = � r�2 � sin2 ✓ r�2 sin�2 ✓ = � 2

r2
(11.364)

for a 2-sphere of radius r.
Gauss invented a formula for the curvature K of a surface; for all two-

dimensional surfaces, his K = �R/2.

Example 11.35 (Curvature of a cylindrical hyperboloid). The points of
a cylindrical hyperboloid in 3-space satisfy z2 = x2 + y2 � r2 and may be
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parameterized as p = r(cosh ✓ cos�, cosh ✓ sin�, sinh ✓). The (orthogonal)
coordinate basis vectors are

e✓ = p,✓ = r(sinh ✓ cos�, sinh ✓ sin�, cosh ✓)

e� = p,� = r(� cosh ✓ sin�, cosh ✓ cos�, 0).
(11.365)

The embedding metric is the 3⇥3 identity matrix, so the metric gij = ei ·ej
is

(gij) = r2
✓
cosh2 ✓ + sinh2 ✓ 0

0 cosh2 ✓

◆
. (11.366)

Tristan Hubsch’s Mathematica package great.m can compute the scalar
curvature for us. One enters

x = {theta, phi};

(met = {{r^2*(Cosh[theta]^2 + Sinh[theta]^2), 0},

{0, r^2*Cosh[theta]^2}}) // MatrixForm;

SCurvature[met, x]

and gets R = 2/(r cosh(2✓))2 after adjusting for Hubsch’s sign convention.
Python has sympy and gravipy.

11.47 The gravitational action and Einstein’s equations

If we make an action that is a scalar, invariant under general coordinate
transformations, and then apply to it the principle of stationary action, we
will get tensor field equations that are invariant under general coordinate
transformations. If the metric of spacetime is among the fields of the action,
then the resulting theory will be a possible theory of gravity. If we make the
action as simple as possible, it will be Einstein’s theory.
To make the action of the gravitational field, we need a scalar. Apart

from the volume 4-form ⇤1 =
p
| det gik| d4x =

p
g d4x =

p
g c dt d3x, the

simplest scalar we can form from the metric tensor and its first and second
derivatives is the scalar curvature R which gives us the Einstein-Hilbert
action

SEH = � c3

16⇡G

Z
R
p
g d4x = � c3

16⇡G

Z
gik Rik

p
g d4x (11.367)

in which G = 6.7087⇥ 10�39 ~c (GeV/c2)�2 = 6.6742⇥ 10�11m3 kg�1 s�2 is
Newton’s constant.
If �gik(x) is a tiny local change in the inverse metric, then the rule
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� detA = detATr(A�1�A) (1.41, valid for any nonsingular, nondefective
matrix A) together with the identity 0 = �(gikgk`) = �gik gk` + gik �gk`
imply that

�
p
g = �

� det g

2
p
g

= �
(det g)gik �gik

2
p
g

=
1

2

p
g gik �g

ik. (11.368)

So the first-order change in the action density is

�
⇣
gik Rik

p
g
⌘
= Rik

p
g �gik + gik Rik �

p
g + gik

p
g �Rik

=

✓
Rik �

1

2

p
g gik

◆
�gik + gik

p
g �Rik.

(11.369)

The product gik�Rik is a scalar, so we can evaluate it in any coordinate
system. In a local inertial frame, where �abc = 0 and gde is constant, this
invariant variation of the Ricci tensor (11.345) is

gik�Rik = gik �
�
�nin,k � �nik,n

�
= gik (@k ��

n
in � @n ��

n
ik)

= gik @k ��
n
in � gin @k ��

k
in = @k

⇣
gik ��nin � gin ��kin

⌘
.

(11.370)

By (11.206), the variations ��nin and ��kin are tensors although the connec-
tions themselves aren’t. Thus, we can evaluate this invariant variation of
the Ricci tensor in any coordinate system by replacing the derivatives with
covariant ones getting

gik�Rik =
⇣
gik ��nin � gin ��kin

⌘

;k
(11.371)

which we recognize as the covariant divergence (11.275) of a contravariant
vector. The last term in the first-order change (11.369) in the action density
is therefore a surface term whose variation vanishes for tiny local changes
�gik of the metric

p
g gik�Rik =

hp
g
⇣
gik ��nin � gin ��kin

⌘i

,k
. (11.372)

Hence the variation of SEH is simply

�SEH = � c3

16⇡G

Z ✓
Rik �

1

2
gikR

◆
p
g �gik d4x. (11.373)

The principle of least action �SEH = 0 now gives us Einstein’s equations
for empty space:

Rik �
1

2
gik R = 0. (11.374)

The tensor Gik = Rik � 1
2gik R is Einstein’s tensor.
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Taking the trace of Einstein’s equations (11.374), we find that the scalar
curvature R and the Ricci tensor Rik are zero in empty space:

R = 0 and Rik = 0. (11.375)

The energy-momentum tensor Tik is the source of the gravitational
field. It is defined so that the change in the action of the matter fields due
to a tiny local change �gik(x) in the metric is

�Sm = � 1

2c

Z
Tik

p
g �gik d4x =

1

2c

Z
T ik pg �gik d

4x (11.376)

in which the identity �gik = � gijg`k�gj` explains the sign change. Now the
principle of least action �S = �SEH + �Sm = 0 yields Einstein’s equations
in the presence of matter and energy

Rik �
1

2
gik R = � 8⇡G

c4
Tik. (11.377)

Taking the trace of both sides, we get

R =
8⇡G

c4
T and Rik = � 8⇡G

c4

✓
Tik �

T

2
gik

◆
. (11.378)

11.48 Energy-momentum tensor

The action Sm of the matter fields is a scalar that is invariant under general
coordinate transformations. In particular, a tiny local general coordinate
transformation x0a = xa + ✏a(x) leaves Sm invariant

0 = �Sm =

Z
�
⇣
L(�i(x))

p
g(x)

⌘
d4x. (11.379)

The vanishing change �Sm = �Sm� + �Smg has a part �Sm� due to the
changes in the fields ��i(x) and a part �Smg due to the change in the metric
�gik. The principle of stationary action tells us that the change �Sm� is zero
as long as the fields obey the classical equations of motion. The definition
(11.376) of the energy-momentum tensor now tells us that

0 = �Sm = �Smg =
1

2c

Z
T ik pg �gik d

4x. (11.380)

We take the change in Sm to be

�Sm =

Z
L0(�0i(x

0))
p
g0(x0) d4x0 �

Z
L(�i(x))

p
g(x) d4x

=

Z
L0(�0i(x))

p
g0(x) d4x�

Z
L(�i(x))

p
g(x) d4x.

(11.381)
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So using the identity �gik gk` = �gik �gk`, the definition (11.222) of the
covariant derivative of a covariant vector, and the formula (11.261) for the
connection in terms of the metric, we find that to lowest order in ✏a(x), the
change in the metric is

�gik = g0ik(x)� gik(x) = g0ik(x
0)� gik(x)� (g0ik(x

0)� g0ik(x))

= (�ai � ✏a,i)(�
b
k � ✏b,k)gab � ✏cgik,c

= � gib ✏
b
,k � gak ✏

a
,i � ✏c gik,c

= � gib(g
bc ✏c),k � gak(g

ac ✏c),i � ✏c gik,c

= � ✏i,k � ✏k,i � ✏c gib g
bc
,k � ✏c gak g

ac
,i � ✏c gik,c

= � ✏i,k � ✏k,i + ✏c g
bc gib,k + ✏c g

ac gak,i � ✏c gik,c

= � ✏i,k � ✏k,i + ✏c g
ac (gia,k + gak,i � gik,a)

= � ✏i,k � ✏k,i + ✏c �
c
ik + ✏c �

c
ki = � ✏i;k � ✏k;i.

(11.382)

Combining this result (11.382) with the vanishing (11.380) of the change
�Smg, we have

0 =

Z
T ik pg (✏i;k + ✏k;i) d

4x. (11.383)

Since the energy-momentum tensor is symmetric, we may combine the two
terms, integrate by parts, divide by

p
g, and so find that the covariant di-

vergence of the energy-momentum tensor is zero

0 = T ik
;k = T ik

,k + �kak T
ia + �iak T

ak =
1
p
g
(
p
gT ik),k + �

i
ak T

ak (11.384)

when the fields obey their equations of motion. In a given inertial frame, only
the total energy, momentum, and angular momentum of both the matter and
the gravitational field are conserved.

