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Linear Algebra

1.1 Numbers

The natural numbers are the positive integers and zero. Rational numbers
are ratios of integers. Irrational numbers have decimal digits dn

x =
1X

n=mx

dn
10n

(1.1)

that do not repeat. Thus the repeating decimals 1/2 = 0.50000 . . . and
1/3 = 0.3̄ ⌘ 0.33333 . . . are rational, while ⇡ = 3.141592654 . . . is irrational.
Decimal arithmetic was invented in India over 1500 years ago but was not
widely adopted in Europe until the seventeenth century.
The real numbers R include the rational numbers and the irrational num-

bers; they correspond to all the points on an infinite line called the real line.

The complex numbers C are the real numbers with one new number i
whose square is �1. A complex number z is a linear combination of a real
number x and a real multiple i y of i

z = x+ iy. (1.2)

Here x = Rez is the real part of z, and y = Imz is its imaginary part.
One adds complex numbers by adding their real and imaginary parts

z1 + z2 = x1 + iy1 + x2 + iy2 = x1 + x2 + i(y1 + y2). (1.3)

Since i2 = �1, the product of two complex numbers is

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 � y1y2 + i(x1y2 + y1x2). (1.4)

The polar representation of z = x+ iy is

z = rei✓ = r(cos ✓ + i sin ✓) (1.5)
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in which r is the modulus or absolute value of z

r = |z| =
p
x2 + y2 (1.6)

and ✓ is its phase or argument

✓ = arctan (y/x). (1.7)

Since exp(2⇡i) = 1, there is an inevitable ambiguity in the definition of the
phase of any complex number: for any integer n, the phase ✓+2⇡n gives the
same z as ✓. In various computer languages, the function atan2(y, x) returns
the angle ✓ in the interval �⇡ < ✓  ⇡ for which (x, y) = r(cos ✓, sin ✓).
There are two common notations z⇤ and z̄ for the complex conjugate

of a complex number z = x+ iy

z⇤ = z̄ = x� iy. (1.8)

The square of the modulus of a complex number z = x+ iy is

|z|2 = x2 + y2 = (x+ iy)(x� iy) = z̄z = z⇤z. (1.9)

The inverse of a complex number z = x+ iy is

z�1 = (x+ iy)�1 =
x� iy

(x� iy)(x+ iy)
=

x� iy

x2 + y2
=

z⇤

z⇤z
=

z⇤

|z|2 . (1.10)

Grassmann numbers ✓i are anti-commuting numbers, that is, the anti-
commutator of any two Grassmann numbers vanishes

{✓i, ✓j} ⌘ [✓i, ✓j ]+ ⌘ ✓i✓j + ✓j✓i = 0. (1.11)

So the square of any Grassmann number is zero, ✓2i = 0. We won’t use these
numbers until chapter 19, but they do have amusing properties. The highest
monomial in N Grassmann numbers ✓i is the product ✓1✓2 . . . ✓N . So the
most general power series in two Grassmann numbers is just

f(✓1, ✓2) = f0 + f1 ✓1 + f2 ✓2 + f12 ✓1✓2 (1.12)

in which f0, f1, f2, and f12 are complex numbers (Hermann Grassmann
1809–1877).

1.2 Arrays

An array is an ordered set of numbers. Arrays play big roles in computer
science, physics, and mathematics. They can be of any (integral) dimension.
A one-dimensional array (a1, a2, . . . , an) is variously called an n-tuple,
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a row vector when written horizontally, a column vector when written
vertically, or an n-vector. The numbers ak are its entries or components.

A two-dimensional array aik with i running from 1 to n and k from 1 to m
is an n⇥m matrix. The numbers aik are its entries, elements, or matrix
elements. One can think of a matrix as a stack of row vectors or as a queue
of column vectors. The entry aik is in the ith row and the kth column.

One can add together arrays of the same dimension and shape by adding
their entries. Two n-tuples add as

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn) (1.13)

and two n⇥m matrices a and b add as

(a+ b)ik = aik + bik. (1.14)

One can multiply arrays by numbers: Thus z times the three-dimensional
array aijk is the array with entries z aijk. One can multiply two arrays to-
gether no matter what their shapes and dimensions. The outer product of
an n-tuple a and an m-tuple b is an n⇥m matrix with elements

(a b)ik = ai bk (1.15)

or an m⇥ n matrix with entries (ba)ki = bkai. If a and b are complex, then
one also can form the outer products (a b)ik = ai bk, (b a)ki = bk ai, and
(b a)ki = bk ai. The outer product of a matrix aik and a three-dimensional
array bj`m is a five-dimensional array

(a b)ikj`m = aik bj`m. (1.16)

An inner product is possible when two arrays are of the same size in one
of their dimensions. Thus the inner product (a, b) ⌘ ha|bi or dot product
a · b of two real n-tuples a and b is

(a, b) = ha|bi = a · b = (a1, . . . , an) · (b1, . . . , bn) = a1b1 + . . .+ anbn. (1.17)

The inner product of two complex n-tuples often is defined as

(a, b) = ha|bi = a · b = (a1, . . . , an) · (b1, . . . , bn) = a1 b1 + . . .+ an bn (1.18)

or as its complex conjugate

(a, b)⇤ = ha|bi⇤ = (a · b)⇤ = (b, a) = hb|ai = b · a. (1.19)

The inner product of a vector with itself is non-negative (a, a) � 0.
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The product of an m⇥ n matrix aik times an n-tuple bk is the m-tuple b0

whose ith component is

b0i = ai1b1 + ai2b2 + . . .+ ainbn =
nX

k=1

aikbk. (1.20)

This product is b0 = a b in matrix notation.
If the size n of the second dimension of a matrix a matches that of the

first dimension of a matrix b, then their product a b is a matrix with entries

(a b)i` = ai1 b1` + . . .+ ain bn` =
nX

k=1

aik bk`. (1.21)

1.3 Matrices

Matrices are two-dimensional arrays.
The trace of a square n⇥n matrix a is the sum of its diagonal elements

Tr a = tr a = a11 + a22 + . . .+ ann =
nX

i=1

aii. (1.22)

The trace of the product of two matrices is independent of their order

Tr (a b) =
nX

i=1

nX

k=1

aikbki =
nX

k=1

nX

i=1

bkiaik = Tr (b a) (1.23)

as long as the matrix elements are numbers that commute with each other.
It follows that the trace is cyclic

Tr (a b c . . . z) = Tr (b c . . . z a) = Tr (c . . . z a b) = . . . (1.24)

The transpose of an n⇥ ` matrix a is an `⇥ n matrix aT with entries
�
aT
�
ij
= aji. (1.25)

Mathematicians often use a prime to mean transpose, as in a0 = aT, but
physicists tend to use primes to label di↵erent objects or to indicate di↵eren-
tiation. One may show that transposition inverts the order of multiplication

(a b) T = bT aT. (1.26)
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A matrix that is equal to its transpose

a = aT (1.27)

is symmetric, aij = aji.
The (hermitian) adjoint of a matrix is the complex conjugate of its trans-

pose. That is, the (hermitian) adjoint a† of an N ⇥ L complex matrix a is
the L⇥N matrix with entries

(a†)ij = a⇤ji. (1.28)

One may show that

(a b)† = b† a†. (1.29)

A matrix that is equal to its adjoint

aij = (a†)ij = a⇤ji (1.30)

(and which must be a square matrix) is hermitian or self adjoint

a = a† (1.31)

(Charles Hermite 1822–1901).

Example 1.1 (The Pauli Matrices). All three of Pauli’s matrices

�1 =

✓
0 1
1 0

◆
, �2 =

✓
0 �i
i 0

◆
, and �3 =

✓
1 0
0 �1

◆
(1.32)

are hermitian (Wolfgang Pauli 1900–1958).

A real hermitian matrix is symmetric. If a matrix a is hermitian, then the
quadratic form

hv|a|vi =
NX

i=1

NX

j=1

v⇤i aijvj 2 R (1.33)

is real for all complex n-tuples v.
The Kronecker delta �ik is defined to be unity if i = k and zero if i 6= k

�ik =

⇢
1 if i = k
0 if i 6= k

(1.34)

(Leopold Kronecker 1823–1891). The identity matrix I has entries Iik =
�ik.
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The inverse a�1 of an n⇥ n matrix a is a square matrix that satisfies

a�1 a = a a�1 = I (1.35)

in which I is the n⇥ n identity matrix.
So far we have been writing n-tuples and matrices and their elements with

lower-case letters. It is equally common to use capital letters, and we will
do so for the rest of this section.
A matrix U whose adjoint U † is its inverse

U †U = UU † = I (1.36)

is unitary. Unitary matrices are square.
A real unitary matrix O is orthogonal and obeys the rule

OTO = OOT = I. (1.37)

Orthogonal matrices are square.
An N ⇥N hermitian matrix A is non-negative

A � 0 (1.38)

if for all complex vectors V the quadratic form

hV |A|V i =
NX

i=1

NX

j=1

V ⇤
i AijVj � 0 (1.39)

is nonnegative. It is positive or positive definite if

hV |A|V i > 0 (1.40)

for all nonzero vectors |V i.

Example 1.2 (Kinds of Positivity). The nonsymmetric, nonhermitian 2 ⇥
2 matrix ✓

1 1
�1 1

◆
(1.41)

is positive on the space of all real 2-vectors but not on the space of all
complex 2-vectors.

Example 1.3 (Representations of Imaginary and Grassmann Numbers).
The 2 ⇥ 2 matrix

✓
0 �1
1 0

◆
(1.42)
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can represent the number i since
✓
0 �1
1 0

◆✓
0 �1
1 0

◆
=

✓
�1 0
0 �1

◆
= �I. (1.43)

The 2 ⇥ 2 matrix
✓
0 0
1 0

◆
(1.44)

can represent a Grassmann number since
✓
0 0
1 0

◆✓
0 0
1 0

◆
=

✓
0 0
0 0

◆
= 0. (1.45)

To represent two Grassmann numbers, one needs 4 ⇥ 4 matrices, such as

✓1 =

0

BB@

0 0 1 0
0 0 0 �1
0 0 0 0
0 0 0 0

1

CCA and ✓2 =

0

BB@

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

1

CCA . (1.46)

The matrices that represent n Grassmann numbers are 2n⇥ 2n and have 2n

rows and 2n columns.

Example 1.4 (Fermions). The matrices (1.46) also can represent lowering
or annihilation operators for a system of two fermionic states. For a1 = ✓1
and a2 = ✓2 and their adjoints a†1 and a†2, the creation operaors, satisfy the
anticommutation relations

{ai, a†k} = �ik and {ai, ak} = {a†i , a
†
k} = 0 (1.47)

where i and k take the values 1 or 2. In particular, the relation (a†i )
2 = 0

implementsPauli’s exclusion principle, the rule that no state of a fermion
can be doubly occupied.

1.4 Vectors

Vectors are things that can be multiplied by numbers and added together
to form other vectors in the same vector space. So if U and V are vectors
in a vector space S over a set F of numbers x and y and so forth, then

W = xU + y V (1.48)

also is a vector in the vector space S.
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A basis for a vector space S is a set of vectors Bk for k = 1 . . . n in terms
of which every vector U in S can be expressed as a linear combination

U = u1B1 + u2B2 + . . .+ unBn (1.49)

with numbers uk in F . The numbers uk are the components of the vector
U in the basis Bk. If the basis vectors Bk are orthonormal, that is, if
their inner products are (Bk, B`) = hBk|B`i = B̄k ·B` = �k`, then we might
represent the vector U as the n-tuple (u1, u2, . . . , un) with uk = hBk|Ui or
as the corresponding column vector.

Example 1.5 (Hardware Store). Suppose the vector W represents a certain
kind of washer and the vector N represents a certain kind of nail. Then if n
and m are natural numbers, the vector

H = nW +mN (1.50)

would represent a possible inventory of a very simple hardware store. The
vector space of all such vectors H would include all possible inventories of
the store. That space is a two-dimensional vector space over the natural
numbers, and the two vectors W and N form a basis for it.

Example 1.6 (Complex Numbers). The complex numbers are a vector
space. Two of its vectors are the number 1 and the number i; the vector
space of complex numbers is then the set of all linear combinations

z = x1 + yi = x+ iy. (1.51)

The complex numbers are a two-dimensional vector space over the real num-
bers, and the vectors 1 and i are a basis for it.
The complex numbers also form a one-dimensional vector space over the

complex numbers. Here any nonzero real or complex number, for instance
the number 1 can be a basis consisting of the single vector 1. This one-
dimensional vector space is the set of all z = z1 for arbitrary complex z.

Example 1.7 (2-space). Ordinary flat two-dimensional space is the set of
all linear combinations

r = xx̂+ yŷ (1.52)

in which x and y are real numbers and x̂ and ŷ are perpendicular vectors
of unit length (unit vectors with x̂ · x̂ = 1 = ŷ · ŷ and x̂ · ŷ = 0). This vector
space, called R2, is a 2-d space over the reals.
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The vector r can be described by the basis vectors x̂ and ŷ and also by
any other set of basis vectors, such as �ŷ and x̂

r = xx̂+ yŷ = �y(�ŷ) + xx̂. (1.53)

The components of the vector r are (x, y) in the {x̂, ŷ} basis and (�y, x) in
the {�ŷ, x̂} basis. Each vector is unique, but its components depend
upon the basis.

Example 1.8 (3-Space). Ordinary flat three-dimensional space is the set
of all linear combinations

r = xx̂+ yŷ+ zẑ (1.54)

in which x, y, and z are real numbers. It is a 3-d space over the reals.

Example 1.9 (Matrices). Arrays of a given dimension and size can be added
and multiplied by numbers, and so they form a vector space. For instance,
all complex three-dimensional arrays aijk in which 1  i  3, 1  j  4,
and 1  k  5 form a vector space over the complex numbers.