11.49 Perfect fluids

In many astrophysical and most cosmological models, the energy-momentum
tensor is assumed to be that of a perfect fluid, which is isotropic in its rest
frame, does not conduct heat, and has zero viscosity. For a perfect fluid of
pressure p and density ⇢ with 4-velocity ui (defined by (11.48)), the energy-
momentum or energy-momentum tensor Tij is

Tij = p gij + (
p

c2
+ ⇢)ui uj (11.385)
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in which gij is the spacetime metric. Einstein’s equations (11.377) then are

Rik �
1

2
gik R = � 8⇡G

c4
Tik = � 8⇡G

c4

h
p gij + (

p

c2
+ ⇢)ui uj

i
(11.386)

An important special case is the energy-momentum tensor due to a nonzero
value of the energy density of the vacuum. In this case p = �c2⇢ and the
energy-momentum tensor is

Tij = p gij = �c2⇢ gij (11.387)

in which T00 = c2⇢ is the (presumably constant) value of the energy den-
sity of the ground state of the theory. This energy density ⇢ is a plausible
candidate for the dark-energy density. It is equivalent to a cosmological
constant ⇤ = 8⇡G⇢.

On small scales, such as that of our solar system, one may neglect mat-
ter and dark energy. So in empty space and on small scales, the energy-
momentum tensor vanishes Tij = 0 along with its trace and the scalar cur-
vature T = 0 = R, and Einstein’s equations (11.378) are

Rij = 0. (11.388)

11.50 Standard form

Tensor equations are independent of the choice of coordinates, so it’s wise
to choose coordinates that simplify one’s work. For a static and isotropic
gravitational field, this choice is the Standard form (Weinberg, 1972, ch. 8)

ds2 = �B(r) c2 dt2 +A(r) dr2 + r2
�
d✓2 + sin2 ✓ d�2

�
(11.389)

in which B(r) and A(r) are functions that one may find by solving the
field equations (11.377). Since ds2 = � c2 d⌧2 = gij dxidxj , the nonzero
components of the metric tensor are grr = A(r), g✓✓ = r2, g�� = r2 sin2 ✓,
and g00 = �B(r), and those of its inverse are grr = A�1(r), g✓✓ = r�2,
g�� = r�2 sin�2 ✓, and g00 = �B�1(r). By di↵erentiating the metric tensor
and using (11.261), one gets the components of the connection �ik`, such as
�✓�� = � sin ✓ cos ✓, and the components (11.345) of the Ricci tensor Rij ,
such as (Weinberg, 1972, ch. 8)

Rrr =
B00(r)

2B(r)
� 1

4

✓
B0(r)

B(r)

◆ ✓
A0(r)

A(r)
+

B0(r)

B(r)

◆
� 1

r

✓
A0(r)

A(r)

◆
(11.390)
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in which the primes mean d/dr.

11.51 Schwarzschild’s solution

If one ignores the small dark-energy parameter ⇤, one may solve Einstein’s
field equations (11.388) in empty space

Rij = 0 (11.391)

outside a massM for the Standard form of the Ricci tensor. One finds (Wein-
berg, 1972) that A(r)B(r) = 1 and that r B(r) = r plus a constant, and
one determines the constant by invoking the Newtonian limit g00 = �B !
�1 + 2MG/c2r as r ! 1. In 1916, Schwarzschild found the solution

ds2 = �
✓
1� 2MG

c2r

◆
c2dt2 +

✓
1� 2MG

c2r

◆�1

dr2 + r2
�
d✓2 + sin2 ✓ d�2

�

(11.392)
which one can use to analyze orbits around a star. The singularity in

grr =

✓
1� 2MG

c2r

◆�1

(11.393)

at the Schwarzschild radius rS = 2MG/c2 is an artifact of the coordinates;
the scalar curvature R and other invariant curvatures are not singular at
the Schwarzschild radius. Moreover, for the Sun, the Schwarzschild radius
rS = 2M�G/c2 is only 2.95 km, far less than the radius of the Sun, which is
6.955⇥105 km. So the surface at rS = 2M�G/c2 is far from the empty space
in which Schwarzschild’s metric applies (Karl Schwarzschild, 1873–1916).

11.52 Black holes

Suppose an uncharged, spherically symmetric star of mass M has collapsed
within a sphere of radius rb less than its Schwarzschild radius rS = 2MG/c2.
Then for r > rb, the Schwarzschild metric (11.392) is correct. By Eq.(11.335),
the apparent time dt of a process of proper time d⌧ at r � 2MG/c2 is

dt = d⌧/
p
�g00 = d⌧/

r
1� 2MG

c2r
. (11.394)

The apparent time dt becomes infinite as r ! 2MG/c2. To outside observers,
the star seems frozen in time.
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Due to the gravitational redshift (11.341), light of frequency ⌫p emitted
at r � 2MG/c2 will have frequency ⌫

⌫ = ⌫p
p
�g00 = ⌫p

r
1� 2MG

c2r
(11.395)

when observed at great distances. Light coming from the surface at rS =
2MG/c2 is redshifted to zero frequency ⌫ = 0. The star is black. It is a black
hole with a surface or horizon at its Schwarzschild radius rS = 2MG/c2,
although there is no singularity there. If the radius of the Sun were less than
its Schwarzschild radius of 2.95 km, then the Sun would be a black hole.
The radius of the Sun is 6.955⇥ 105 km.
Black holes are not really black. Stephen Hawking (1942–) has shown

that the intense gravitational field of a black hole of mass M radiates at
temperature

T =
~ c3

8⇡ k GM
(11.396)

in which k = 8.617343 ⇥ 10�5 eV K�1 is Boltzmann’s constant, and ~ is
Planck’s constant h = 6.6260693⇥ 10�34 J s divided by 2⇡, ~ = h/(2⇡).
The black hole is entirely converted into radiation after a time

t =
5120⇡G2

~ c4 M3 (11.397)

proportional to the cube of its mass.

11.53 Cosmology

Astrophysical observations tell us that on the largest observable scales, space
is flat or very nearly flat; that the visible universe contains at least 1090 par-
ticles; and that the cosmic microwave background radiation is isotropic to
one part in 105 apart from a Hubble-Doppler shift due the motion of the
Earth at 371 km/s towards the constellation Leo. These and other observa-
tions suggest that potential energy expanded our universe by exp(60) = 1026

during a brief period of inflation that could have been as short as 10�35 s.
The potential energy that powered inflation almost immediately became the
radiation of theBig Bang. During and after inflation, negative gravitational
potential energy kept the total energy constant.
Within the first three minutes, some of that radiation became hydrogen,

helium, neutrinos, and dark matter Weinberg (1988, 2010). But the era
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of radiation, during which most of the energy of the visible universe was
radiation, lasted for 50,952 years.
Because the momentum of a particle but not its mass falls with the ex-

pansion of the universe, the era of radiation gradually gave way to an era
of matter. The universe changed from radiation dominated to matter dom-
inated as its temperature kT dropped below 0.81 eV. After 380,000 years,

Figure 11.1 NASA/WMAP’s timeline of the known universe

the universe had cooled to 3000 K or kT = 0.26 eV, and less than 1%
of the atoms were ionized. Photons no longer scattered o↵ a plasma of
electrons and ions. The universe became transparent. The photons that
last scattered just before this initial transparency became the cosmic
microwave background radiation or CMBR that now surrounds us,
redshifted to T0 = 2.7255± 0.0006K.
Between 10 and 17 million years after the Big Bang, the temperature of

the known universe fell from 373 to 273 K. If by then the supernovas of
very early, very heavy stars had produced carbon, nitrogen, and oxygen,
biochemistry may have started during this period of 7 million years.
The era of matter lasted for 10.19 billion years.
The era of dark energy began about 3.6 billon years ago as matter

ceased to be the dominant form of energy. Since then, most of the energy
of the visible universe has been of an unknown kind called dark energy.