Example 1.10 (Partial Derivatives). Derivatives are vectors, so are par-
tial derivatives. For instance, the linear combinations of x and y partial
derivatives taken at x = y = 0

a
@

@x
+ b

@

@y
(1.55)

form a vector space.

Example 1.11 (Functions). The space of all linear combinations of a set
of functions fi(x) defined on an interval [a, b]

f(x) =
X

i

zi fi(x) (1.56)

is a vector space over the natural N, real R, or complex C numbers {zi}.

In quantum mechanics, a state is represented by a vector, often written
as  or in Dirac’s notation as | i. If c1 and c2 are complex numbers, and
| 1i and | 2i are any two states, then the linear combination

| i = c1| 1i+ c2| 2i (1.57)

also is a possible state of the system.
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Example 1.12 (Polarization of photons and gravitons). The general state
of a photon of momentum ~k is one of elliptical polarization

|~k, ✓,�i = cos ✓ ei�|~k,+i+ sin ✓ e�i�|~k,�i (1.58)

in which the states of positive and negative helicity |~k,±i represent a photon
whose angular momentum ±~ is parallel or antiparallel to its momentum ~k.
If ✓ = ⇡/4 + n⇡, the polarization is linear, and the electric field is parallel
to an axis that depends upon � and is perpendicular to ~k.
The general state of a graviton of momentum ~k also is one of ellipti-

cal polarization (1.58), but now the states of positive and negative helicity
|~k,±i have angular momentum ±2~ parallel or antiparallel to the momen-
tum ~k. Linear polarization again is ✓ = ⇡/4+n⇡. The state |~k,+i represents
space being stretched and squeezed along one axis while being squeezed and
stretched along another axis, both axes perpendicular to each other and to
~k. In the state |~k,⇥i, the stretching and squeezing axes are rotated by 45�

about ~k relative to those of |~k,+i.

1.5 Linear operators

A linear operator A maps each vector V in its domain into a vector
V 0 = A(V ) ⌘ AV in its range in a way that is linear. So if V and W are
two vectors in its domain and b and c are numbers, then

A(bV + cW ) = bA(V ) + cA(W ) = bAV + cAW. (1.59)

If the domain and the range are the same vector space S, then A maps each
basis vector Bi of S into a linear combination of the basis vectors Bk

ABi = a1iB1 + a2iB2 + . . .+ aniBn =
nX

k=1

akiBk (1.60)

a formula that is clearer in Dirac’s notation (section 1.149). The square
matrix aki represents the linear operator A in the Bk basis. The e↵ect of
A on any vector V = u1B1 + u2B2 + . . .+ unBn in S then is

AV = A
nX

i=1

uiBi =
nX

i=1

uiABi =
nX

i,k=1

uiakiBk =
nX

i,k=1

akiuiBk. (1.61)

So the kth component u0k of the vector V 0 = AV is

u0k = ak1u1 + ak2u2 + . . .+ aknun =
nX

i=1

aki ui. (1.62)
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Thus the column vector u0 of the components u0k of the vector V 0 = AV
is the product u0 = a u of the matrix with elements aki that represents the
linear operator A in the Bk basis and the column vector with components ui
that represents the vector V in that basis. In each basis, vectors and linear
operators are represented by column vectors and matrices.
Each linear operator is unique, but its matrix depends upon the

basis. If we change from the Bk basis to another basis B0
i

B0
i =

nX

`=1

ukiBk (1.63)

in which the n⇥ n matrix u`k has an inverse matrix u�1
ki so that

nX

k=1

u�1
ki B

0
k =

nX

k=1

u�1
ki

nX

`=1

u`kB` =
nX

`=1

 
nX

k=1

u`ku
�1
ki

!
B` =

nX

`=1

�`iB` = Bi

(1.64)
then the old basis vectors Bi are given by

Bi =
nX

k=1

u�1
ki B

0
k. (1.65)

Thus (exercise 1.9) the linear operator A maps the basis vector B0
i to

AB0
i =

nX

k=1

ukiABk =
nX

j,k=1

ukiajkBj =
nX

j,k,`=1

ukiajku
�1
`j B0

`. (1.66)

So the matrix a0 that represents A in the B0 basis is related to the matrix a
that represents it in the B basis by a similarity transformation

a0`i =
nX

jk=1

u�1
`j ajkuki or a0 = u�1 a u (1.67)

in matrix notation. If the matrix u is unitary, then its inverse is its hermi-
tian adjoint

u�1 = u† (1.68)

and the similarity transformation (1.67) is

a0`i =
nX

jk=1

u†`jajkuki =
nX

jk=1

u⇤j`ajkuik or a0 = u† a u. (1.69)

Because traces are cyclic, they are invariant under similarity transforma-
tions

Tr(a0) = Tr(u au�1) = Tr(a u�1 u) = Tr(a). (1.70)
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Example 1.13 (Change of Basis). Let the action of the linear operator A
on the basis vectors {B1, B2} be AB1 = B2 and AB2 = 0. If the column
vectors

b1 =

✓
1
0

◆
and b2 =

✓
0
1

◆
(1.71)

represent the basis vectors B1 and B2, then the matrix

a =

✓
0 0
1 0

◆
(1.72)

represents the linear operator A. But if we use the basis vectors

B0
1 =

1p
2
(B1 +B2) and B0

2 =
1p
2
(B1 �B2) (1.73)

then the vectors

b01 =
1p
2

✓
1
1

◆
and b02 =

1p
2

✓
1
�1

◆
(1.74)

would represent B1 and B2, and the matrix

a0 =
1

2

✓
1 1
�1 �1

◆
(1.75)

would represent the linear operator A (exercise 1.10).

A linear operator A also may map a vector space S with basis Bk into a
di↵erent vector space T with its own basis Ck.

ABi =
MX

k=1

akiCk. (1.76)

It then maps an arbitrary vector V = u1B1+ . . .+unBn in S into the vector

AV =
MX

k=1

 
nX

i=1

aki ui

!
Ck (1.77)

in T .
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1.6 Inner products

Most of the vector spaces used by physicists have an inner product. A
positive-definite inner product associates a number (f, g) with every
ordered pair of vectors f and g in the vector space V and satisfies the rules

(f, g) = (g, f)⇤ (1.78)

(f, z g + w h) = z (f, g) + w (f, h) (1.79)

(f, f) � 0 and (f, f) = 0 () f = 0 (1.80)

in which f , g, and h are vectors, and z and w are numbers. The first rule
says that the inner product is hermitian; the second rule says that it is
linear in the second vector z g + w h of the pair; and the third rule says
that it is positive definite. The first two rules imply that (exercise 1.11)
the inner product is anti-linear in the first vector of the pair

(z g + w h, f) = z⇤(g, f) + w⇤(h, f). (1.81)

A Schwarz inner product satisfies the first two rules (1.78, 1.79) for
an inner product and the fourth (1.81) but only the first part of the third
(1.80)

(f, f) � 0. (1.82)

This condition of nonnegativity implies (exercise 1.15) that a vector f of
zero length must be orthogonal to all vectors g in the vector space V

(f, f) = 0 =) (g, f) = 0 for all g 2 V. (1.83)

So a Schwarz inner product is almost positive definite.
Inner products of 4-vectors can be negative. To accomodate them we

define an indefinite inner product without regard to positivity as one that
satisfies the first two rules (1.78 & 1.79) and therefore also the fourth rule
(1.81) and that instead of being positive definite is nondegenerate

(f, g) = 0 for all f 2 V =) g = 0. (1.84)

This rule says that only the zero vector is orthogonal to all the vectors of
the space. The positive-definite condition (1.80) is stronger than and implies
nondegeneracy (1.84) (exercise 1.14).
Apart from the indefinite inner products of 4-vectors in special and gen-

eral relativity, most of the inner products physicists use are Schwarz inner
products or positive-definite inner products. For such inner products, we



14 Linear Algebra

can define the norm |f | = k f k of a vector f as the square root of the
nonnegative inner product (f, f)

k f k=
p
(f, f). (1.85)

The distance between two vectors f and g is the norm of their di↵erence

k f � g k . (1.86)

Example 1.14 (Euclidian space). The space of real vectors U, V with n
components Ui, Vi forms an n-dimensional vector space over the real num-
bers with an inner product

(U, V ) =
nX

i=1

Ui Vi (1.87)

that is nonnegative when the two vectors are the same

(U,U) =
nX

i=1

Ui Ui =
nX

i=1

U2
i � 0 (1.88)

and vanishes only if all the components Ui are zero, that is, if the vector
U = 0. Thus the inner product (1.87) is positive definite. When (U, V ) is
zero, the vectors U and V are orthogonal.

Example 1.15 (Complex Eucidian Space). The space of complex vectors
with n components Ui, Vi forms an n-dimensional vector space over the com-
plex numbers with inner product

(U, V ) =
nX

i=1

U⇤
i Vi = (V, U)⇤. (1.89)

The inner product (U,U) is nonnegative and vanishes

(U,U) =
nX

i=1

U⇤
i Ui =

nX

i=1

|Ui|2 � 0 (1.90)

only if U = 0. So the inner product (1.89) is positive definite. If (U, V ) is
zero, then U and V are orthogonal.

Example 1.16 (Complex Matrices). For the vector space of n⇥m complex
matrices A, B, . . ., the trace of the adjoint (1.28) of A multiplied by B is
an inner product

(A,B) = TrA†B =
nX

i=1

mX

j=1

(A†)jiBij =
nX

i=1

mX

j=1

A⇤
ijBij (1.91)
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that is nonnegative when the matrices are the same

(A,A) = TrA†A =
nX

i=1

mX

j=1

A⇤
ijAij =

nX

i=1

mX

j=1

|Aij |2 � 0 (1.92)

and zero only when A = 0. So this inner product is positive definite.

A vector space with a positive-definite inner product (1.78–1.81) is called
an inner-product space, a metric space, or a pre-Hilbert space.

A sequence of vectors fn is a Cauchy sequence if for every ✏ > 0 there
is an integer N(✏) such that kfn � fmk < ✏ whenever both n and m exceed
N(✏). A sequence of vectors fn converges to a vector f if for every ✏ > 0
there is an integer N(✏) such that kf�fnk < ✏ whenever n exceeds N(✏). An
inner-product space with a norm defined as in (1.85) is complete if each of
its Cauchy sequences converges to a vector in that space. A Hilbert space
is a complete inner-product space. Every finite-dimensional inner-product
space is complete and so is a Hilbert space. An infinite-dimensional complete
inner-product space, such as the space of all square-integrable functions, also
is a Hilbert space (David Hilbert, 1862–1943).

Example 1.17 (The Hilbert Space of Square-Integrable Functions). For
the vector space of functions (1.56), a natural inner product is

(f, g) =

Z b

a
dx f⇤(x) g(x). (1.93)

The squared norm k f k of a function f(x) is

k f k2=
Z b

a
dx |f(x)|2. (1.94)

A function is square integrable if its norm is finite. The space of all square-
integrable functions is an inner-product space; it also is complete and so is
a Hilbert space.

Example 1.18 (Minkowski inner product). The Minkowski or Lorentz inner
product (p, x) of two 4-vectors p = (E/c, p1, p2, p3) and x = (ct, x1, x2, x3)
is p · x � Et . It is indefinite, nondegenerate (1.84), and invariant under
Lorentz transformations, and often is written as p · x or as p x. If p is the
4-momentum of a freely moving physical particle of mass m, then

p · p = p · p� E2/c2 = � c2m2  0. (1.95)

The Minkowski inner product satisfies the rules (1.78, 1.79, and 1.84), but
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it is not positive definite, and it does not satisfy the Schwarz inequality
(Hermann Minkowski 1864–1909, Hendrik Lorentz 1853–1928).

1.7 Cauchy-Schwarz inequalities

For any two vectors f and g, the Schwarz inequality

(f, f) (g, g) � |(f, g)|2 (1.96)

holds for any Schwarz inner product (and so for any positive-definite in-
ner product). The condition (1.82) of nonnegativity ensures that for any
complex number � the inner product of the vector f � �g with itself is
nonnegative

(f � �g, f � �g) = (f, f)� �⇤(g, f)� �(f, g) + |�|2(g, g) � 0. (1.97)

Now if (g, g) = 0, then for (f � �g, f � �g) to remain nonnegative for all
complex values of � it is necessary that (f, g) = 0 also vanish (exercise 1.15).
Thus if (g, g) = 0, then the Schwarz inequality (1.96) is trivially true because
both sides of it vanish. So we assume that (g, g) > 0 and set � = (g, f)/(g, g).
The inequality (1.97) then gives us

(f � �g, f � �g) =

✓
f � (g, f)

(g, g)
g, f � (g, f)

(g, g)
g

◆
= (f, f)� (f, g)(g, f)

(g, g)
� 0

which is the Schwarz inequality (1.96)

(f, f)(g, g) � |(f, g)|2. (1.98)

Taking the square root of each side, we have

k f kk g k� |(f, g)| (1.99)

(Hermann Schwarz 1843–1921).

Example 1.19 (Some Schwarz Inequalities). For the dot product of two
real 3-vectors r & R, the Cauchy-Schwarz inequality is

(r · r) (R ·R) � (r ·R)2 = (r · r) (R ·R) cos2 ✓ (1.100)

where ✓ is the angle between r and R.
The Schwarz inequality for two real n-vectors x is

(x · x) (y · y) � (x · y)2 = (x · x) (y · y) cos2 ✓ (1.101)
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and it implies (exercise 1.16) that

kxk+ kyk � kx+ yk. (1.102)

For two complex n-vectors u and v, the Schwarz inequality is

(u⇤ · u) (v⇤ · v) � |u⇤ · v|2 = (u⇤ · u) (v⇤ · v) cos2 ✓ (1.103)

and it implies (exercise 1.17) that

kuk+ kvk � ku+ vk. (1.104)

The inner product (1.93) of two complex functions f and g provides an-
other example

Z b

a
dx |f(x)|2

Z b

a
dx |g(x)|2 �

����
Z b

a
dx f⇤(x) g(x)

����
2

(1.105)

of the Schwarz inequality.