544 Tensors and local symmetries

Dark energy may be the energy of the vacuum; classically, it seems to be
equivalent to a cosmological constant. Dark energy has been accelerating
the expansion of the universe for the past 3.6 billion years and may continue
to do so forever.
It is now 13.799 ± 0.021 billion years after the Big Bang or the time of

infinite redshift and zero scale factor. The present value Ade et al. (2015)
of the Hubble frequency H is the Hubble constant H0 = 67.74 ± 0.46
km (sMpc)�1 = 2.1953 ⇥ 10�18 s�1, one parsec being 3.085 677 581 49 ⇥
1016m or about 3.262 light-years. The present critical mass density ⇢c0 =
3H2

0/8⇡G = 8.6197 ⇥ 10�27 kgm�3 is the present density of a universe
that is isotropic, homogeneous, and flat. The ratio ⌦0 = ⇢0/⇢c0 of the
present density ⇢0 of the universe to the present critical mass density ⇢c0
is ⌦0 = 1.0000 ± 0.0088. The ratio ⌦⇤0 = ⇢⇤0/⇢c0 of the present dark-
energy density ⇢⇤0 to the critical density is ⌦⇤0 = 0.6911 ± 0.0062. The
ratio ⌦m0 = ⇢m0/⇢c0 of the present total matter density ⇢m0 to the present
critical density ⇢c0 is ⌦m0 = 0.3089 ± 0.0062. The ratio ⌦b0 = ⇢b0/⇢c0
of the present density of baryons ⇢b0 to the present critical density ⇢c0 is
⌦b0 = 0.0486± 0.0007. Baryons account for 4.9% of the density of the uni-
verse and only 15.7 % of the matter density, the rest being dark matter,
which interacts very little with light.
Einstein’s equations (11.378) are second-order, non-linear partial di↵er-

ential equations for 10 unknown functions gij(x) in terms of the energy-
momentum tensor Tij(x) throughout the universe, which of course we don’t
know. The problem is not quite hopeless, however. The ability to choose ar-
bitrary coordinates, the appeal to symmetry, and the choice of a reasonable
form for Tij all help.
Hubble showed us that the universe is expanding. The cosmic microwave

background radiation looks the same in all spatial directions (apart from a
Hubble-Doppler shift due to the motion of the Earth at 371 km/s toward
the constellation Leo). Observations of clusters of galaxies reveal a universe
that is homogeneous on suitably large scales of distance. So it is plausible
that the universe is homogeneous and isotropic in space, but not in time.
One may show (Carroll, 2003) that for a universe of such symmtery, the line
element in comoving coordinates (in which the Hubble-Doppler shift is
isotropic) is

ds2 = � c2dt2 + a2


dr2

1� k r2/L2
+ r2

�
d✓2 + sin2 ✓ d�2

��
(11.398)

in which L is a length, k is 0 or ±1, and the scale factor a(t) is a dimen-
sionless function of time.



11.53 Cosmology 545

Whitney’s embedding theorem tells us that any smooth four-dimensional
manifold can be embedded in a flat space of eight dimensions with a suitable
signature. We need only four or five dimensions to embed the spacetime
described by the line element (11.398). If the universe is closed, then the
signature is (�1, 1, 1, 1, 1), and our three-dimensional space is the 3-sphere
which is the surface of a four-dimensional sphere in four space dimensions.
The points of the universe then are

p = (ct, aL sin� sin ✓ cos�, aL sin� sin ✓ sin�, aL sin� cos ✓, aL cos�)
(11.399)

in which 0  �  ⇡, 0  ✓  ⇡, and 0  �  2⇡. If the universe is flat, then
the embedding space is flat, four-dimensional Minkowski space with points

p = (ct, ar sin ✓ cos�, ar sin ✓ sin�, ar cos ✓) = (ct, ax, ay, az) (11.400)

in which 0  ✓  ⇡ and 0  �  2⇡. If the universe is open, then the embed-
ding space is a flat five-dimensional space with signature (�1, 1, 1, 1,�1),
and our three-dimensional space is a hyperboloid in a flat Minkowski space
of one time and three space dimensions. The points of the universe then are

p = (ct, aL sinh� sin ✓ cos�, aL sinh� sin ✓ sin�, aL sinh� cos ✓, aL cosh�)
(11.401)

in which 0  �  1, 0  ✓  ⇡, and 0  �  2⇡.
In all three cases, the corresponding Friedmann-Lemâıtre-Robertson-

Walker metric is

gij =

0

BB@

� 1 0 0 0
0 a2/(1� kr2/L2) 0 0
0 0 a2 r2 0
0 0 0 a2 r2 sin2 ✓

1

CCA (11.402)

in which the coordinates (ct, r, ✓,�) are numbered (0, 1, 2, 3), and k is 0
or ±1, and L is a length. The constant k determines whether the spatial
universe is open k = � 1, flat k = 0, or closed k = 1. The dimensionless
scale factor a, which is a function of time a(t), tells us how space expands
and contracts. These coordinates are called comoving because a point at
rest (fixed r, ✓,�) sees the same Hubble-Doppler shift in all directions.
The metric (11.402) is diagonal; its inverse gij also is diagonal; and so we

may use our formula (11.261) to compute the a�ne connections �ki`, such as

�0`` =
1
2g

0k (g`k,` + g`k,` � g``,k) =
1
2g

00 (g`0,` + g`0,` � g``,0) =
1
2g``,0
(11.403)
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so that

�011 =
aȧ/c

1� kr2/L2
�022 = aȧ r2/c and �033 = aȧ r2 sin2 ✓/c. (11.404)

in which a dot means a time derivative. The other �0ij ’s vanish. Similarly,
for fixed ` = 1, 2, or 3

�`0` =
1
2g

`k (g0k,` + g`k,0 � g0`,k)

= 1
2g

`` (g0`,` + g``,0 � g0`,`)

= 1
2g

`` g``,0 =
ȧ

ca
= �``0 no sum over `. (11.405)

The other nonzero �’s are

�122 = �r (1� kr2/L2) �133 = �r (1� kr2/L2) sin2 ✓ (11.406)

�212 = �
3
13 =

1

r
= �221 = �

3
31 (11.407)

�233 = � sin ✓ cos ✓ �323 = cot ✓ = �332. (11.408)

Our formulas (11.345 & 11.343) for the Ricci and curvature tensors give

R00 = Rn
0n0 = [@0 + �0, @n + �n]

n
0. (11.409)

Clearly the commutator of �0 with itself vanishes, and one may use the
formulas (11.404–11.408) for the other connections to check that

[�0,�n]
n
0 = �

n
0 k �

k
n 0 � �nnk �

k
0 0 = 3

✓
ȧ

ca

◆2

(11.410)

and that

@0 �
n
n 0 = 3 @0

✓
ȧ

ca

◆
= 3

ä

c2a
� 3

✓
ȧ

ca

◆2

(11.411)

while @n�n0 0 = 0. So the 00-component of the Ricci tensor is

R00 = 3
ä

c2a
. (11.412)

Similarly, one may show that the other nonzero components of Ricci’s tensor
are

R11 = � A

1� kr2/L2
R22 = �r2A and R33 = �r2A sin2 ✓ (11.413)

in which A = aä/c2 + 2ȧ2/c2 + 2k/L2. The scalar curvature (11.346) is

R = gabRba = � 6

a2

✓
aä

c2
+

ȧ2

c2
+

k

L2

◆
. (11.414)
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In comoving coordinates such as those of the Friedmann-Lemâıtre-Robertson-
Walker metric (11.402), the 4-velocity (11.48) is ui = (c, 0, 0, 0), and so the
energy-momentum tensor (11.385) is

Tij =

0

BB@

c2⇢ 0 0 0
0 p g11 0 0
0 0 p g22 0
0 0 0 p g33

1

CCA . (11.415)

Its trace is

T = gij Tij = �c2⇢+ 3p. (11.416)

Thus successively using our formulas (11.402) for g00 = �1, (11.412) for
R00 = 3ä/(c2a), (11.415) for Tij , and (11.416) for T , we can write the 00
Einstein equation (11.378) as the second-order equation

ä

a
= �4⇡G

3

✓
⇢+

3p

c2

◆
(11.417)

which is nonlinear because ⇢ and 3p depend upon a. The sum ⇢ + 3p de-
termines the acceleration ä of the scale factor a(t). The apparently positive
sum c2⇢ + 3p can be negative, and when it is, it accelerates the expansion
of the universe.
Because of the isotropy of the metric, the three nonzero spatial Einstein

equations (11.378) give us only one relation

ä

a
+ 2

✓
ȧ

a

◆2

+ 2
c2k

a2L2
= 4⇡G

⇣
⇢� p

c2

⌘
. (11.418)

Using the 00-equation (11.417) to eliminate the second derivative ä, we have

✓
ȧ

a

◆2

=
8⇡G

3
⇢� c2k

a2L2
(11.419)

which is a first-order nonlinear equation. It and the second-order equation
(11.417) are known as the Friedmann equations.
The LHS of the first-order Friedmann equation (11.441) is the square of

the Hubble rate

H =
ȧ

a
(11.420)

which is an inverse time or a frequency. Its present value H0 is the Hubble
constant. In terms of H, Friedmann’s first-order equation (11.441) is

H2 =
8⇡G

3
⇢� c2k

a2L2
. (11.421)



548 Tensors and local symmetries

The energy density of a flat universe with k = 0 is the critical energy
density

⇢c =
3H2

8⇡G
. (11.422)

The ratio of the present energy density ⇢0 to the present critical energy
density ⇢c0 is ⌦0

⌦0 =
⇢0
⇢c0

=
8⇡G

3H2
0

⇢0. (11.423)

From (11.421), we see that ⌦ is

⌦ = 1 +
c2k

(aHL)2
= 1 +

c2k

ȧ2L2
. (11.424)