1.8 Linear independence and completeness

A set of n vectors V1, V2, . . . , Vn is linearly dependent if there exist
numbers ci, not all zero, such that the linear combination

c1V1 + . . .+ cnVn = 0 (1.106)

vanishes. A set of vectors is linearly independent if it is not linearly
dependent.

A set {Vi} of linearly independent vectors is maximal in a vector space S
if the addition of any other vector U in S to the set {Vi} makes the enlarged
set {U, Vi} linearly dependent.

A set of n linearly independent vectors V1, V2, . . . , Vn that is maximal
in a vector space S can represent any vector U in the space S as a linear
combination of its vectors, U = u1V1 + . . . + unVn. For if we enlarge the
maximal set {Vi} by including in it any vector U not already in it, then the
bigger set {U, Vi} will be linearly dependent. Thus there will be numbers c0,
c1, . . . , cn, not all zero, that make the sum

c0 U + c1V1 + . . .+ cnVn = 0 (1.107)

vanish. Now if c0 were 0, then the set {Vi} would be linearly dependent.
Thus c0 6= 0, and so we may divide by c0 and express the arbitrary vector
U as a linear combination of the vectors Vi

U = � 1

c0
(c1V1 + . . .+ cnVn) = u1V1 + . . .+ unVn (1.108)
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with uk = �ck/c0. Thus a set of linearly independent vectors {Vi} that is
maximal in a space S can represent every vector U in S as a linear com-
bination U = u1V1 + . . . + unVn of its vectors. Such a set {Vi} of linearly
independent vectors that is maximal in a space S is called a basis for S; it
spans S; it is a complete set of vectors S.

1.9 Dimension of a vector space

If V1, . . . , Vn and W1, . . . , Wm are any two bases for a vector space S, then
n = m.

To see why, suppose that the n vectors C1, C2, . . . , Cn are complete in
a vector space S, and that the m vectors L1, L2, . . . , Lm in S are linearly
independent (Halmos, 1958, sec. 1.8). Since the C’s are complete, the set of
vectors Lm, C1, . . . , Cn is linearly dependent. So we can omit one of the C’s
and the remaining set Lm, C1, . . . , Ci�1, Ci+1, . . . , Cn still spans S. Repeat-
ing this argument, we find that the vectors

Lm�1, Lm, C1, . . . , Ci�1, Ci+1, . . . , Cn (1.109)

are linearly dependent, and that the vectors

Lm�1, Lm, C1, . . . , Ci�1, Ci+1, . . . , Cj�1, Cj+1, . . . , Cn (1.110)

still span S. We continue to repeat these steps until we run out of L’s or
C’s. If n were less than m, then we’d end up with a set of vectors Lk, . . . , Lm

that would be complete and therefore each of the vectors L1, . . . , Lk�1 would
have to be linear combinations of the vectors Lk, . . . , Lm. But the L’s by
assumption are linearly independent. So n � m. Thus if both the C’s and
the L’s are bases for the same space S, and so are both complete and linearly
independent in it, then both n � m and m � n. So all the bases of a vector
space consist of the same number of vectors. This number is the dimension
of the space.

The steps of the above demonstration stop for n = m when the m linearly
independent L’s have replaced the n complete C’s leaving us with n = m
linearly independent L’s that are complete. Thus in a vector space of n
dimensions, every set of n linearly independent vectors is complete and so
forms a basis for the space.
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1.10 Orthonormal vectors

Suppose the vectors V1, V2, . . . , Vn are linearly independent. Then we can
make out of them a set of n vectors Ui that are orthonormal

(Ui, Uj) = �ij . (1.111)

There are many ways to do this, because there are many such sets of or-
thonormal vectors. We will use the Gram-Schmidt method. We set

U1 =
V1p

(V1, V1)
(1.112)

So the first vector U1 is normalized. Next we set u2 = V2+c12U1 and require
that u2 be orthogonal to U1

0 = (U1, u2) = (U1, c12U1 + V2) = c12 + (U1, V2). (1.113)

Thus c12 = �(U1, V2), and so

u2 = V2 � (U1, V2)U1. (1.114)

The normalized vector U2 then is

U2 =
u2p

(u2, u2)
. (1.115)

We next set u3 = V3 + c13U1 + c23U2 and ask that u3 be orthogonal to U1

0 = (U1, u3) = (U1, c13U1 + c23U2 + V3) = c13 + (U1, V3) (1.116)

and also to U2

0 = (U2, u3) = (U2, c13U1 + c23U2 + V3) = c23 + (U2, V3). (1.117)

So c13 = �(U1, V3) and c23 = �(U2, V3), and we have

u3 = V3 � (U1, V3)U1 � (U2, V3)U2. (1.118)

The normalized vector U3 then is

U3 =
u3p

(u3, u3)
. (1.119)

We may continue in this way until we reach the last of the n linearly
independent vectors. We require the kth unnormalized vector uk

uk = Vk +
k�1X

i=1

cik Ui. (1.120)
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to be orthogonal to the k � 1 vectors Ui and find that cik = �(Ui, Vk) so
that

uk = Vk �
k�1X

i=1

(Ui, Vk)Ui. (1.121)

The normalized vector then is

Uk =
ukp

(uk, uk)
. (1.122)

A basis is more convenient if its vectors are orthonormal.

1.11 Outer products

From any two vectors f and g, we may make an outer-product operator
A that maps any vector h into the vector f multiplied by the inner product
(g, h)

Ah = f (g, h) = (g, h) f. (1.123)

The operator A is linear because for any vectors e, h and numbers z, w

A (z h+ w e) = (g, z h+ w e) f = z (g, h) f + w (g, e) f = z Ah+ wAe.
(1.124)

If f , g, and h are vectors with components fi, gi, and hi in some basis,
then the linear transformation is

(Ah)i =
nX

j=1

Aij hj = fi

nX

j=1

g⇤j hj (1.125)

and in that basis A is the matrix with entries

Aij = fi g
⇤
j . (1.126)

It is the outer product of the vectors f and g⇤. The outer product of g
and f⇤ is di↵erent, Bij = gi f⇤

j .

Example 1.20 (Outer Product). If in some basis the vectors f and g are

f =

✓
2
3i

◆
and g =

0

@
i
1
3i

1

A (1.127)

then their outer products are the matrices

A =

✓
2
3i

◆�
�i 1 �3i

�
=

✓
�2i 2 �6i
3 3i 9

◆
(1.128)
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and

B =

0

@
i
1
3i

1

A�2 �3i
�
=

0

@
2i 3
2 �3i
6i 9

1

A . (1.129)

Example 1.21 (Dirac’s outer products). Dirac’s notation for outer products
is neat. If the vectors f = |fi and g = |gi are

|fi =

0

@
a
b
c

1

A and |gi =
✓

z
w

◆
(1.130)

then their outer products are

|fihg| =

0

@
az⇤ aw⇤

bz⇤ bw⇤

cz⇤ cw⇤

1

A and |gihf | =
✓
za⇤ zb⇤ zc⇤

wa⇤ wb⇤ wc⇤

◆
(1.131)

as well as

|fihf | =

0

@
aa⇤ ab⇤ ac⇤

ba⇤ bb⇤ bc⇤

ca⇤ cb⇤ cc⇤

1

A and |gihg| =
✓
zz⇤ zw⇤

wz⇤ ww⇤

◆
. (1.132)

1.12 Dirac notation

Outer products are important in quantum mechanics, and so Dirac invented
a notation for linear algebra that makes them easy to write. In his notation,
a vector f is a ket f = |fi. The new thing in his notation is the bra hg|. The
inner product of two vectors (g, f) is the bracket (g, f) = hg|fi. A matrix
element (g, cf) of an operator c then is (g, cf) = hg|c|fi in which the bra
and ket bracket the operator c.
In Dirac notation, an outer product like (1.123) Ah = (g, h) f = f (g, h)

reads A |hi = |fihg|hi, and the outer product A itself is A = |fihg|.
The bra hg| is the adjoint of the ket |gi, and the ket |fi is the adjoint of

the bra hf |

hg| = (|gi)† and |fi = (hf |)†, so hg|†† = hg| and |fi†† = |fi. (1.133)

The adjoint of an outer product is

( z |fihg| )† = z⇤ |gihf |. (1.134)
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In Dirac’s notation, the most general linear operator is an arbitrary linear
combination of outer products

A =
X

k`

zk` |kih`|. (1.135)

Its adjoint is

A† =
X

k`

z⇤k` |`ihk|. (1.136)

The adjoint of a ket |hi = A|fi is

(|hi)† =(A|fi)† =
 
X

k`

zk` |kih`|fi
!†

=
X

k`

z⇤k` hf |`ihk| = hf |A†. (1.137)

Before Dirac, bras were implicit in the definition of the inner product, but
they did not appear explicitly; there was no simple way to write the bra hg|
or the outer product |fihg|.
If the kets |ki form an orthonormal basis in an n-dimensional vector space,

then we can expand an arbitrary ket in the space as

|fi =
nX

k=1

ck|ki. (1.138)

Since the basis vectors are orthonormal h`|ki = �`k, we can identify the
coe�cients ck by forming the inner product

h`|fi =
nX

k=1

ck h`|ki =
nX

k=1

ck �`,k = c`. (1.139)

The original expasion (1.138) then must be

|fi =
nX

k=1

ck|ki =
nX

k=1

hk|fi |ki =
nX

k=1

|ki hk|fi =
 

nX

k=1

|ki hk|
!
|fi. (1.140)

Since this equation must hold for every vector |fi in the space, it follows that
the sum of outer products within the parentheses is the identity operator
for the space

I =
nX

k=1

|ki hk|. (1.141)

Every set of kets |↵ji that forms an orthonormal basis h↵j |↵`i = �j` for the
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space gives us an equivalent representation of the identity operator

I =
nX

j=1

|↵ji h↵j | =
nX

k=1

|ki hk|. (1.142)

These resolutions of the identity operator give every vector |fi in the space
the expansions

|fi =
nX

j=1

|↵ji h↵j |fi =
nX

k=1

|ki hk|fi. (1.143)

Example 1.22 (Linear operators represented as matrices). The equations
(1.60–1.67) that relate linear operators to the matrices that represent them
are much clearer in Dirac’s notation. If the kets |Bki are n orthonormal basis
vectors, that is, if hBk|B`i = �k`, for a vector space S, then a linear operator
A acting on S maps the basis vector |Bii into (1.60)

A|Bii =
nX

k=1

|BkihBk|A|Bii =
nX

k=1

aki |Bki, (1.144)

and the matrix that represents the linear operator A in the |Bki basis is
aki = hBk|A|Bii. If a unitary operator U maps these basis vectors into
|B0

ki = U |Bki, then in this new basis the matrix that represents A as in
(1.137) is

a0`i = hB0
`|A|B0

ii = hB`|U †AU |Bii

=
nX

j=1

nX

k=1

hB`|U †|BjihBj |A|BkihBk|U |Bii =
nX

j=1

nX

k=1

u†`jajkuki
(1.145)

or a0 = u† a u in matrix notation.

Example 1.23 (Inner-Product Rules). In Dirac’s notation, the rules (1.78—
1.81), of a positive-definite inner product are

hf |gi =hg|fi⇤

hf |z1g1 + z2g2i = z1hf |g1i+ z2hf |g2i
hz1f1 + z2f2|gi = z⇤1hf1|gi+ z⇤2hf2|gi

hf |fi � 0 and hf |fi = 0 () f = 0.

(1.146)

States in Dirac notation often are labeled | i or by their quantum numbers
|n, l,mi, and one rarely sees plus signs or complex numbers or operators
inside bras or kets. But one should.
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Example 1.24 (Gram Schmidt). In Dirac notation, the formula (1.121) for
the kth orthogonal linear combination of the vectors |V`i is

|uki = |Vki �
k�1X

i=1

|UiihUi|Vki =
 
I �

k�1X

i=1

|UiihUi|
!
|Vki (1.147)

and the formula (1.122) for the kth orthonormal linear combination of the
vectors |V`i is

|Uki =
|ukip
huk|uki

. (1.148)

The vectors |Uki are not unique; they vary with the order of the |Vki.

Vectors and linear operators are abstract. The numbers we compute with
are inner products like hg|fi and hg|A|fi. In terms of n orthonormal basis
vectors |ji with fj = hj|fi and g⇤j = hg|ji, we can use the expansion (1.141)
of the identity operator to write these inner products as

hg|fi = hg|I|fi =
nX

j=1

hg|jihj|fi =
nX

j=1

g⇤j fj

hg|A|fi = hg|IAI|fi =
nX

j,`=1

hg|jihj|A|`ih`|fi =
nX

j,`=1

g⇤j Aj` f`

(1.149)

in which Aj` = hj|A|`i. We often gather the inner products f` = h`|fi into
a column vector f with components f` = h`|fi

f =

0

BBB@

h1|fi
h2|fi
...

hn|fi

1

CCCA
=

0

BBB@

f1
f2
...
fn

1

CCCA
(1.150)

and the hj|A|`i into a matrix A with matrix elements Aj` = hj|A|`i. If we
also line up the inner products hg|ji = hj|gi⇤ in a row vector that is the
transpose of the complex conjugate of the column vector g

g† = (h1|gi⇤, h2|gi⇤, . . . , hn|gi⇤) = (g⇤1, g
⇤
2, . . . , g

⇤
n) (1.151)

then we can write inner products in matrix notation as hg|fi = g†f and as
hg|A|fi = g†Af .