Thus ⌦ = 1 both in a flat universe (k = 0) and as aH ! 1. One use of
inflation is to expand a by 1026 so as to force ⌦ almost exactly to unity.
Something like inflation is needed because in a universe in which the

energy density is due to matter and/or radiation, the present value of ⌦

⌦0 = 1.0000± 0.0062 (11.425)

is unlikely. To see why, we note that conservation of energy ensures that a3

times the matter density ⇢m is constant. Radiation redshifts by a, so energy
conservation implies that a4 times the radiation density ⇢r is constant. So
with n = 3 for matter and 4 for radiation, ⇢ an ⌘ 3F 2/8⇡G is a constant.
In terms of F and n, Friedmann’s first-order equation (11.441) is

ȧ2 =
8⇡G

3
⇢ a2 � c2k

L2
=

F 2

an�2
� c2k

L2
(11.426)

In the small-a limit of the early Universe, we have

ȧ = F/a(n�2)/2 or a(n�2)/2da = F dt (11.427)

which we integrate to a ⇠ t2/n so that ȧ ⇠ t2/n�1. Now (11.424) says that

|⌦� 1| = c2|k|
ȧ2L2

/ t2�4/n =

⇢
t radiation
t2/3 matter

. (11.428)

Thus, ⌦ deviated from unity at least as fast as t2/3 during the early Universe.
At this rate, the inequality |⌦0�1| < 0.009 could last 13.8 billion years only
if ⌦ at t = 1 second had been unity to within two parts in 1014. The only
known explanation for such early flatness is inflation.
The relation (11.424) between ⌦ and aH shows that k = 0 is equivalent

to ⌦ = 1, that ⌦ > 1 () k = 1, and that ⌦ < 1 () k = � 1.
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And writing the same relation (11.424) as (aH)2 = c2k/[L2(⌦� 1)], we see
that as ⌦ ! 1 the product aH ! 1, which is the essence of flatness since
curvature vanishes as the scale factor a ! 1. Imagine blowing up a balloon.
Staying for the moment with a universe without inflation and with an

energy density composed of radiation and/or matter, we note that the first-
order equation (11.426) in the form ȧ2 = F 2/an�2� c2k/L2 tells us that for
a closed (k = 1) universe, in the limit a ! 1 we’d have ȧ2 ! �1 which is
impossible. Thus a closed universe cannot expand indefinitely.
The first-order equation Friedmann (11.441) says that ⇢ a2 � 3c2k/8⇡G.

So in a closed universe (k = 1), the energy density ⇢ is positive and in-
creases without limit as a ! 0 as in a collapse. In open (k = � 1) and
flat (k = 0) universes, the same Friedmann equation (11.441) in the form
ȧ2 = 8⇡G⇢a2/3 � c2k/L2 tells us that if ⇢ is positive, then ȧ2 > 0, which
means that ȧ never vanishes. Hubble told us that ȧ > 0 now. So if our
universe is open or flat, then it always expands.
Due to the expansion of the universe, the wave-length of radiation grows

with the scale factor a(t). A photon emitted at time t and scale factor a(t)
with wave-length �(t) will be seen now at time t0 and scale factor a(t0) to
have a longer wave-length �(t0)

�(t0)

�(t)
=

a(t0)

a(t)
= z + 1 (11.429)

in which the redshift z is the ratio

z =
�(t0)� �(t)

�(t)
=
��

�
. (11.430)

Now H = ȧ/a = da/(adt) implies dt = da/(aH), and z = a0/a � 1 implies
dz = �a0da/a2, so we find

dt = � dz

(1 + z)H(z)
(11.431)

which relates time intervals to redshift intervals. An on-line calculator is
available for macroscopic intervals (Wright, 2006).

11.54 Density and pressure

The 0-th component of the energy-momentum conservation law (11.384)
is

0 = T 0a
;a = @aT

0a + �acaT
0c + �0caT

ca. (11.432)
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The perfect-fluid energy-momentum tensor (11.415) is diagonal, and for
a Robinson-Walker metric (11.402) our connection formulas (11.403) and
(11.405) respectively tell us that �000 = � 1

2g00,0 = 0, and that �a0a = 3ȧ/(ca).
Thus

⇢̇ = � 3ȧ

a
(⇢+

p

c2
), and so

d⇢

da
= �3

a

⇣
⇢+

p

c2

⌘
. (11.433)

The energy density ⇢ is composed of fractions ⇢i each contributing its own
partial pressure pi according to its own equation of state

pi = c2wi⇢i (11.434)

in which wi is a constant. The rate of change (11.434) of the density ⇢i is
then

d⇢i
da

= � 3

a
(1 + wi) ⇢i. (11.435)

In terms of the present density ⇢i0 and scale factor a0, the solution is

⇢i = ⇢i0
⇣a0
a

⌘3(1+wi)
. (11.436)

There are three important kinds of density. The dark-energy density ⇢⇤
is assumed to be like a cosmological constant ⇤ or like the energy density of
the vacuum, so it is independent of the scale factor a

⇢⇤ = ⇢⇤0 (11.437)

and has w⇤ = �1. The matter density ⇢m is assumed to have no pressure,
wm = 0, and so the matter density falls inversely with the volume

⇢m = ⇢m0

⇣a0
a

⌘3
. (11.438)

The density of radiation ⇢r has wr = 1/3 because wavelengths scale with
the scale factor, and so there’s an extra factor of a

⇢r = ⇢r0
⇣a0
a

⌘4
. (11.439)

The total density ⇢ varies with a as

⇢ = ⇢⇤0 + ⇢m0

⇣a0
a

⌘3
+ ⇢r0

⇣a0
a

⌘4
. (11.440)

In simple cosmological models, only the dominant component of the den-
sity is considered.
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11.55 How the scale factor evolves with time

The first-order Friedmann equation (11.441) expresses the square of the
instantaneous Hubble rate H = ȧ/a in terms of the density ⇢ and the scale
factor a(t)

H2 =

✓
ȧ

a

◆2

=
8⇡G

3
⇢� c2k

a2L2
(11.441)

in which k = ±1 or 0. The critical density ⇢c is the one that satisfies this
equation for a flat (k = 0) universe. Its present value is

⇢0c =
3H2

0

8⇡G
. (11.442)

Dividing Friedmann’s equation by the square of the present Hubble rate H2
0 ,

we get

H2

H2
0

=
1

H2
0

✓
ȧ

a

◆2

=
1

H2
0

✓
8⇡G

3
⇢� c2k

a2L2

◆
=

⇢

⇢0c
� c2k

a2H2
0L

2
(11.443)

in which ⇢ is the total density (11.440)

H2

H2
0

=
⇢⇤
⇢0c

+
⇢r
⇢0c

+
⇢m
⇢0c

� c2k

a2H2
0L

2

=
⇢⇤0
⇢0c

+
⇢r0
⇢0c

a40
a4

+
⇢m0

⇢0c

a30
a3

� c2k

a20H
2
0L

2

a20
a2

.

(11.444)

These density ratios are called ⌦⇤0, ⌦r0, ⌦m0, and ⌦k0 ⌘ �c2k/(a0H0L)2,
and in terms of them this formula (11.444) for H2/H2

0 is

H2

H2
0

= ⌦⇤0 + ⌦k0
a20
a2

+ ⌦m0
a30
a3

+ ⌦r0
a40
a4

. (11.445)

Since H = ȧ/a, we have dt = H�1
0 (da/a)(H0/H), and so with x = a/a0, the

time interval dt is

dt =
1

H0

dx

x

1p
⌦⇤0 + ⌦k0 x�2 + ⌦m0 x�3 + ⌦r0 x�4

. (11.446)

Integrating and setting the origin of time t(0) = 0 at x = a/a0 = 0, we find
that the time t(a/a0) during which the ratio a(t)/a0 grew from 0 to a(t)/a0
is

t(a/a0) =
1

H0

Z a/a0

0

dxp
⌦⇤0 x2 + ⌦k0 + ⌦m0 x�1 + ⌦r0 x�2

. (11.447)
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The definition (11.429) of the redshift gives a/a0 = 1/(z+1). So this formula
(11.447) for t(a/a0) also says that a photon emitted at time t(a/a0) will be
seen now with redshift z(t) = a0/a� 1.
The Planck Collaboration’s values (Ade et al. (2015)) for the density ratios

⌦⇤0, ⌦k0, and ⌦m0 are

⌦⇤0 = 0.6911± 0.0062

⌦k0 = 0.0008± 0.004 (11.448)

⌦m0 = 0.3089± 0.0062.