One can compute the inner product hg, fi of two vectors f and g by doing
the sum (1.149) of g⇤j fj over the index j only if one knows their components
fj and gj which are their inner products fj = hj|fi and gj = hj|gi with
the orthonormal states |ji of some basis. Thus an inner product implies
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the existence of an orthonormal basis and a representation of the identity
operator

I =
nX

j=1

|jihj|. (1.152)

If we switch to a di↵erent basis, say from |ki’s to |↵ki’s, then the com-
ponents of the column vectors change from fk = hk|fi to f 0

k = h↵k|fi, and
similarly those of the row vectors g† and of the matrix A change, but the
bras, the kets, the linear operators, and the inner products hg|fi and hg|A|fi
do not change because the identity operator is basis independent (1.142)

hg|fi =
nX

k=1

hg|kihk|fi =
nX

k=1

hg|↵kih↵k|fi

hg|A|fi =
nX

k,`=1

hg|kihk|A|`ih`|fi =
nX

k,`=1

hg|↵kih↵k|A|↵`ih↵`|fi.
(1.153)

Dirac’s outer products show how to change from one basis to another.
The sum of outer products

U =
nX

k=1

|↵kihk| (1.154)

maps the ket |`i of the orthonormal basis we started with into |↵`i

U |`i =
nX

k=1

|↵kihk|`i =
nX

k=1

|↵ki �k` = |↵`i. (1.155)

Example 1.25 (A Simple Change of Basis). If the ket |↵ki of the new basis
is simply |↵ki = |k + 1i with |↵ki = |k + 1i ⌘ |1i then the operator that
maps the n kets |ki into the kets |↵ki is

U =
nX

k=1

|↵kihk| =
nX

k=1

|k + 1ihk|. (1.156)

The square U2 of U also changes the basis; it sends |ki to |k + 2i. The set
of operators U ` for ` = 1, 2, . . . , n forms a group known as Zn.

To compute the inner product (U, V ) of two vectors U and V , one needs
the components Ui and Vi of these vectors in order to do the sum (1.89) of
U⇤
i Vi over the index i.
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1.13 Adjoints of operators

In Dirac’s notation, the most general linear operator (1.158) on an n-dimensional
vector space is a sum of outer products z |kih`| in which z is a complex num-
ber and the kets |ki and |`i are two of the n orthonormal kets that make up
a basis for the space. The adjoint (1.134) of this basic linear operator is

(z |kih`|)† = z⇤ |`ihk|. (1.157)

Thus with z = hk|A|`i, the most general linear operator on the space is

A = IAI =
nX

k,`=1

|kihk|A|`ih`| (1.158)

and its adjoint A† is the operator IA†I

A† =
nX

k,`=1

|`ih`|A†|kihk| =
nX

k,`=1

|`ihk|A|`i⇤hk|. (1.159)

It follows that h`|A†|ki = hk|A|`i⇤ so that the matrix A†
k` that represents A

†

in this basis is

A†
`k = h`|A†|ki = hk|A|`i⇤ = A⇤

`k = A⇤T
k` (1.160)

in agreement with our definition (1.28) of the adjoint of a matrix as the
transpose of its complex conjugate, A† = A⇤T. We also have

hg|A†fi = hg|A†|fi = hf |A|gi⇤ = hf |Agi⇤ = hAg|fi. (1.161)

Taking the adjoint of the adjoint is by (1.157)
h
(z |kih`|)†

i†
= [z⇤ |`ihk|]† = z |kih`| (1.162)

the same as doing nothing at all. This also follows from the matrix formula
(1.160) because both (A⇤)⇤ = A and (AT)T = A, and so

⇣
A†
⌘†

=
�
A⇤T�⇤ T = A (1.163)

the adjoint of the adjoint of a matrix is the original matrix.
Before Dirac, the adjoint A† of a linear operator A was defined by

(g,A†f) = (Ag, f) = (f,A g)⇤. (1.164)

This definition also implies that A†† = A since

(g,A††f) = (A†g, f) = (f,A†g)⇤ = (Af, g)⇤ = (g,Af). (1.165)

We also have (g,Af) = (g,A††f) = (A†g, f).
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1.14 Self-adjoint or Hermitian linear operators

An operator A that is equal to its adjoint A† = A is self adjoint or hermi-
tian. In view of (1.160), the matrix elements of a self-adjoint linear operator
A satisfy hk|A†|`i = h`|A|ki⇤ = hk|A|`i in any orthonormal basis. So a ma-
trix that represents a hermitian operator is equal to the transpose of its
complex conjugate

Ak` = hk|A|`i = hk|A†|`i = h`|A|ki⇤ = A⇤T
k` = A†

k`. (1.166)

We also have

hg|A |fi = hAg|fi = hf |Agi⇤ = hf |A |gi⇤ (1.167)

and in pre-Dirac notation

(g,A f) = (Ag, f) = (f,A g)⇤. (1.168)

A matrix Aij that is real and symmetric or imaginary and antisym-
metric is hermitian. But a self-adjoint linear operator A that is represented
by a matrix Aij that is real and symmetric (or imaginary and antisymmet-
ric) in one orthonormal basis will not in general be represented by a matrix
that is real and symmetric (or imaginary and antisymmetric) in a di↵erent
orthonormal basis, but it will be represented by a hermitian matrix in every
orthonormal basis.

A ket |a0i is an eigenvector of a linear operator A with eigenvalue
a0 if A|a0i = a0|a0i. As we’ll see in section 1.29, hermitian matrices have
real eigenvalues and complete sets of orthonormal eigenvectors. Hermitian
operators and matrices represent physical variables in quantum mechanics.

1.15 Real, symmetric linear operators

In quantum mechanics, we usually consider complex vector spaces, that is,
spaces in which the vectors |fi are complex linear combinations

|fi =
nX

k=1

zk |ki (1.169)

of complex orthonormal basis vectors |ii.
But real vector spaces also are of interest. A real vector space is a vector

space in which the vectors |fi are real linear combinations

|fi =
nX

k=1

xk |ki (1.170)
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of real orthonormal basis vectors, x⇤k = xk and |ki⇤ = |ki.
A real linear operator A on a real vector space

A =
nX

k,`=1

|kihk|A|`ih`| =
nX

k,`=1

|kiAk`h`| (1.171)

is represented by a real matrix A⇤
k` = Ak`. A real linear operator A that is self

adjoint on a real vector space satisfies the condition (1.168) of hermiticity
but with the understanding that complex conjugation has no e↵ect

(g,A f) = (Ag, f) = (f,A g)⇤ = (f,A g). (1.172)

Thus its matrix elements are symmetric, hg|A|fi = hf |A|gi. Since A is her-
mitian as well as real, the matrix Ak` that represents it (in a real basis) is
real and hermitian, and so is symmetric Ak` = A⇤

`k = A`k.

1.16 Unitary operators

A unitary operator U is one whose adjoint is its inverse

U U † = U † U = I. (1.173)

Any operator that changes from one orthonormal basis |ni to another |↵ni

U =
nX

k=1

|↵kihk| (1.174)

is unitary since

UU † =
nX

k=1

|↵kihk|
nX

`=1

|`ih↵`| =
nX

k,`=1

|↵kihk|`ih↵`|

=
nX

k,`=1

|↵ki�k,`h↵`| =
nX

k=1

|↵kih↵k| = I

(1.175)

as well as

U †U =
nX

`=1

|`ih↵`|
nX

k=1

|↵kihk| =
nX

k=1

|kihk| = I. (1.176)

A unitary operator maps every orthonormal basis |ki into another orthonor-
mal basis |↵ki. For if |↵ki = U |ki, then the vectors |↵ki are orthonormal
h↵k|↵`i = �k,` (exercise 1.22). They also are complete because provide a
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resolution of the identity operator

nX

k=1

|↵kih↵k| =
nX

k=1

U |kihk|U † = U I U † = U U † = I. (1.177)

If we multiply the relation |↵ki = U |ki by the bra hk| and then sum over
the index k, we get

nX

k=1

|↵kihk| =
nX

k=1

U |kihk| = U
nX

k=1

|kihk| = U. (1.178)

Every unitary operator changes every orthonormal basis into another or-
thonormal basis or into itself.
Inner products do not change under unitary transformations because

hg|fi = hg|U † U |fi = hUg|U |fi = hUg|Ufi which in pre-Dirac notation
is (g, f) = (g, U † Uf) = (Ug, Uf).
Unitary matrices have unimodular determinants, detU ⌘ |U | = 1, be-

cause the determinant of the product of two matrices is the product of their
determinants (1.218) and because transposition doesn’t change the value of
a determinant (1.208)

1 = |I| = |UU †| = |U ||U †| = |U ||UT|⇤ = |U ||U |⇤. (1.179)

A unitary matrix that is real is orthogonal and satsfies

OOT = OTO = I. (1.180)

1.17 Hilbert spaces

We have mainly been talking about linear operators that act on finite-
dimensional vector spaces and that can be represented by matrices. But
infinite-dimensional vector spaces and the linear operators that act on them
play central roles in electrodynamics and quantum mechanics. For instance,
the Hilbert space H of all “wave” functions  (x, t) that are square integrable
over three-dimensional space at all times t is of infinite dimension.
In one space dimension, the state |x0i represents a particle at position x0

and is an eigenstate of the hermitian position operator x with eigenvalue
x0, that is, x|x0i = x0|x0i. These states form a basis that is orthogonal in
the sense that hx|x0i = 0 for x 6= x0 and normalized in the sense that
hx|x0i = �(x � x0) in which �(x � x0) is Dirac’s delta function. The delta
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function �(x�x0) actually is a functional �x0 that maps any suitably smooth
function f into its value at x0

�x0 [f ] =

Z
�(x� x0) f(x) dx = f(x0). (1.181)

Another basis for the Hilbert space of one-dimensional quantummechanics
is made of the states |pi of well-defined momentum. The state |p0i represents
a particle or system with momentum p0. It is an eigenstate of the hermitian
momentum operator p with eigenvalue p0, that is, p|p0i = p0|p0i. The mo-
mentum states also are orthonormal in Dirac’s sense, hp|p0i = �(p� p0).
The operator that translates a system in space by a distance a is

U(a) =

Z
|x+ aihx| dx. (1.182)

It maps the state |x0i to the state |x0 + ai and is unitary (exercise 1.23).
Remarkably, this translation operator is an exponential of the momentum
operator U(a) = exp (�i p a/~) in which ~ = h/2⇡ = 1.054 ⇥ 10�34 Js is
Planck’s constant divided by 2⇡.
In two-dimensions, with basis states |x, yi that are orthonormal in Dirac’s

sense, hx, y|x0, y0i = �(x� x0)�(y � y0), the unitary operator

U(✓) =

Z
|x cos ✓ � y sin ✓, x sin ✓ + y cos ✓ihx, y| dxdy (1.183)

rotates a system in space by the angle ✓. This rotation operator is the
exponential U(✓) = exp(�i ✓Lz/~) in which the z component of the angular
momentum is Lz = x py � y px.
We may carry most of our intuition about matrices over to these unitary

transformations that change from one infinite basis to another. But we must
use common sense and keep in mind that infinite sums and integrals do not
always converge.

1.18 Antiunitary, antilinear operators

Certain maps on states | i ! | 0i, such as those involving time reversal,
are implemented by operators K that are antilinear

K (z + w�) = K (z| i+ w|�i) = z⇤K| i+ w⇤K|�i = z⇤K + w⇤K�
(1.184)

and antiunitary

(K�,K ) = hK�|K i = (�, )⇤ = h�| i⇤ = h |�i = ( ,�) . (1.185)
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1.19 Symmetry in quantum mechanics

In quantum mechanics, a symmetry is a map of states | i ! | 0i and
|�i ! |�0i that preserves probabilities

|h�0| 0i|2 = |h�| i|2. (1.186)

Eugene Wigner (1902–1995) showed that every symmetry in quantum me-
chanics can be represented either by an operator U that is linear and unitary
or by an operator K that is antilinear and antiunitary. The antilinear, antiu-
nitary case occurs when a symmetry involves time reversal. Most symmetries
are represented by operators that are linear and unitary. Unitary operators
are of great importance in quantum mechanics. We use them to represent ro-
tations, translations, Lorentz transformations, and internal-symmetry trans-
formations.

1.20 Determinants

The determinant of a 2⇥ 2 matrix A is

detA = |A| = A11A22 �A21A12. (1.187)

In terms of the 2⇥2 antisymmetric (eij = �eji) matrix e12 = 1 = �e21 with
e11 = e22 = 0, this determinant is

detA =
2X

i=1

2X

j=1

eijAi1Aj2 =
2X

i=1

2X

j=1

eijA1iA2j . (1.188)

It’s also true that

ek` detA =
2X

i=1

2X

j=1

eijAikAj`. (1.189)

Example 1.26 (Area of a parallelogram). Two 2-vectors V = (V1, V2) and
W = (W1,W2) define a parallelogram whose area is the absolute value of a
2⇥ 2 determinant

area(V,W ) =

���� det
✓
V1 V2

W1 W2

◆���� = |V1W2 � V2W1 | . (1.190)

To check that this formula, rotate the coordinates so that the 2-vector V
runs from the origin along the x-axis. Then V2 = 0, and the determinant is
V1W2 which is the base V1 of the parallelogram times its height W2.
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These definitions (1.187–1.189) extend to any square matrix. If A is a 3⇥3
matrix, then its determinant is

detA =
3X

i,j,k=1

eijk Ai1Aj2Ak3 =
3X

i,j,k=1

eijk A1iA2jA3k (1.191)

in which eijk is the totally antisymmetric Levi-Civita symbol whose nonzero
values are

e123 = e231 = e312 = 1, and e213 = e132 = e321 = � 1. (1.192)

The symbol vanishes whenever an index appears twice, thus

e111 = e112 = e113 = e222 = e221 = e223 = e333 = e331 = e332 = 0 (1.193)

and so forth. The sums over i, j, and k run from 1 to 3

detA =
3X

i=1

Ai1

3X

j,k=1

eijk Aj2Ak3

=A11 (A22A33 �A32A23) +A21 (A32A13 �A12A33)

+A31 (A12A23 �A22A13) .