We use may use the present temperature T0 = 2.7255 K of the cosmic
microwave background radiation and our formula (4.110) for the energy
density of photons to estimate the mass density of photons as

⇢� =
8⇡5 (kBT0)

4

15h3c5
= 4.6451⇥ 10�31 kg m�3. (11.449)

Adding in three kinds of neutrinos and antineutrinos at T0⌫ = (4/11)1/3 T0,
we get for the present density of massless and nearly massless particles (Wein-
berg, 2010, section 2.1)

⇢r =

"
1 + 3

✓
7

8

◆✓
4

11

◆4/3
#
⇢� = 7.8099⇥ 10�31 kg m�3. (11.450)

The fraction ⌦r0 the present energy density that is due to radiation is then

⌦r0 =
⇢r0
⇢c0

= 9.0606⇥ 10�5. (11.451)

By putting the ⌦ values (11.448 & 11.451) into the integral (11.447) and
integrating, we may get the time as a function of the scale factor. Figure 11.2
plots the reduced scale factor a(t)/a0 (solid) and the redshift z(t) (dotdash)
as functions of the time t in Gyr since the time of infinite redshift. The age of
the universe is 13.8 Gyr (vertical line). A photon emitted with wavelength �
at time t now has wavelength �0 = (a0/a(t))�. The change is its wavelength
is �� = � z(t).

Example 11.36 (w = �1/3, no acceleration). If w = �1/3, then p = w ⇢ =
�⇢/3 and ⇢ + 3p = 0. The second-order Friedmann equation (11.417) then
tells us that ä = 0. The scale factor does not accelerate.
To find its constant speed, we use its equation of state (11.436)

⇢ = ⇢0
⇣a0
a

⌘3(1+w)
= ⇢0

⇣a0
a

⌘2
. (11.452)
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Figure 11.2 The reduced scale factor a(t)/a0 (solid), the redshift z(t) (dot-
dash), and the fraction t/H0 (dashed) are plotted as functions of the time
(11.447) in Gyr since the time of infinite redshift. The age of the universe
is 13.8 Gyr (vertical line). A photon emitted with wavelength � at time t
now has wavelength �0 = (a0/a(t)� and redshift z(t) = ��/�.

Now all the terms in Friedmann’s first-order equation (11.441) have a com-
mon factor of 1/a2 which cancels leaving us with the square of the constant
speed

ȧ2 =
8⇡G

3
⇢0 a

2
0 �

c2k

L2
(11.453)

in which ⇢0 a20 must exceed 3c2k/(8⇡GL2). Since ȧ = aH is constant, the
scale factor grows linearly with time like the dashed line a(t) = a0H0 t in
figure 11.2 if we set a(0) = 0.
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11.56 Inflation (w = �1)

Inflation occurs when the ground state of the theory has a positive and
constant potential-energy density ⇢ > 0 that dwarfs the energy densities
of the matter and radiation. The internal energy of the universe then is
proportional to its volume U = c2⇢V , and the pressure p as given by the
thermodynamic relation

p = �@U
@V

= �c2⇢ (11.454)

is negative. The equation of state (11.434) tells us that in this case w = �1.
The second-order Friedmann equation (11.417) becomes

ä

a
= �4⇡G

3

✓
⇢+

3p

c2

◆
=

8⇡G⇢

3
⌘ g2 (11.455)

By it and the first-order Friedmann equation (11.441) and by choosing t = 0
as the time at which the scale factor a is zero or minimal, one may show
(exercise 11.33) that in a flat (k = 0), closed (k = 1), and open (k = � 1),
universes, the scale factor varies as

a(t) = a(0) eg t flat, k = 0 (11.456)

a(t) =
cosh g t

g
closed, k = 1 (11.457)

a(t) =
sinh g t

g
open, k = � 1. (11.458)

A de Sitter universe is flat, has a(t) = a(0) exp(gt), and can be infinitely
old.
Studies of the cosmic microwave background radiation suggest that infla-

tion did occur in the very early universe—possibly on a time scale as short
as 10�35 s. The origin of the vacuum energy density ⇢ that drove inflation is
unknown. In chaotic inflation, a scalar field � fluctuated to a mean value
h�i very di↵erent from the one h0|�|0i that minimizes the energy density of
the vacuum. When h�i settled to h0|�|0i, the potential energy of the vacuum
was released as radiation in a Big Bang.
Anti-de Sitter models have w = �1 and a negative potential energy

⇢ = �p < 0.
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11.57 The era of radiation (w = 1/3)

Until a redshift of z = 3408.3 or 50, 953 years after the time of infinite
redshift our universe was dominated by radiation. During The First Three

Minutes (Weinberg, 1988) of the era of radiation, the quarks and gluons
formed hadrons, which decayed into protons and neutrons. As the neutrons
decayed (⌧ = 885.7 s), they and the protons formed the light elements—
principally hydrogen, deuterium, and helium in a process called big-bang
nucleosynthesis.
We can guess the value of w for radiation by noticing that the energy-

momentum tensor of the electromagnetic field (in SI units)

T ab =
1

µ0

✓
F a

cF
bc � 1

4
gabFcdF

cd

◆
(11.459)

is traceless

T = T a
a =

1

µ0

✓
F a

cF
c

a � 1

4
�aaFcdF

cd

◆
= 0. (11.460)

But by (11.416) its trace must be T = 3p� c2⇢. So for radiation p = c2⇢/3
and w = 1/3. The relation (11.439) between the density and the scale factor
for radiation then is

⇢ = ⇢0
⇣a0
a

⌘4
. (11.461)

The density drops both with the volume a3 and with the scale factor a due
to a redshift; so it drops as 1/a4.
Early in the era of radiation, we can ignore the matter and vacuum den-

sities and focus on the radiation density so that the quantity

f2 ⌘ 8⇡G⇢a4

3
(11.462)

is a constant. The Friedmann equations (11.417 & 11.418) then are
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3
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and

ȧ2 +
c2k

L2
=

f2

a2
. (11.464)

With calendars chosen so that a(0) = 0, this last equation (11.464) tells
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us that for flat (k = 0), closed (k = 1), and open (k = �1) universes

a(t) =
p
2f t flat, k = 0 (11.465)

a(t) =
p
2f t� kc2t2/L2 closed, k = 1 (11.466)

a(t) =
p
2f t+ kc2t2/L2 open, k = � 1, (11.467)

as we saw in (6.531). The scale factor (11.466) of a closed universe of radia-
tion has a maximum a = fL/(c

p
k) at t = fL2/(kc2) and falls back to zero

at t = 2fL2/(kc2).
In all three cases, the scale factor rises as the square root of the time

a(t) ⇡
p
2ft at early times. The density of radiation is proportional both

to the fourth power of the temperature ⇢ / T 4 and to the inverse fourth
power of the scale factor ⇢ ⇠ 1/a4(t) ⇠ 1/t2. Thus the temperature falls as
T ⇠ 1/

p
t.

Weinberg gives more accurate estimates. When the temperature was in
the range 1012 > T > 1010K or mµc2 > kT > mec2, where mµ is the mass
of the muon and me that of the electron, the radiation was mostly electrons,
positrons, photons, and neutrinos, and the relation between the time t and
the temperature T was (Weinberg, 2010, ch. 3)

t = 0.994 sec⇥

1010K

T

�2
+ constant. (11.468)

By 109 K, the positrons had annihilated with electrons, and the neutrinos
fallen out of equilibrium. Between 109 K and 106K, when the energy density
of nonrelativistic particles became relevant, the time-temperature relation
was (Weinberg, 2010, ch. 3)

t = 1.78 sec⇥

1010K

T

�2
+ constant0. (11.469)

At times of tens of thousands of years, the matter density ⇢m became
important because it drops with the cube of the scale factor as ⇢m(t) =
⌦m0 a30/a

3(t) while the radiation density ⇢r(t) drops with the fourth power
of the scale factor as ⇢r(t) = ⌦r0 a40/a

4(t). The era of radiation ended and
the era of matter began when these densities were equal, ⇢m(t) = ⇢r(t). We
can estimate this time by using the density ratios ⌦m0 and ⌦r0 (11.448 &
11.451). We find

a

a0
=

⇢r,0
⇢m,0

=
⌦r0

⌦m0
=

9.0606⇥ 10�5

0.3089
= 2.93318⇥ 10�4 (11.470)

which is a redshift of z = a0/a � 1 = 3408.3. Our integral (11.447) gives
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the time as t(3408.3) = 50, 953 years after the time of infinite redshift. The
temperature then was T = 9, 400 K or kT = 0.81 eV.
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Figure 11.3 The scale factor ratio a/a0 (solid), the radiation density ⇢r
(dotdash), and the matter density ⇢m (dashed) are plotted as functions
of the time (11.447) in kyr after the time of infinite redshift. The era of
radiation ends at t = 50, 953 years when the two densities are equal to
1.055⇥ 10�16 kg/m3, and a/a0 = 2.933⇥ 10�4.

11.58 The era of matter (w = 0)

A universe composed only of dust or non-relativistic collisionless mat-
ter has no pressure. Thus p = w⇢ = 0 with ⇢ 6= 0, and so w = 0. Conser-
vation of energy (11.433), or equivalently (11.438), implies that the matter
density falls with the volume as

⇢m = ⇢m0

⇣a0
a

⌘3
. (11.471)
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The era of matter began about 50,953 after the time of infinite redshift when
the matter density ⇢m first exceeded the radiation density ⇢r. Most of the
matter is of an unknown kind that interacts very weakly with photons and is
called dark matter. Baryons amount to only about 15.7% of ⇢m, so if they
were the principal kind of matter, the era of radiation would have lasted
much longer.
Near the middle of the era of matter, at t ⇠ 5 Gyr, the radiation density

and the dark-energy density are unimportant, and we need take only the
matter density into account in order to approximate the evolution of the
scale factor. The density then varies as ⇢ ⇠ ⇢m / 1/a3, and so the quantity

f =
4⇡G⇢ma3

3
(11.472)

is constant. The resulting Friedmann equations (11.417 & 11.418) are
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and

ȧ2 + c2k/L2 = 2f/a. (11.474)

For a flat universe, k = 0, we get the Einstein-de Sitter model

a(t) =

"
3

r
f

2
t

#2/3
. (11.475)

The scale factors of open and closed universes also rise as a(t) ⇠ t2/3 as long
as a < 2fL2/(c2|k|).

Transparency: Some 380,000 years after inflation at a redshift of z =
1090, the universe had cooled to about T = 3000 K or kT = 0.26 eV—a
temperature at which less than 1% of the hydrogen is ionized. Ordinary
matter became a gas of neutral atoms rather than a plasma of ions and
electrons, and the universe suddenly became transparent to light. This
moment of last scattering and first transparency often is (inexplicably) called
recombination.

11.59 The era of dark energy (w = �1)

About 3.606 billion years ago or 10.193 Gyr after inflation at a redshift of
z = 0.3079, the matter density, falling as 1/a3, dropped below the dark-
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Figure 11.4 The reduced scale factor a/a0 (solid), the vacuum density ⇢⇤
(dotdash), and the matter density ⇢m (dashed) are plotted as functions
of the time (11.447) in Gyr after the time of infinite redshift. The era of
matter ends at t = 10.193 Gyr (first vertical line) when the two densities
are equal. The present time t0 is 13.8 Gyr (second vertical line) at which
a(t)/a0 = 1.

energy density ⇢⇤ = 6.0084⇥10�27 kg/m3 or (2.256 meV)4. The age of the
universe is 13.799 billion years. For the past 3.606 billion years, this constant
energy density, called dark energy, has accelerated the expansion of the
universe approximately as in the de Sitter model (11.458)

a(t) = a(tm) exp
⇣
(t� tm)

p
8⇡G⇢v/3

⌘
(11.476)

in which tm = (10.427± 0.07)⇥ 109 years.
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11.60 Yang-Mills theory

The gauge transformation of an abelian gauge theory like electrodynam-
ics multiplies a single charged field by a spacetime-dependent phase factor

�0(x) = exp(iq✓(x))�(x). Yang and Mills generalized this gauge transfor-
mation to one that multiplies a vector � of matter fields by a spacetime
dependent unitary matrix U(x)

�0a(x) =
nX

b=1

Uab(x)�b(x) or �0(x) = U(x)�(x) (11.477)

and showed how to make the action of the theory invariant under such non-
abelian gauge transformations. (The fields � are scalars for simplicity.)
Since the matrix U is unitary, inner products like �†(x)�(x) are automat-

ically invariant
⇣
�†(x)�(x)

⌘0
= �†(x)U †(x)U(x)�(x) = �†(x)�(x). (11.478)

But inner products of derivatives @i�† @i� are not invariant because the
derivative acts on the matrix U(x) as well as on the field �(x).
Yang and Mills made derivatives Di� that transform like the fields �

(Di�)
0 = U Di�. (11.479)

To do so, they introduced gauge-field matrices Ai that play the role of
the connections �i in general relativity and set

Di = @i +Ai (11.480)

in which Ai like @i is antihermitian. They required that under the gauge
transformation (11.477), the gauge-field matrix Ai transform to A0

i in such
a way as to make the derivatives transform as in (11.479)

(Di�)
0 =

�
@i +A0

i

�
�0 =

�
@i +A0

i

�
U� = U Di� = U (@i +Ai)�. (11.481)

So they set
�
@i +A0

i

�
U� = U (@i +Ai)� or (@iU)�+A0

i U� = UAi �. (11.482)

and made the gauge-field matrix Ai transform as

A0
i = UAiU

�1 � (@iU)U�1. (11.483)

Thus under the gauge transformation (11.477), the derivative Di� trans-
forms as in (11.479), like the vector � in (11.477), and the inner product of
Covariant derivatives

h�
Di�

�†
Di�

i0
=
�
Di�

�†
U †UDi� =

�
Di�

�†
Di� (11.484)
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remains invariant.
To make an invariant action density for the gauge-field matrices Ai, they

used the transformation law (11.481) which implies that D0
i U� = UDi � or

D0
i = UDi U�1. So they defined their generalized Faraday tensor as

Fik = [Di, Dk] = @iAk � @kAi + [Ai, Ak] (11.485)

so that it transforms covariantly

F 0
ik = UFikU

�1. (11.486)

They then generalized the action density FikF ik of electrodynamics to the
trace Tr

�
FikF ik

�
of the square of the Faraday matrices which is invariant

under gauge transformations since

Tr
⇣
UFikU

�1UF ikU�1
⌘
= Tr

⇣
UFikF

ikU�1
⌘
= Tr

⇣
FikF

ik
⌘
. (11.487)

As an action density for fermionic matter fields, they replaced the ordi-
nary derivative in Dirac’s formula  (�i@i +m) by the covariant derivative
(11.480) to get  (�iDi + m) (Chen-Ning Yang 1922–, Robert L. Mills
1927–1999).

In an abelian gauge theory, the square of the 1-form A = Ai dxi vanishes
A2 = AiAk dxi^dxk = 0, but in a nonabelian gauge theory the gauge fields
are matrices, and A2 6= 0. The sum dA+A2 is the Faraday 2-form

F = dA+A2 = (@iAk +AiAk) dx
i ^ dxk (11.488)

= 1
2 (@iAk � @k Ai + [Ai, Ak]) dx

i ^ dxk = 1
2Fik dx

i ^ dxk.

The scalar matter fields � may have self-interactions described by a po-
tential V (�) such as V (�) = �(�†��m2/�)2 which is positive unless �†� =
m2/�. The kinetic action of these fields is (Di�)†Di�. At low temperatures,
these scalar fields assume mean values h0|�|0i = �0 in the vacuum with
�†0�0 = m2/� so as to minimize their potential energy density V (�) and
their kinetic action (Di�)†Di� = (@i�+Ai�)†(@i�+Ai�) is approximately
�†0A

iAi �0. The gauge-field matrix Ai
ab = i t↵abA

i
↵ is a linear combination

of the generators t↵ of the gauge group. So the action of the scalar fields
contains the term �†0A

iAi �0 = � M2
↵� A

i
↵Ai� in which the mass-squared

matrix for the gauge fields is M2
↵� = �⇤a0 t↵ab t

�
bc �

c
0. This Higgs mechanism

gives masses to those linear combinations b�iA� of the gauge fields for which
M2

↵� b�i = m2
i b↵i 6= 0 .

The Higgs mechanism also gives masses to the fermions. The mass term m
in the Yang-Mills-Dirac action is replaced by something like c� in which c is a
constant, di↵erent for each fermion. In the vacuum and at low temperatures,
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each fermion acquires as its mass c�0 . On 4 July 2012, physicists at CERN’s
Large Hadron Collider announced the discovery of a Higgs-like particle with
a mass near 125 GeV/c2 (Peter Higgs 1929–).