(1.194)

The minor Mi` of the matrix A is the 2 ⇥ 2 determinant of the matrix
A without row i and column `, and the cofactor Ci` is the minor Mi`

multiplied by (�1)i+`. Thus detA is the sum

detA = A11(�1)2 (A22A33 �A32A23) +A21(�1)3 (A12A33 �A32A13)

+A31(�1)4 (A12A23 �A22A13) (1.195)

= A11C11 +A21C21 +A31C31

of the products Ai1Ci1 = Ai1(�1)i+1Mi1 where

C11 = (�1)2M11 = A22A33 �A23A32

C21 = (�1)3M21 = A32A13 �A12A33 (1.196)

C31 = (�1)4M31 = A12A23 �A22A13.

Example 1.27 (Volume of a parallelepiped). The determinant of a 3 ⇥ 3
matrix is the dot product of the vector of its first row with the cross-product
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of the vectors of its second and third rows

������

U1 U2 U3

V1 V2 V3

W1 W2 W3

������
=

3X

ijk=1

eijk UiVjWk =
3X

i=1

Ui (V ⇥ W )i = U · (V ⇥ W ).

(1.197)
The absolute value of this scalar triple product is the volume of the paral-
lelepiped defined by U, V, and W as one can see by placing the parallelepiped
so the vector U runs from the origin along the x axis. The 3⇥3 determinant
(1.197) then is U1(V2W3 � V3W2) which is the height of the parallelepiped
times the area (1.190) of its base.

Laplace used the totally antisymmetric symbol ei1i2...in with n indices and
with e123...n = 1 to define the determinant of an n⇥ n matrix A as

detA =
nX

i1i2...in=1

ei1i2...inAi11Ai22 . . . Ainn (1.198)

in which the sums over i1 . . . in run from 1 to n. In terms of cofactors, two
forms of his expansion of this determinant are

detA =
nX

i=1

AikCik =
nX

k=1

AikCik (1.199)

in which the first sum is over the row index i but not the (arbitrary) col-
umn index k, and the second sum is over the column index k but not the
(arbitrary) row index i. The cofactor Cik is (�1)i+kMik in which the minor
Mik is the determinant of the (n� 1)⇥ (n� 1) matrix A without its ith row
and kth column. It’s also true that

ek1k2...kn detA =
nX

i1i2...in=1

ei1i2...inAi1k1Ai2k2 . . . Ainkn

=
nX

i1i2...in=1

ei1i2...inAk1i1Ak2i2 . . . Aknin .

(1.200)

The key feature of a determinant is that it is an antisymmetric combina-
tion of products of the elements Aik of a matrix A. One implication of this
antisymmetry is that the interchange of any two rows or any two columns
changes the sign of the determinant. Another is that if one adds a multiple
of one column to another column, for example a multiple xAi2 of column 2
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to column 1, then the determinant

detA0 =
nX

i1i2...in=1

ei1i2...in (Ai11 + xAi12)Ai22 . . . Ainn (1.201)

is unchanged. The reason is that the extra term � detA vanishes

� detA =
nX

i1i2...in=1

x ei1i2...in Ai12Ai22 . . . Ainn = 0 (1.202)

because it is proportional to a sum of products of a factor ei1i2...in that is
antisymmetric in i1 and i2 and a factor Ai12Ai22 that is symmetric in these
indices. For instance, when i1 and i2 are 5 & 7 and 7 & 5, the two terms
cancel

e57...inA52A72 . . . Ainn + e75...inA72A52 . . . Ainn = 0 (1.203)

because e57...in = �e75...in .
By repeated additions of x2Ai2, x3Ai3, and so forth to Ai1, we can change

the first column of the matrix A to a linear combination of all the columns

Ai1 �! Ai1 +
nX

k=2

xkAik (1.204)

without changing detA. In this linear combination, the coe�cients xk are
arbitrary. The analogous operation with arbitrary yk

Ai` �! Ai` +
nX

k=1,k 6=`

ykAik (1.205)

replaces the `th column by a linear combination of all the columns without
changing detA.

Suppose that the columns of an n ⇥ n matrix A are linearly dependent
(section 1.8), so that the linear combination of columns

nX

k=1

ykAik = 0 for i = 1, . . . n (1.206)

vanishes for some coe�cients yk not all zero. Suppose y1 6= 0. Then by
adding suitable linear combinations of columns 2 through n to column 1,
we could make all the modified elements A0

i1 of column 1 vanish without
changing detA. But then detA as given by (1.198) would vanish. Thus the
determinant of any matrix whose columns are linearly dependent
must vanish.

Now suppose that the columns of an n⇥nmatrix are linearly independent.
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Then the determinant of the matrix cannot vanish because any linearly
independent set of n vectors in a vector space of n dimensions is complete
(section 1.8). Thus if the columns of a matrix A are linearly independent
and therefore complete, some linear combination of all columns 2 through
n when added to column 1 will convert column 1 into a nonzero multiple
of the n-dimensional column vector (1, 0, 0, . . . 0), say (c1, 0, 0, . . . 0). Similar
operations will convert column 2 into a nonzero multiple of the column vector
(0, 1, 0, . . . 0), say (0, c2, 0, . . . 0). Continuing in this way, we may convert the
matrix A to a matrix with nonzero entries ci along the main diagonal and
zeros everywhere else. The determinant detA then is the product c1c2 . . . cn
of the nonzero diagonal entries ci’s, and so detA cannot vanish.

We may extend these arguments to the rows of a matrix. The addition to
row k of a linear combination of the other rows

Aki �! Aki +
nX

`=1,` 6=k

z`A`i (1.207)

does not change the value of the determinant. In this way, one may show
that the determinant of a matrix vanishes if and only if its rows are linearly
dependent. The reason why these results apply to the rows as well as to
the columns is that the determinant of a matrix A may be defined either in
terms of the columns or in terms of the rows as in the definitions (1.198) &
1.200). These and other properties of determinants follow from a study of
permutations (section 10.13). Detailed proofs are in (Aitken, 1959).

By comparing the row and column definitions (1.198 & 1.200) of determi-
nants, we see that the determinant of the transpose of a matrix is the same
as the determinant of the matrix itself:

det
�
AT
�
= detA. (1.208)

The interchange A ! AT of the rows and columns of a matrix has no e↵ect
on its determinant.
Let us return for a moment to Laplace’s expansion (1.199) of the deter-

minant detA of an n⇥ n matrix A as a sum of AikCik over the row index i
with the column index k held fixed

detA =
nX

i=1

AikCik =
nX

i=1

AkiCki (1.209)

in order to prove that

�k` detA =
nX

i=1

AikCi` =
nX

i=1

AkiC`i. (1.210)
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For k = `, this formula just repeats Laplace’s expansion (1.209). But for
k 6= `, it is Laplace’s expansion for the determinant of a matrix that has
two copies of its kth column. Since the determinant of a matrix with two
identical columns vanishes, the rule (1.210) also is true for k 6= `.
The rule (1.210) provides a formula for the inverse of a matrix A whose

determinant does not vanish. Such matrices are said to be nonsingular.
The inverse A�1 of an n ⇥ n nonsingular matrix A is the transpose of the
matrix of cofactors divided by detA

�
A�1

�
`i
=

Ci`

detA
or A�1 =

CT

detA
. (1.211)

To verify this formula, we use it for A�1 in the product A�1A and note that
by (1.210) the `kth entry of the product A�1A is just �`k

�
A�1A

�
`k

=
nX

i=1

�
A�1

�
`i
Aik =

nX

i=1

Ci`

detA
Aik = �`k. (1.212)

Example 1.28 (Inverting a 2 ⇥ 2 Matrix). Our formula (1.211) for the
inverse of the general 2 ⇥ 2 matrix

A =

✓
a b
c d

◆
(1.213)

gives

A�1 =
1

ad� bc

✓
d �b
�c a

◆
(1.214)

which is the correct inverse as long as ad 6= bc.

The simple example of matrix multiplication
0

@
a b c
d e f
g h i

1

A

0

@
1 x y
0 1 z
0 0 1

1

A =

0

@
a xa+ b ya+ zb+ c
d xd+ e yd+ ze+ f
g xg + h yg + zh+ i

1

A (1.215)

shows that the operations (1.205) on columns that don’t change the value of
the determinant can be written as matrix multiplication from the right by
a matrix that has unity on its main diagonal and zeros below. Now consider
the matrix product

✓
A 0
�I B

◆✓
I B
0 I

◆
=

✓
A AB
�I 0

◆
(1.216)

in which A and B are n ⇥ n matrices, I is the n ⇥ n identity matrix, and
0 is the n ⇥ n matrix of all zeros. The second matrix on the left-hand side
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has unity on its main diagonal and zeros below, and so it does not change
the value of the determinant of the matrix to its left, which then must equal
that of the matrix on the right-hand side:

det

✓
A 0
�I B

◆
= det

✓
A AB
�I 0

◆
. (1.217)

By using Laplace’s expansion (1.199) along the first column to evaluate the
determinant on the left-hand side and his expansion along the last row to
compute the determinant on the right-hand side, one finds that the de-
terminant of the product of two matrices is the product of the
determinants

detA detB = detAB. (1.218)

Example 1.29 (Two 2⇥2 Matrices). When the matrices A and B are both
2 ⇥ 2, the two sides of (1.217) are

det

✓
A 0
�I B

◆
= det

0

BB@

a11 a12 0 0
a21 a22 0 0
�1 0 b11 b12
0 �1 b21 b22

1

CCA (1.219)

= a11a22 detB � a21a12 detB = detA detB

and

det

✓
A AB
�I 0

◆
= det

0

BB@

a11 a12 (ab)11 (ab)12
a21 a22 (ab)21 (ab)22
�1 0 0 0
0 �1 0 0

1

CCA (1.220)

= (�1)C42 = (�1)(�1) detAB = detAB

and so they give the product rule detA detB = detAB.

Often one uses the notation |A| = detA to denote a determinant. In this
more compact notation, the obvious generalization of the product rule is

|ABC . . . Z| = |A||B| . . . |Z|. (1.221)

The product rule (1.218) implies that det
�
A�1

�
is 1/ detA since

1 = det I = det
�
AA�1

�
= detA det

�
A�1

�
. (1.222)

Example 1.30 (Derivative of the logarithm of a determinant). We see from
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our formula (1.209) for detA that its derivative with respect to any given
element Aik is the corresponding cofactor Cik

@ detA

@Aik
= Cik (1.223)

because the cofactors Cij and Cjk for all j are independent of Aik. Thus the
derivative of the logarithm of this determinant with respect to any parameter
� is

@ ln detA

@�
=

1

detA

X

ik

@ detA

@Aik

@Aik

@�
=
X

ik

Cik

detA

@Aik

@�

=
X

ik

A�1
ki

@Aik

@�
= Tr

✓
A�1@A

@�

◆
.

(1.224)

Example 1.31 (Numerical Tricks). Adding multiples of rows to other rows
does not change the value of a determinant, and interchanging two rows only
changes a determinant by a minus sign. So we can use these operations, which
leave determinants invariant, to make a matrix upper triangular, a form
in which its determinant is just the product of the factors on its diagonal.
For instance, to make the matrix

A =

0

@
1 2 1
�2 �6 3
4 2 �5

1

A (1.225)

upper triangular, we add twice the first row to the second row
0

@
1 2 1
0 �2 5
4 2 �5

1

A

and then subtract four times the first row from the third
0

@
1 2 1
0 �2 5
0 �6 �9

1

A . (1.226)

Next, we subtract three times the second row from the third
0

@
1 2 1
0 �2 5
0 0 �24

1

A .
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We now find as the determinant of A the product of its diagonal elements:

|A| = 1(�2)(�24) = 48. (1.227)

Incidentally, Gauss, Jordan, and modern mathematicians have developed
much faster ways of computing determinants and matrix inverses than those
(1.199 & 1.211) due to Laplace. Sage, Octave, Matlab, Maple, Mathemat-
ica, and Python use these modern techniques, which are freely available as
programs in C and fortran from www.netlib.org/lapack.

Example 1.32 (Using Matlab). The Matlab command to make the matrix
(1.225) is A = [ 1 2 1; -2 -6 3; 4 2 -5 ] . The command d = det(A)
gives its determinant, d = 48, and Ainv = A(�1) gives its inverse

Ainv = 0.5000 0.2500 0.2500

0.0417 -0.1875 -0.1042

0.4167 0.1250 -0.0417 .

1.21 Jacobians

When one changes variables in a multiple integral from coordinates x1, x2
and area element dx1dx2, one must find the new element of area in terms
of the new variables y1, y2. If x̂1 and x̂2 are unit vectors in the x1 and x2
directions, then as the new coordinates change by dy1 and dy2, the point
they represent moves by

~dy1 =

✓
@x1
@y1

x̂1 +
@x2
@y1

x̂2

◆
dy1 and by ~dy2 =

✓
@x1
@y2

x̂1 +
@x2
@y2

x̂2

◆
dy2.

(1.228)
These vectors, ~dy1 and ~dy2 define a parallelogram whose area (1.190) is the
absolute value of a determinant

area(~dy1, ~dy2) =

��������
det

0

BB@

@x1
@y1

@x2
@y1

@x1
@y2

@x2
@y2

1

CCA

��������
dy1 dy2. (1.229)



40 Linear Algebra

The determinant itself is a jacobian

J =
@(x1, x2)

@(y1, y2)
= det

0

BB@

@x1
@y1

@x2
@y1

@x1
@y2

@x2
@y2

1

CCA . (1.230)

The equal integrals are

ZZ

Rx

f(x1, x2) dx1dx2 =

ZZ

Ry

f � x(y1, y2))
����
@(x1, x2)

@(y1, y2)

���� dy1dy2 (1.231)

in which f �x(y1, y2) = f(x1(y1, y2), x2(y1, y2)) and Rx and Ry are the same
region in the two coordinate systems.
In 3 dimensions, with j = 1, 2, and 3, the 3 vectors

~dyj =

✓
@x1
@yj

x̂1 +
@x2
@yj

x̂2 +
@x3
@yj

x̂3

◆
dyj (1.232)

define a parallelepiped whose volume (1.197) is the absolute value of the
determinant

volume(~dy1, ~dy2, ~dy3) =

������������

det

0

BBBBBB@

@x1
@y1

@x2
@y1

@x3
@y1

@x1
@y2

@x2
@y2

@x3
@y2

@x1
@y3

@x2
@y3

@x3
@y2

1

CCCCCCA

������������

dy1 dy2 dy3. (1.233)

The equal integrals are

ZZZ

Rx

f(~x) d3x =

ZZZ

Ry

f � x(~y))
����
@(x1, x2, x3)

@(y1, y2, y3)

���� d
3y (1.234)

in which d3x = dx1dx2dx3, d3y = dy1dy2dy3, f�x(~y) = f(x1(~y), x2(~y), x3(~y)),
and Rx and Ry are the same region in the two coordinate systems.
For n-dimensional integrals over x = (x1, . . . , xn) and y = (y1, . . . , yn),

the rule is similar

Z

Rx

f(x) dnx =

Z

Ry

f � x(y)
����
@(x1, . . . , xn)

@(y1, . . . , yn)

���� d
ny (1.235)
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and uses the absolute value of the n-dimensional jacobian

J =
@(x1, . . . , xn)

@(y1, . . . , yn)
= det

0

BBBB@

@x1
@y1

. . .
@xn
@y1

...
. . .

...
@x1
@yn

. . .
@xn
@yn

1

CCCCA
. (1.236)

Since the determinant of the transpose of a matrix is the same (1.208) as
the determinant of the matrix, some people write jacobians with their rows
and columns interchanged.

1.22 Systems of linear equations

Suppose we wish to solve the system of n linear equations

nX

k=1

Aikxk = yi (1.237)

for n unknowns xk. In matrix notation, with A an n ⇥ n matrix and x
and y n-vectors, this system of equations is Ax = y. If the matrix A is
nonsingular, that is, if det(A) 6= 0, then it has an inverse A�1 given by
(1.211), and we may multiply both sides of Ax = y by A�1 and so find
x = A�1 y. When A is nonsingular, this is the unique solution to (1.237).
When A is singular, det(A) = 0, and so its columns are linearly dependent

(section 1.20). In this case, the linear dependence of the columns of A implies
that Az = 0 for some non-zero vector z. Thus if x satisfies Ax = y, then so
does x+ cz for all c because A(x+ cz) = Ax+ cA z = y. So if det(A) = 0,
then the equation Ax = y may have solutions, but they will not be unique.
Whether equation (1.237) has any solutions when det(A) = 0 depends on
whether the vector y can be expressed as a linear combination of the columns
of A. Since these columns are linearly dependent, they span a subspace of
fewer than n dimensions, and so (1.237) has solutions only when the n-vector
y lies in that subspace.
A system of m < n equations

nX

k=1

Aikxk = yi for i = 1, 2, . . . ,m (1.238)

in n unknowns is under determined. As long as at leastm of the n columns
Aik of the matrix A are linearly independent, such a system always has
solutions, but they will not be unique.
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1.23 Linear least squares

Suppose we have a system of m > n equations in n unknowns xk

nX

k=1

Aikxk = yi for i = 1, 2, . . . ,m. (1.239)

This problem is over determined and, in general, has no solution, but it
does have an approximate solution due to Carl Gauss (1777–1855).
If the matrix A and the vector y are real, then Gauss’s solution is the n

values xk that minimize the sum E of the squares of the errors

E =
mX

i=1

 
yi �

nX

k=1

Aikxk

!2

. (1.240)

The minimizing values xk make the n derivatives of E vanish

@E

@x`
= 0 =

mX

i=1

2

 
yi �

nX

k=1

Aikxk

!
(�Ai`) (1.241)

or in matrix notation ATy = ATAx. Since A is real, the matrix ATA is
non-negative (1.39); if it also is positive (1.40), then it has an inverse, and
our least-squares solution is

x =
�
ATA

��1
ATy. (1.242)

If the matrix A and the vector y are complex, and if the matrix A†A is
positive, then one may derive (exercise 1.25) Gauss’s solution

x =
⇣
A†A

⌘�1
A† y. (1.243)

The operators
�
ATA

��1
AT and

�
A†A

��1
A† are pseudoinverses (section 1.33).

1.24 Lagrange multipliers

The maxima and minima of a function f(x) of x = (x1, x2, . . . , xn) are
among the points at which its gradient vanishes rf(x) = 0, that is,

@f(x)

@xj
= 0 (1.244)

for j = 1, . . . , n. These are stationary points of f .
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Example 1.33 (Minimum). For instance, if f(x) = x21 + 2x22 + 3x23, then
its minimum is at

rf(x) = (2x1, 4x2, 6x3) = 0 (1.245)

that is, at x1 = x2 = x3 = 0.

How do we find the extrema of f(x) if x also must satisfy a constraint?
We use a Lagrange multiplier (Joseph-Louis Lagrange 1736–1813).

In the case of one constraint c(x) = 0, we expect the gradient rf(x) to
vanish in those directions dx that preserve the constraint. So dx ·rf(x) = 0
for all dx that make the dot product dx ·rc(x) vanish. That is, rf(x) and
rc(x) must be parallel. So the extrema of f(x) subject to the constraint
c(x) = 0 satisfy the equations

rf(x) = �rc(x) and c(x) = 0. (1.246)

These n+ 1 equations define the extrema of the unconstrained function

L(x,�) = f(x)� � c(x) (1.247)

of the n+ 1 variables x1, . . . , xn,�

@L(x,�)

@xj
=
@ (f(x)� � c(x))

@xj
= 0 and

@L(x,�)

@�
= � c(x) = 0. (1.248)

The variable � is a Lagrange multiplier.
In the case of k constraints c1(x) = 0, . . . , ck(x) = 0, the projection of

rf must vanish in those directions dx that preserve all the constraints. So
dx ·rf(x) = 0 for all dx that make all dx ·rcj(x) = 0 for j = 1, . . . , k. The
gradient rf will satisfy this requirement if it’s a linear combination

rf = �1rc1 + . . .+ �k rck (1.249)

of the k gradients because then dx ·rf will vanish if dx ·rcj = 0 for j =
1, . . . , k. The extrema also must satisfy the constraints

c1(x) = 0, . . . , ck(x) = 0. (1.250)

The n+k equations (1.249 & 1.250) define the extrema of the unconstrained
function

L(x,�) = f(x)� �1 c1(x) + . . .�k ck(x) (1.251)

of the n+ k variables x and �

rL(x,�) = rf(x)� �rc1(x)� . . .� �rck(x) = 0 (1.252)
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and
@L(x,�)

@�j
= � cj(x) = 0 for j = 1, . . . , k. (1.253)

Example 1.34 (Constrained Extrema and Eigenvectors). Suppose we want
to find the extrema of a real, symmetric quadratic form

f(x) = xTAx =
nX

i,j=1

xiAij xj (1.254)

subject to the constraint c(x) = x · x � 1 which says that the n-vector x is
of unit length. We form the function

L(x,�) = xTAx� � (x · x� 1) (1.255)

and since the matrix A is real and symmetric, we find its unconstrained
extrema as

rL(x,�) = 2Ax� 2�x = 0 and x · x = 1. (1.256)

The extrema of f(x) = xTAx subject to the constraint c(x) = x · x� 1 are
the normalized eigenvectors

Ax = �x and x · x = 1. (1.257)

of the real, symmetric matrix A.

1.25 Eigenvectors and eigenvalues

If a linear operator A maps a nonzero vector |ui into a multiple of itself

A|ui = �|ui (1.258)

then the vector |ui is an eigenvector of A with eigenvalue �. (The German
adjective eigen means special or proper.)
If the vectors |ki for k = 1, . . . , n form an orthonormal basis for the

vector space in which A acts, then we can write the identity operator for
the space as I = |1ih1| + . . . + |nihn|. By inserting this formula for I into
the eigenvector equation (1.258), we get

nX

`=1

hk|A|`ih`|ui = � hk|ui. (1.259)

In matrix notation, with Ak` = hk|A|`i and u` = h`|ui, this is Au = �u.
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A subspace c`|u`i + . . . + cr|uri spanned by any set |uki, k 2 S of eigen-
vectors of a matrix A is left invariant by its action, that is

A

 
X

k2S
ck|uki

!
=
X

k2S
ck A|uki =

X

k2S
ck �k|uki =

X

k2S
c0k|uki (1.260)

with c0k = ck�k. Eigenvectors span invariant subspaces.

Example 1.35 (Eigenvalues of an Orthogonal Matrix). The matrix equa-
tion ✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆✓
1
±i

◆
= e±i✓

✓
1
±i

◆
(1.261)

tells us that the eigenvectors of this 2 ⇥ 2 orthogonal matrix are (1,±i)
with eigenvalues e±i✓. The eigenvalues � of a unitary (and of an orthogonal)
matrix are unimodular, |�| = 1, (exercise 1.26).

Example 1.36 (Eigenvalues of an Antisymmetric Matrix). Let us consider
an eigenvector equation for a matrix A that is antisymmetric

nX

k=1

Aik uk = �ui. (1.262)

The antisymmetry Aik = �Aki of A implies that

nX

i,k=1

uiAik uk = 0. (1.263)

Thus the last two relations imply that

0 =
nX

i,k=1

uiAik uk = �
nX

i=1

u2i = 0. (1.264)

Thus either the eigenvalue � or the dot product of the eigenvector with itself
vanishes.

1.26 Eigenvectors of a square matrix

Let A be an n ⇥ n matrix with complex entries Aik. A vector V with n
entries Vk (not all zero) is an eigenvector of A with eigenvalue � if

nX

k=1

AikVk = �Vi or AV = �V (1.265)
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in matrix notation. Every n⇥n matrix A has n eigenvectors V (`) and eigen-
values �`

AV (`) = �`V
(`) (1.266)

for ` = 1 . . . n. To see why, we write the top equation (1.265) as

nX

k=1

(Aik � � �ik)Vk = 0 (1.267)

or in matrix notation as (A� � I)V = 0 in which I is the n ⇥ n matrix
with entries Iik = �ik. This equation and (1.267) say that the columns of the
matrix A � �I, considered as vectors, are linearly dependent (section 1.8).
The columns of a matrix A��I are linearly dependent if and only if the de-
terminant |A��I| vanishes (section 1.20). Thus a solution of the eigenvalue
equation (1.265) exists if and only if the determinant of A� �I vanishes

det (A� �I) = |A� �I| = 0. (1.268)

This vanishing of the determinant of A��I is the characteristic equation
of the matrix A. For an n⇥ n matrix A, it is a polynomial equation of the
nth degree in the unknown eigenvalue �

0 = |A� �I| = |A|+ · · ·+ (�1)n�1�n�1TrA+ (�1)n�n

= P (�, A) =
nX

k=0

pk �
k (1.269)

in which p0 = |A|, pn�1 = (�1)n�1TrA, and pn = (�1)n.
All the pk’s are basis independent. For if S is any nonsingular matrix, then

multiplication rules (1.218 & 1.222) for determinants imply that the deter-
minant |A� �I| is invariant when A undergoes a similarity transformation
(1.67 & (1.273) 1.279) A ! A0 = S�1AS

P (�, A0) = P (�, S�1AS) = |S�1AS � �I| = |S�1(A� �I)S|
= |S�1||A� �I||S| = |A� �I| = P (�, A).

(1.270)

By the fundamental theorem of algebra (section 5.9), the characteristic
equation (1.269) always has n roots or solutions �` lying somewhere in the
complex plane. Thus the characteristic polynomial P (�, A) has the fac-
tored form

P (�, A) = (�1 � �)(�2 � �) . . . (�n � �). (1.271)

For every root �`, there is a nonzero eigenvector V (`) whose components
V (`)
k are the coe�cients that make the n vectors Aik � �` �ik that are the
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columns of the matrix A � �`I sum to zero in (1.267). Thus every n ⇥ n

matrix has n eigenvalues �` and n eigenvectors V
(`).

The n ⇥ n diagonal matrix A(d)
k` = �k` �` is the canonical form of the

matrix A; the matrix Vk` = V (`)
k whose columns are the eigenvectors V (`) of

A is the modal matrix; and AV = V Ad or more explicitly

nX

k=1

Aik Vk` =
nX

k=1

Aik V
(`)
k = �` V

(`)
i =

nX

k=1

Vik �k`�` =
nX

k=1

Vik A
(d)
k` . (1.272)

If the eigenvectors Vk` are linearly independent, then the matrix V , of which
they are the columns, is nonsingular and has an inverse V �1. The similarity
transformation

V �1AV = A(d) (1.273)

diagonalizes the matrix A.

Example 1.37 (The Canonical Form of a 3 ⇥ 3 Matrix). If in Matlab we
set A = [0 1 2; 3 4 5; 6 7 8] and enter [V,D] = eig(A), then we get

V =

0

@
0.1648 0.7997 0.4082
0.5058 0.1042 �0.8165
0.8468 �0.5913 0.4082

1

A and Ad =

0

@
13.3485 0 0

0 �1.3485 0
0 0 0

1

A

and one may check that AV = V Ad and that V �1AV = Ad.