11.61 Spin-one-half fields in general relativity

The flat-space action density (10.324) for a spin-one-half field  is

L = � ̄ [�a (@a +Aa) +m] (11.489)

in which a is a flat-space index, Aa is a matrix of gauge fields,  is a 4-
component Dirac or Majorana field,  ̄ =  †� = i †�0, and m is a constant
or a mean value of a scalar field. One may use the tetrad fields eaµ(x) of
section 11.20 to turn the flat-space indices a into curved-space indices. Since
derivatives and gauge fields intrinsically are generally covariant vectors, one
replaces �a (@a +Aa) by �a e

µ
a (@µ +Aµ). The next step is to correct for the

e↵ect of the derivative @µ on the field  by making the derivative gener-
ally covariant as well as gauge covariant. The required Einstein connection
is (Weinberg, 1972, sec. 12.5)

Eµ =
i

2
Jab e ⌫

a eb⌫;µ (11.490)

in which the generators (10.319) of the Lorentz group Jab are the commu-
tators of Dirac’s 4⇥ 4 gamma matrices (10.322)

Jab =
�i

4

h
�a, �b

i
, (11.491)

the covariant derivative of the tetrad eb⌫ is

eb⌫;µ = eb⌫,µ � eb� �
�
⌫µ, (11.492)

and the Levi-Civita a�ne connection (11.198) is ��⌫µ = e�ae
a
µ,⌫ . Thus the

generally covariant, gauge-covariant action density of a spin-one-half field is

L0 = � [�a e µ
a (@µ +Aµ + Eµ)] . (11.493)

11.62 Gauge theory and vectors

This section is optional on a first reading.
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We can formulate Yang-Mills theory in terms of vectors as we did rel-
ativity. To accomodate noncompact groups, we will generalize the unitary
matrices U(x) of the Yang-Mills gauge group to nonsingular matrices V (x)
that act on n matter fields  a(x) as

 0a(x) =
nX

a=1

V a
b(x) 

b(x). (11.494)

The field

 (x) =
nX

a=1

ea(x) 
a(x) (11.495)

will be gauge invariant  0(x) =  (x) if the vectors ea(x) transform as

e0a(x) =
nX

b=1

eb(x)V
�1b

a(x). (11.496)

In what follows, we will sum over repeated indices from 1 to n and often will
suppress explicit mention of the spacetime coordinates. In this compressed
notation, the field  is gauge invariant because

 0 = e0a  
0a = eb V

�1b
a V

a
c  

c = eb �
b
c  

c = eb  
b =  (11.497)

which is e0T 0 = eTV �1V  = eT in matrix notation.
The inner product of two basis vectors is an internal “metric tensor”

e⇤a · eb =
NX

↵=1

NX

�=1

e↵⇤a ⌘↵�e
↵
b =

NX

↵=1

e↵⇤a e↵b = gab (11.498)

in which for simplicity I used the the N -dimensional identity matrix for the
metric ⌘. As in relativity, we’ll assume the matrix gab to be nonsingular. We
then can use its inverse to construct dual vectors ea = gabeb that satisfy
ea† · eb = �ab .
The free Dirac action density of the invariant field  

 (�i@i +m) =  ae
a†(�i@i +m)eb 

b =  a

h
�i(�ab@i + ea† · eb,i) +m�ab

i
 b

(11.499)
is the full action of the component fields  b

 (�i@i +m) =  a(�
iDa

i b +m �ab) 
b =  a

⇥
�i(�ab@i +Aa

i b) +m �ab
⇤
 b

(11.500)
if we identify the gauge-field matrix as Aa

i b = ea† · eb,i in harmony with the
definition (11.198) of the a�ne connection �ki` = ek · e`,i.
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Under the gauge transformation e0a = eb V �1b
a, the metric matrix trans-

forms as

g0ab = V �1c⇤
a gcd V

�1d
b or as g0 = V �1† g V �1 (11.501)

in matrix notation. Its inverse goes as g0�1 = V g�1 V †.
The gauge-field matrix Aa

i b = ea† · eb,i = gace†c · eb,i transforms as

A0a
i b = g0ace0†a · e0b,i = V a

cA
c
idV

�1d
b + V a

cV
�1c
b,i (11.502)

or as A0
i = V AiV �1 + V @iV �1 = V AiV �1 � (@iV )V �1.

By using the identity ea† · ec,i = � ea†,i · ec, we may write (exercise 11.40)
the Faraday tensor as

F a
ijb = [Di, Dj ]

a
b = ea†,i ·eb,j�ea†,i ·ec e

c†·eb,j�ea†,j ·eb,i+ea†,j ·ec e
c†·eb,i. (11.503)

If n = N , then
nX

c=1

e↵c e�c⇤ = �↵� and F a
ijb = 0. (11.504)

The Faraday tensor vanishes when n = N because the dimension of the
embedding space is too small to allow the tangent space to have di↵erent
orientations at di↵erent points x of spacetime. The Faraday tensor, which
represents internal curvature, therefore must vanish. One needs at least three
dimensions in which to bend a sheet of paper. The embedding space must
have N > 2 dimensions for SU(2), N > 3 for SU(3), and N > 5 for SU(5).
The covariant derivative of the internal metric matrix

g;i = g,i � gAi �A†
ig (11.505)

does not vanish and transforms as (g;i)
0 = V �1†g,iV �1. A suitable action

density for it is the trace Tr(g;ig�1g;ig�1). If the metric matrix assumes a
(constant, hermitian) mean value g0 in the vacuum at low temperatures,
then its action is

m2Tr
h
(g0Ai +A†

ig0)g
�1
0 (g0A

i +Ai†g0)g
�1
0

i
(11.506)

which is a mass term for the matrix of gauge bosons

Wi = g1/20 Ai g
�1/2
0 + g�1/2

0 A†
i g

1/2
0 . (11.507)

This mass mechanism also gives masses to the fermions. To see how, we
write the Dirac action density (11.500) as

 a

⇥
�i(�ab@i +Aa

i b) +m �ab
⇤
 b =  

a ⇥
�i(gab@i + gacA

c
i b) +mgab

⇤
 b.

(11.508)
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Each fermion now gets a mass mci proportional to an eigenvalue ci of the
hermitian matrix g0.

This mass mechanism does not leave behind scalar bosons. Whether Na-
ture ever uses it is unclear.

11.63 Geometry

This section is optional on a first reading.
In gauge theory, what plays the role of spacetime? Could it be the group

manifold? Let us consider the gauge group SU(2) whose group manifold is
the 3-sphere in flat euclidian 4-space. A point on the 3-sphere is

p =
⇣
±
p
1� r2, r1, r2, r3

⌘
(11.509)

as explained in example 10.35. The coordinates ra = ra are not vectors. The
three basis vectors are

ea =
@p

@ra
=

✓
⌥ rap

1� r2
, �1a, �

2
a, �

3
a

◆
(11.510)

and so the metric gab = ea · eb is

gab =
ra rb
1� r2

+ �ab (11.511)

or

k g k= 1

1� r2

0

@
1� r22 � r23 r1 r2 r1 r3

r2 r1 1� r21 � r23 r2 r3
r3 r1 r3 r2 1� r21 � r22

1

A . (11.512)

The inverse matrix is

gbc = �bc � rb rc. (11.513)

The dual vectors

eb = gbcec =
⇣
⌥rb

p
1� r2, �b1 � rbr1, �

b
2 � rbr2, �

b
3 � rbr3

⌘
(11.514)

satisfy eb · ea = �ba.
There are two kinds of a�ne connections eb · ea,c and eb · ea,i. If we di↵er-

entiate ea with respect to an SU(2) coordinate rc, then

Eb
c a = eb · ea,c = rb

✓
�ac +

ra rc
1� r2

◆
(11.515)



566 Tensors and local symmetries

in which we used E (for Einstein) instead of � for the a�ne connection. If
we di↵erentiate ea with respect to a spacetime coordinate xi, then

Eb
i a = eb · ea,i = eb · ea,c rc,i = rb r

c
,i

✓
�ac +

ra rc
1� r2

◆
. (11.516)

But if the group coordinates ra are functions of the spacetime coordinates
xi, then there are 4 new basis 4-vectors ei = eara,i. The metric then is a
7⇥ 7 matrix k g k with entries ga,b = ea · eb, ga,k = ea · ek, gi,b = ei · eb, and
gi,k = ei · ek or

k g k=
✓

ga,b ga,b rb,k
ga,b ra,i ga,b ra,i rb,k.

◆
(11.517)

Further reading

Einstein Gravity in a Nutshell (Zee, 2013). Also of interest are Gravita-
tion and Cosmology (Weinberg, 1972), Gravitation (Misner et al., 1973),
Cosmology (Weinberg, 2010), General Theory of Relativity (Dirac, 1996),
Gravitation: Foundations and Frontiers (Padmanabhan, 2010), Spacetime
and Geometry (Carroll, 2003), Modern Cosmology (Dodelson, 2003), and A
First Course in General Relativity (Schutz, 2009).

Exercises

11.1 Compute the derivatives (11.23 & 11.24).

11.2 Show that the transformation x ! x0 defined by (11.18) is a rotation
and a reflection.

11.3 Show that the equality of the inner products xi⌘ikxk = x0j⌘j`x0` means
that the matrix Li

k = e0i · ek that relates the coordinates x0i = Li
k x

k

to the coordinates xk must obey the relation

⌘ik = Li
k ⌘i` L

`
k (11.518)

which is ⌘ = LT⌘L in matrix notation. Hint: First doubly di↵erentiate
the equality with respect to xk and to x` for k 6= `. Then di↵erentiate
it twice with respect to xk.

11.4 The relations x0i = e0i · ej xj and x` = e` · e0k xk imply (for fixed basis
vectors e and e0) that

@x0i

@xj
= e0i · ej = ej · e0i = ⌘j` ⌘

ike` · e0k = ⌘j` ⌘
ik @x

`

@x0k
.
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Use this equation to show that if Ai transforms (11.7) as a contravariant
vector

A
0i =

@x0i

@xj
Aj , (11.519)

then A` = ⌘`j Aj transforms covariantly (11.10)

A0
s =

@x`

@x0s
A`.

The metric ⌘ also turns a covariant vector A` into its contravariant
form Ak

⌘k`A` = ⌘k`⌘`jA
j = �kjA

j = Ak.

11.5 The LHC is designed to collide 7 TeV protons against 7 TeV protons for
a total collision energy of 14 TeV. Suppose one used a linear accelerator
to fire a beam of protons at a target of protons at rest at one end of
the accelerator. What energy would you need to see the same physics
as at the LHC?

11.6 What is the minimum energy that a beam of pions must have to pro-
duce a sigma hyperon and a kaon by striking a proton at rest? The rel-
evant masses (in MeV) are m⌃+ = 1189.4, mK+ = 493.7, mp = 938.3,
and m⇡+ = 139.6.

11.7 Use Gauss’s law and the Maxwell-Ampère law (11.67) to show that the
microscopic (total) current 4-vector j = (c⇢, j) obeys the continuity
equation ⇢̇+r · j = 0.

11.8 Show that if Mik is a covariant second-rank tensor with no particular
symmetry, then only its antisymmetric part contributes to the 2-form
Mik dxi ^ dxk and only its symmetric part contributes to the quantity
Mik dxidxk.

11.9 In rectangular coordinates, use the Levi-Civita identity (1.490) to de-
rive the curl-curl equations (11.70).

11.10 Derive the Bianchi identity (11.72) from the definition (11.59) of the
Faraday field-strength tensor, and show that it implies the two homo-
geneous Maxwell equations (11.62).

11.11 Show that if A is a p-form, then d(AB) = dA ^B + (�1)pA ^ dB.
11.12 Show that if ! = aijdxi ^ dxj/2 with aij = � aji, then

d! =
1

3!
(@kaij + @iajk + @jaki) dx

i ^ dxj ^ dxk. (11.520)

11.13 Using tensor notation throughout, derive (11.151) from (11.149 &
11.150).
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11.14 Use the flat-space formula (11.172) to compute the change dp due to
d⇢, d�, and dz, and so derive the expressions (11.173) for the orthonor-
mal basis vectors ⇢̂, �̂, and ẑ.

11.15 Similarly, derive (11.181) from (11.179).
11.16 Show that Levi-Civita’s 4-symbol obeys the identity (12.161).
11.17 (a) Using the formulas (11.181) for the basis vectors of spherical co-

ordinates in terms of those of rectangular coordinates, compute the
derivatives of the unit vectors r̂, ✓̂, and �̂ with respect to the variables
r, ✓, and � and express them in terms of the basis vectors r̂, ✓̂, and �̂.
(b) Using the formulas of (a) and our expression (6.33) for the gradient
in spherical coordinates, derive the formula (11.289) for the laplacian
r ·r.

11.18 Consider the torus with coordinates ✓,� labeling the arbitrary point

p = (cos�(R+ r sin ✓), sin�(R+ r sin ✓), r cos ✓) (11.521)

in which R > r. Both ✓ and � run from 0 to 2⇡. (a) Find the basis
vectors e✓ and e�. (b) Find the metric tensor and its inverse.

11.19 For the same torus, (a) find the dual vectors e✓ and e� and (b) find
the nonzero connections �ijk where i, j, & k take the values ✓&�.

11.20 For the same torus, (a) find the two Christo↵el matrices �✓ and ��,

(b) find their commutator [�✓,��], and (c) find the elements R✓
✓✓✓, R

�
✓�✓,

R✓
�✓�, and R�

��� of the curvature tensor.
11.21 Find the curvature scalar R of the torus with points (11.521). Hint:

In these four problems, you may imitate the corresponding calculation
for the sphere in Sec. 11.46.

11.22 By di↵erentiating the identity gik gk` = �i`, show that �gik = �
gisgkt�gst or equivalently that dgik = � gisgktdgst.

11.23 Just to get an idea of the sizes involved in Black holes, imagine an
isolated sphere of matter of uniform density ⇢ that as an initial con-
dition is all at rest within a radius rb. Its radius will be less than its
Schwarzschild radius if

rb <
2MG

c2
= 2

✓
4

3
⇡r3b⇢

◆
G

c2
. (11.522)

If the density ⇢ is that of water under standard conditions (1 gram per
cc), for what range of radii rb might the sphere be or become a black
hole? Same question if ⇢ is the density of dark energy.

11.24 For the points (11.399), derive the metric (11.402) with k = 1.
11.25 For the points (11.400), derive the metric (11.402) with k = 0.
11.26 For the points (11.401), derive the metric (11.402) with k = �1.
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11.27 Derive the a�ne connections in Eq.(11.406).
11.28 Derive the a�ne connections in Eq.(11.407).
11.29 Derive the a�ne connections in Eq.(11.408).
11.30 Derive the spatial Einstein equation (11.418) from (11.386, 11.402,

11.413, 11.415, & 11.416).
11.31 Assume there had been no inflation, no era of radiation, and no dark

energy. In this case, the magnitude of the di↵erence |⌦� 1| would have
increased as t2/3 over the past 13.8 billion years. Show explicitly how
close to unity ⌦ would have had to have been at t = 1 s so as to satisfy
the observational constraint |⌦0�1| < 0.036 on the present value of ⌦.

11.32 Derive the relation (11.436) between the energy density ⇢ and the
scale factor a(t) from the conservation law (11.433) and the equation
of state pi = wi⇢i.

11.33 Use the Friedmann equations (11.417 & 11.441) for constant ⇢ = �p
and k = 1 to derive (11.457) subject to the boundary condition that
a(t) has its minimum at t = 0.

11.34 Use the Friedmann equations (11.417 & 11.441) with w = �1, ⇢ con-
stant, and k = �1 to derive (11.458) subject to the boundary condition
that a(0) = 0.

11.35 Use the Friedmann equations (11.417 & 11.441) with w = �1, ⇢ con-
stant, and k = 0 to derive (11.456). Show why a linear combination of
the two solutions (11.456) does not work.

11.36 Use the conservation equation (11.462) and the Friedmann equations
(11.417 & 11.441) with w = 1/3, k = 0, and a(0) = 0 to derive (11.465).

11.37 Show that if the matrix U(x) is nonsingular, then

(@i U)U�1 = � U @i U
�1. (11.523)

11.38 The gauge-field matrix is a linear combination Ak = �ig tbAb
k of the

generators tb of a representation of the gauge group. The generators
obey the commutation relations

[ta, tb] = ifabct
c (11.524)

in which the fabc are the structure constants of the gauge group. Show
that under a gauge transformation (11.483)

A0
i = UAiU

�1 � (@iU)U�1 (11.525)

by the unitary matrix U = exp(�ig�ata) in which �a is infinitesimal,
the gauge-field matrix Ai transforms as

�igA0a
i t

a = �igAa
i t

a � ig2fabc�
aAb

i t
c + ig@i�

ata. (11.526)
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Show further that the gauge field transforms as

A0a
i = Aa

i � @i�
a � gfabcA

b
i�

c. (11.527)

11.39 Show that if the vectors ea(x) are orthonormal, then ea†·ec,i = �ea†,i ·ec.
11.40 Use the identity of exercise 11.39 to derive the formula (11.503) for

the nonabelian Faraday tensor.
11.41 Using the tricks of section 12.25, show that �

p
g = �1

2
p
g gik �gik.

This relation and the definition (11.346) R = gikRn
ink imply that the

first-order change in the Einstein-Hilbert action is (11.373) apart from
an irrelevant surface term (Carroll, 2003, chap 4.3) due to gik

p
g �Rn

ink.
11.42 Write Dirac’s action density in the explicitly hermitian form LD =

� 1
2 �

i@i � 1
2

⇥
 �i@i 

⇤†
in which the field  has the invariant form

 = ea a and  = i †�0. Use the identity
⇥
 a�

i b

⇤†
= �  b�

i a to
show that the gauge-field matrix Ai defined as the coe�cient of  a�

i b

as in  a�
i(@i + iAiab) b is hermitian A⇤

iab = Aiba.