Setting � = 0 in the factored form (1.271) of P (�, A) and in the char-
acteristic equation (1.269), we see that the determinant of every n ⇥ n
matrix is the product of its n eigenvalues

P (0, A) = |A| = p0 = �1�2 . . .�n. (1.274)

These n roots usually are all di↵erent, and when they are, the eigenvec-
tors V (`) are linearly independent. The first eigenvector is trivially linearly
independent. Let’s assume that the first k < n eigenvectors are linearly inde-
pendent; we’ll show that the first k+1 eigenvectors are linearly independent.
If they were linearly dependent, then there would be k + 1 numbers c`, not
all zero, such that

k+1X

`=1

c`V
(`) = 0. (1.275)

First we multiply this equation from the left by the linear operator A and
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use the eigenvalue equation (1.266)

A
k+1X

`=1

c` V
(`) =

k+1X

`=1

c`AV (`) =
k+1X

`=1

c` �` V
(`) = 0. (1.276)

Now we multiply the same equation (1.275) by �k+1

k+1X

`=1

c` �k+1 V
(`) = 0 (1.277)

and subtract the product (1.277) from (1.276). The terms with ` = k + 1
cancel leaving

kX

`=1

c` (�` � �k+1)V
(`) = 0 (1.278)

in which all the factors (�` � �k+1) are di↵erent from zero since by assump-
tion all the eigenvalues are di↵erent. But this last equation says that the
first k eigenvectors are linearly dependent, which contradicts our assump-
tion that they were linearly in dependent. This contradiction tells us that if
all n eigenvectors of an n ⇥ n square matrix have di↵erent eigen-
values, then they are linearly independent. Similarly, if any k < n
eigenvectors of an n⇥ n square matrix have di↵erent eigenvalues, then they
are linearly independent.

An eigenvalue � that is a single root of the characteristic equation (1.269)
is associated with a single eigenvector; it is called a simple eigenvalue. An
eigenvalue � that is a root of multiplicity n of the characteristic equation
is associated with n eigenvectors; it is said to be an n-fold degenerate
eigenvalue or to have algebraic multiplicity n. Its geometric mul-
tiplicity is the number n0  n of linearly independent eigenvectors with
eigenvalue �. A matrix with n0 < n for any eigenvalue � is defective. Thus
an n⇥n matrix with fewer than n linearly independent eigenvectors is defec-
tive. Thus every nondefective square matrix A can be diagonalized
by a similarity transformation

V
�1

AV = A
(d) (1.279)

(1.273). The elements of the main diagonal of the matrix A(d) are the eigen-
values of the matrix A. Thus the trace of every nondefective matrix A is the
sum of its eigenvalues, TrA = TrA(d) = �a + · · · + �n. The columns of the
matrix V are the eigenvectors of the matrix A.

Since the determinant of every matrix A is the product (1.274) of its
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eigenvalues, detA = |A| = �1�2 . . .�n, the determinant of every nondefective
matrix A = eL is the exponential of the trace of its logarithm

detA = exp [Tr (logA)] and detA = det(eL) = exp[Tr(L)]. (1.280)

Example 1.38 (A Defective 2⇥ 2 Matrix). Each of the 2 ⇥ 2 matrices

✓
0 1
0 0

◆
and

✓
0 0
1 0

◆
(1.281)

has only one linearly independent eigenvector and so is defective.

1.27 A matrix obeys its characteristic equation

Every square matrix obeys its characteristic equation (1.269). That is, the
characteristic equation

P (�, A) = |A� �I| =
nX

k=0

pk �
k = 0 (1.282)

remains true when the matrix A replaces the variable �

P (A,A) =
nX

k=0

pk A
k = 0. (1.283)

To see why, we use the formula (1.211) for the inverse of the matrix A��I

(A� �I)�1 =
C(�, A)T

|A� �I| (1.284)

in which C(�, A)T is the transpose of the matrix of cofactors of the matrix
A� �I. Since |A� �I| = P (�, A), we have, rearranging,

(A� �I)C(�, A)T = |A� �I| I = P (�, A) I. (1.285)

The transpose of the matrix of cofactors of the matrix A��I is a polynomial
in � with matrix coe�cients

C(�, A)T = C0 + C1�+ . . .+ Cn�1�
n�1. (1.286)
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Combining these last two equations (1.285 & 1.286) with the definition
(1.282), we have

(A� �I)C(�, A)T = AC0 + (AC1 � C0)�+ (AC2 � C1)�
2 + . . .

+ (ACn�1 � Cn�2)�
n�1 � Cn�1�

n (1.287)

=
nX

k=0

pk �
k.

Equating equal powers of � on both sides of this equation, we find

AC0 = p0I

AC1 � C0 = p1I

AC2 � C1 = p2I

. . . = . . . (1.288)

ACn�1 � Cn�2 = pn�1I

�Cn�1 = pnI.

We now multiply from the left the first of these equations by I, the second
by A, the third by A2, . . . , and the last by An and then add the resulting
equations. All the terms on the left-hand sides cancel, while the sum of those
on the right gives P (A,A). Thus a square matrix A obeys its characteristic
equation 0 = P (A,A) or

0 =
nX

k=0

pk A
k = |A| I+p1A+ . . .+(�1)n�1(TrA)An�1+(�1)nAn (1.289)

a result known as the Cayley-Hamilton theorem (Arthur Cayley, 1821–
1895, and William Hamilton, 1805–1865). This derivation is due to Israel
Gelfand (1913–2009) (Gelfand, 1961, pp. 89–90).
Because every n ⇥ n matrix A obeys its characteristic equation, its nth

power An can be expressed as a linear combination of its lesser powers

An = (�1)n�1
�
|A| I + p1A+ p2A

2 + . . .+ (�1)n�1(TrA)An�1
�
. (1.290)

For instance, the square A2 of every 2⇥ 2 matrix is given by

A2 = �|A|I + (TrA)A. (1.291)

Example 1.39 (Spin-one-half rotation matrix). If ✓ is a real 3-vector and
� is the 3-vector of Pauli matrices (1.32), then the square of the traceless
2⇥ 2 matrix A = ✓ · � is

(✓ · �)2 = � |✓ · �| I = �
����

✓3 ✓1 � i✓2
✓1 + i✓2 �✓3

���� I = ✓2 I (1.292)
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in which ✓2 = ✓ ·✓. One may use this identity to show (exercise (1.28)) that

exp (�i✓ · �/2) = cos(✓/2) I � i✓̂ · � sin(✓/2) (1.293)

in which ✓̂ is a unit 3-vector. For a spin-one-half object, this matrix repre-
sents an active right-handed rotation of ✓ radians about the axis ✓̂.

1.28 Functions of matrices

What sense can we make of a function f of an n ⇥ n matrix A? and how
would we compute it? One way is to use the characteristic equation (1.290) to
express every power of A in terms of I, A, . . . , An�1 and the coe�cients p0 =
|A|, p1, p2, . . . , pn�2, and pn�1 = (�1)n�1TrA. Then if f(x) is a polynomial
or a function with a convergent power series

f(x) =
1X

k=0

ck x
k (1.294)

in principle we may express f(A) in terms of n functions fk(p) of the coef-
ficients p ⌘ (p0, . . . , pn�1) as

f(A) =
n�1X

k=0

fk(p)A
k. (1.295)

The identity (1.293) for exp (�i✓ · �/2) is an n = 2 example of this technique
which can become challenging when n > 3.

Example 1.40 (The 3 ⇥ 3 Rotation Matrix). In exercise (1.29), one finds
the characteristic equation (1.289) for the 3⇥3 matrix �i✓ · J in which
(Jk)ij = i✏ikj , and ✏ijk is totally antisymmetric with ✏123 = 1. The generators
Jk satisfy the commutation relations [Ji, Jj ] = i✏ijkJk in which sums over
repeated indices from 1 to 3 are understood. In exercise (1.30), one uses
the characteristic equation for �i✓ · J to show that the 3⇥3 real orthogonal
matrix exp(�i✓ · J), which represents a right-handed rotation by ✓ radians
about the axis ✓̂, is

exp(�i✓ · J) = cos ✓ I � i✓̂ · J sin ✓ + (1� cos ✓) ✓̂(✓̂)T (1.296)

or

exp(�i✓ · J)ij = �ij cos ✓ � sin ✓ ✏ijk✓̂k + (1� cos ✓) ✓̂i✓̂j (1.297)

in terms of indices.
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Direct use of the characteristic equation can become unwieldy for larger
values of n. Fortunately, another trick is available if A is a nondefective
square matrix, and if the power series (1.294) for f(x) converges. For then
A is related to its diagonal form A(d) by a similarity transformation (1.273),
and we may define f(A) as

f(A) = Sf(A(d))S�1 (1.298)

in which f(A(d)) is the diagonal matrix with entries f(a`)

f(A(d)) =

0

BBB@

f(a1) 0 0 . . .
0 f(a2) 0 . . .
...

...
...

...
0 0 . . . f(an)

1

CCCA
(1.299)

and a1, a1, . . . an are the eigenvalues of the matrix A. This definition makes
sense if f(A) is a series in powers of A because then

f(A) =
1X

k=0

ckA
k =

1X

k=0

ck
⇣
SA(d)S�1

⌘k
. (1.300)

So since S�1S = I, we have
�
SA(d)S�1

�k
= S

�
A(d)

�k
S�1 and thus

f(A) = S

" 1X

k=0

ck
⇣
A(d)

⌘k
#
S�1 = Sf(A(d))S�1 (1.301)

which is (1.298).

Example 1.41 (Momentum operators generate spatial translations). The
position operator x and the momentum operator p obey the commutation
relation [x, p] = xp � px = i~. Thus the a-derivative ẋ(a) of the operator
x(a) = eiap/~ x e�iap/~ is unity

ẋ(a) = eiap/~ (�i[x, p]) e�iap/~ = eiap/~ ~ e�iap/~ = 1. (1.302)

Since x(0) = x, we see that the unitary transformation U(a) = eiap/~ moves
x to x+ a

eiap/~ x e�iap/~ = x(a) = x(0) +

Z a

0
ẋ(a0) da0 = x+ a. (1.303)

Example 1.42 (Glauber’s identity). The commutator of the annihilation
operator a and the creation operator a† for a given mode is the number 1

[a, a†] = a a† � a† a = 1. (1.304)
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Thus a and a† commute with their commutator [a, a†] = 1 just as x and p
commute with their commutator [x, p] = i~.

Suppose that A and B are any two operators that commute with their
commutator [A,B] = AB �BA

[A, [A,B]] = [B, [A,B]] = 0. (1.305)

As in the [x, p] example (1.41), we define AB(t) = e�tB AetB and note
that because [B, [A,B]] = 0, its t-derivative is simply

ȦB(t) = e�tB [A,B] etB = [A,B]. (1.306)

Since AB(0) = A, an integration gives

AB(t) = A+

Z t

0
Ȧ(t) dt = A+

Z t

0
[A,B] dt = A+ t [A,B]. (1.307)

Multiplication from the left by etB now gives etB AB(t) as

etB AB(t) = AetB = etB (A+ t [A,B]) . (1.308)

Now we define

G(t) = etA etB e�t(A+B) (1.309)

and use our formula (1.308) to compute its t-derivative as

Ġ(t) = etA
�
AetB + etB B � etB(A+B)

�
e�t(A+B)

= etA
�
etB (A+ t [A,B]) + etB B � etB(A+B)

�
e�t(A+B)

= etA etB t [A,B] et(A+B) = t [A,B]G(t) = tG(t) [A,B].

(1.310)

Since Ġ(t), G(t), and [A,B] all commute with each other, we can integrate
this operator equation

d

dt
logG(t) =

Ġ(t)

G(t)
= t [A,B] (1.311)

from 0 to 1 and get since G(0) = 1

logG(1)� logG(0) = logG(1) =
1

2
[A,B]. (1.312)

Thus G(1) = e[A,B]/2 and so

eA eB e�(A+B) = e
1
2 [A,B] or eA eB = eA+B+ 1

2 [A,B] (1.313)

which is Glauber’s identity.
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Example 1.43 (Chemical reactions). The chemical reactions [A]
a��! [B],

[B]
b��! [A], and [B]

c��! [C] make the concentrations [A] ⌘ A, [B] ⌘ B,
and [C] ⌘ C of three kinds of molecules vary with time as

Ȧ = � aA+ bB

Ḃ = aA� (b+ c)B

Ċ = cB.

(1.314)

We can group these concentrations into a 3-vector V = (A,B,C) and write
the three equations (1.314) as

V̇ = K V (1.315)

in which K is the matrix

K =

0

@
�a b 0
a �b� c 0
0 c 0

1

A . (1.316)

The solution to the di↵erential equation (1.315) is

V (t) = eKt V (0). (1.317)

The eigenvalues of the matrix K are the roots of the cubic equation
det(K � �I) = 0. One root vanishes, and the other two are the roots of
the quadratic equation �2 + (a + b + c)� + ac = 0. Their sum is the trace
TrK = �(a + b + c). They are real when a, b, and c are positive but are
complex when 4ac > (a + b + c)2. The eigenvectors are complete unless
4ac = (a+ b+ c)2, but are not orthogonal unless c = 0.
The Matlab code

close all; clear all; clc;

a = 0.15; b = 0.1; c = 0.001; s = -b -c;

K = [ -a, b, 0; a, s, 0; 0, c, 0];

for n=1:10000

t=0.01*n; M=expm(K*t); x(n) = t;

A(n) = M(1,1); B(n) = M(2,1); C(n) = M(3,1);

end

plot(x,A,’LineWidth’,2)

hold on

plot(x,B,’LineWidth’,2)

plot(x,C,’LineWidth’,2)

generates the time evolution of these concentrations for the initial conditions
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[A] = 1 and [B] = [C] = 0 and rates a = 0.15, b = 0.1, and c = 0.1 and plots
it in figure 1.1.
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Figure 1.1 The concentrations [A] (dashdot), [B] (solid), and [C] (dashes)
as given by the matrix equation (1.317) for the initial conditions [A] = 1
and [B] = [C] = 0 and rates a = 0.15, b = 0.1, and c = 0.1.

Example 1.44 (The Time-Evolution Operator). In quantum mechanics,
the time-evolution operator is the exponential exp(�iHt/~) where H = H†

is a hermitian linear operator, the hamiltonian (William Rowan Hamilton
1805–1865), and ~ = h/(2⇡) = 1.054 ⇥ 10�34 Js where h is Planck’s con-
stant (Max Planck 1858–1947). As we’ll see in the next section, hermitian
operators are never defective, so H can be diagonalized by a similarity trans-
formation

H = SH(d)S�1. (1.318)

The diagonal elements of the diagonal matrix H(d) are the energies E` of
the states of the system described by the hamiltonian H. The time-evolution
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operator U(t) then is

U(t) = S exp(�iH(d)t/~)S�1. (1.319)

For a three-state system with angular frequencies !i = Ei/~, it is

U(t) = S

0

@
e�i!1t 0 0

0 e�i!2t

0 0 e�i!3t

1

A S�1. (1.320)

Example 1.45 (Entropy). The entropy S of a system described by a
density operator ⇢ is the trace

S = �kTr (⇢ ln ⇢) (1.321)

in which k = 1.38 ⇥ 10�23 J/K is the constant named after Ludwig Boltz-
mann (1844–1906). The density operator ⇢ is hermitian, nonnegative, and
of unit trace. Since ⇢ is hermitian, the matrix that represents it is never
defective (section 1.29), and so it can be diagonalized by a similarity trans-
formation ⇢ = S ⇢(d) S�1. By (1.24), TrABC = TrBCA, so we can write S
as

S = �kTr
⇣
S ⇢(d) S�1 S ln(⇢(d))S�1

⌘
= �kTr

⇣
⇢(d) ln(⇢(d))

⌘
. (1.322)

A vanishing eigenvalue ⇢(d)k = 0 contributes nothing to this trace since
limx!0 x lnx = 0. If the system has three states, populated with proba-
bilities ⇢i, the elements of ⇢(d), then the sum

S = �k (⇢1 ln ⇢1 + ⇢2 ln ⇢2 + ⇢3 ln ⇢3)

= k [⇢1 ln (1/⇢1) + ⇢2 ln (1/⇢2) + ⇢3 ln (1/⇢3)] (1.323)

is its entropy.

Example 1.46 (Logarithm of a determinant). Since every nondefective
n ⇥ n matrix A may be diagonalized by a similarity transformation, its
determinant is the product of its eigenvalues and its trace is the sum of
them, and so the logarithm of its determinant is the trace of its logarithm

ln detA = ln(�1 . . .�n) = ln(�1) + · · ·+ ln(�n) = Tr(lnA). (1.324)

When none of A’s eigenvalues vanishes, this relation implies the earlier result
(1.224) that the variation of A’s determinant is

� detA = detA Tr(A�1�A). (1.325)
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1.29 Hermitian matrices

Hermitian matrices have very nice properties. By definition (1.30), a hermi-
tian matrix A is square and unchanged by hermitian conjugation A† = A.
Since it is square, the results of section 1.26 ensure that an n⇥ n hermitian
matrix A has n eigenvectors |ki with eigenvalues ak

A|ki = ak|ki. (1.326)

In fact, all its eigenvalues are real. To see why, we take the adjoint

hk|A† = a⇤khk| (1.327)

and use the property A† = A to find

hk|A† = hk|A = a⇤khk|. (1.328)

We now form the inner product of both sides of this equation with the ket
|ki and use the eigenvalue equation (1.326) to get

hk|A|ki = akhk|ki = a⇤khk|ki (1.329)

which (since hk|ki > 0) tells us that the eigenvalues are real

a⇤k = ak. (1.330)

Since A† = A, the matrix elements of A between two of its eigenvectors
satisfy

a⇤mhm|ki = (amhk|mi)⇤ = hk|A|mi⇤ = hm|A†|ki = hm|A|ki = akhm|ki
(1.331)

which implies that

(a⇤m � ak) hm|ki = 0. (1.332)

But by (1.330), the eigenvalues am are real, and so we have

(am � ak) hm|ki = 0 (1.333)

which tells us that when the eigenvalues are di↵erent, the eigenvectors are
orthogonal. In the absence of a symmetry, all n eigenvalues usually are dif-
ferent, and so the eigenvectors usually are mutually orthogonal.
When two or more eigenvectors |k↵i of a hermitian matrix have the same

eigenvalue ak, their eigenvalues are said to be degenerate. In this case, any
linear combination of the degenerate eigenvectors also will be an eigenvector
with the same eigenvalue ak

A

 
X

↵2D
c↵|k↵i

!
= ak

 
X

↵2D
c↵|k↵i

!
(1.334)
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where D is the set of labels ↵ of the eigenvectors with the same eigenvalue.
If the degenerate eigenvectors |k↵i are linearly independent, then we may
use the Gram-Schmidt procedure (1.112–1.122) to choose the coe�cients
c↵ so as to construct degenerate eigenvectors that are orthogonal to each
other and to the nondegenerate eigenvectors. We then may normalize these
mutually orthogonal eigenvectors.
But two related questions arise: Are the degenerate eigenvectors |k↵i lin-

early independent? And if so, what orthonormal linear combinations of them
should we choose for a given physical problem? Let’s consider the second
question first.
We know that unitary transformations preserve the orthonormality of a

basis (section 1.16). Any unitary transformation that commutes with the
matrix A

[A,U ] = 0 (1.335)

represents a symmetry of A and maps each set of orthonormal degenerate
eigenvectors of A into another set of orthonormal degenerate eigenvectors of
A with the same eigenvalue because

AU |k↵i = UA|k↵i = ak U |k↵i. (1.336)

So there’s a huge spectrum of choices for the orthonormal degenerate eigen-
vectors of A with the same eigenvalue. What is the right set for a given
physical problem?
A sensible way to proceed is to add to the matrix A a second hermitian

matrix B multiplied by a tiny, real scale factor ✏

A(✏) = A+ ✏B. (1.337)

The matrix B must completely break whatever symmetry led to the de-
generacy in the eigenvalues of A. Ideally, the matrix B should be one that
represents a modification of A that is physically plausible and relevant to
the problem at hand. The hermitian matrix A(✏) then will have n di↵erent
eigenvalues ak(✏) and n orthonormal nondegenerate eigenvectors

A(✏)|k� , ✏i = ak� (✏)|k� , ✏i. (1.338)

These eigenvectors |k� , ✏i of A(✏) are orthogonal to each other

hk� , ✏|k�0 , ✏i = ��,�0 (1.339)

and to the eigenvectors of A(✏) with other eigenvalues, and they remain so
as we take the limit

|k�i = lim
✏!0

|k� , ✏i. (1.340)
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We may choose them as the orthogonal degenerate eigenvectors of A. Since
one can always find a crooked hermitian matrix B that breaks any partic-
ular symmetry, it follows that every n ⇥ n hermitian matrix A possesses n
orthonormal eigenvectors, which are complete in the vector space in which
A acts. (Any n linearly independent vectors span their n-dimensional vector
space, as explained in section 1.9.)
Now let’s return to the first question and show by a di↵erent argument

that an n ⇥ n hermitian matrix has n orthogonal eigenvectors. To do this,
we first note that the space S?,k of vectors |yi orthogonal to an eigenvector
|ki of a hermitian operator A

A|ki = ak|ki (1.341)

is invariant under the action of A, that is, hk|yi = 0 implies

hk|A|yi = akhk|yi = 0. (1.342)

Thus if the vector |yi is in the space S?,k of vectors orthogonal to an eigen-
vector |ki of a hermitian operator A, then the vector A|yi also is in the
space S?,k. This space is invariant under the action of A.

Now a hermitian operator A acting on an n-dimensional vector space S
is represented by an n ⇥ n hermitian matrix, and so it has at least one
eigenvector |1i. The subspace S?,1 of S consisting of all vectors orthogonal
to |1i is an (n�1)-dimensional vector space Sn�1 that is invariant under the
action of A. On this space Sn�1, the operator A is represented by an (n�1)⇥
(n�1) hermitian matrix An�1. This matrix has at least one eigenvector |2i.
The subspace S?,2 of Sn�1 consisting of all vectors orthogonal to |2i is an
(n� 2)-dimensional vector space Sn�2 that is invariant under the action of
A. On Sn�2, the operator A is represented by an (n� 2)⇥ (n� 2) hermitian
matrix An�2 which has at least one eigenvector |3i. By construction, the
vectors |1i, |2i, and |3i are mutually orthogonal. Continuing in this way,
we see that A has n orthogonal eigenvectors |ki for k = 1, 2, . . . , n. Thus
hermitian matrices are nondefective.
The n orthogonal eigenvectors |ki of an n⇥n matrix A can be normalized

and used to write the n⇥ n identity operator I as

I =
nX

k=1

|kihk|. (1.343)

On multiplying from the left by the matrix A, we find

A = AI = A
nX

k=1

|kihk| =
nX

k=1

ak|kihk| (1.344)
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which is the diagonal form of the hermitian matrix A. This expansion of A as
a sum over outer products of its eigenstates multiplied by their eigenvalues
exhibits the possible values ak of the physical quantity represented by the
matrix A when selective, nondestructive measurements |kihk| of the quantity
A are made.
The hermitian matrix A is diagonal in the basis of its eigenstates |ki

Akj = hk|A|ji = ak�kj . (1.345)

But in any other basis |↵ki, the matrix A appears as

Ak` = h↵k|A|↵`i =
nX

n=1

h↵k|nianhn|↵`i. (1.346)

The unitary matrix Ukn = h↵k|ni relates the matrix Ak` in an arbitrary
basis to its diagonal form A = UA(d)U † in which A(d) is the diagonal matrix
A(d)

nm = an �nm. An arbitrary n⇥ n hermitian matrix A can be diagonalized
by a unitary transformation.
A matrix that is real and symmetric is hermitian; so is one that is

imaginary and antisymmetric. A real, symmetric matrix R can be di-
agonalized by an orthogonal transformation

R = OR(d)OT (1.347)

in which the matrix O is a real unitary matrix, that is, an orthogonal matrix
(1.180).

Example 1.47 (The Seesaw Mechanism). Suppose we wish to find the
eigenvalues of the real, symmetric mass matrix

M =

✓
0 m
m M

◆
(1.348)

in which m is an ordinary mass and M is a huge mass. The eigenvalues µ of
this hermitian mass matrix satisfy det (M� µI) = µ(µ�M)�m2 = 0 with

solutions µ± =
⇣
M ±

p
M2 + 4m2

⌘
/2. The larger mass µ+ ⇡ M+m2/M is

approximately the huge mass M and the smaller mass µ� ⇡ �m2/M is tiny.
The physical mass of a fermion is the absolute value of its mass parameter,
here m2/M .
The product of the two eigenvalues is the constant µ+µ� = detM = �m2

so as µ� goes down, µ+ must go up. Minkowski, Yanagida, and Gell-Mann,
Ramond, and Slansky invented this “seesaw” mechanism as an explanation
of why neutrinos have such small masses, less than 1 eV/c2. If mc2 = 10
MeV, and µ�c2 ⇡ 0.01 eV, which is a plausible light-neutrino mass, then
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the rest energy of the huge mass would be Mc2 = 107 GeV suggesting new
physics at that scale. But if we set mc2 = 0.28 MeV and use m⌫ = 0.45 eV
as an average neutrino mass, then the big mass is only Mc2 = 173 GeV, the
mass of the top. Also, the small masses of the neutrinos may be related to
the weakness of their interactions.

If we return to the orthogonal transformation (1.347) and multiply column

` of the matrix O and row ` of the matrix OT by
q
|R(d)

` |, then we arrive at
the congruency transformation of Sylvester’s theorem

R = C R̂(d)CT (1.349)

in which the diagonal entries R̂(d)
` are either ±1 or 0 because the matrices

Ck` =
q
|R(d)

` |Ok` and CT have absorbed the factors |R(d)
` |.

Example 1.48 (Principle of equivalence). If G is a real, symmetric 4 ⇥ 4
matrix then there’s a real 4⇥ 4 matrix D = CT�1 such that

Gd = DTGD =

0

BB@

g1 0 0 0
0 g2 0 0
0 0 g3 0
0 0 0 g4

1

CCA (1.350)

in which the diagonal entries gi are ±1 or 0. Thus there’s a real 4⇥4 matrix
D that casts any real symmetric metric gik of spacetime with three positive
and one negative eigenvalues into the diagonal metric ⌘j` of flat spacetime
by the congruence

gd = DTgD =

0

BB@

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA = ⌘ (1.351)

at any given point x of spacetime. Usually one needs di↵erentD’s at di↵erent
points. The principle of equivalence (section 12.23) says that in the new free-
fall coordinates, all physical laws take the same form as in special relativity
without acceleration or gravitation in a suitably small region of spacetime
about the point x.

1.30 Normal matrices

The largest set of matrices that can be diagonalized by a unitary trans-
formation is the set of normal matrices. These are square matrices that
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commute with their adjoints

[V, V †] = V V † � V †V = 0. (1.352)

This broad class of matrices includes not only hermitian matrices but also
unitary matrices since

[U,U †] = UU † � U †U = I � I = 0. (1.353)

A matrix V = U † V (d) U that can be diagonalized by a unitary trans-
formation U commutes with its adjoint V † = U † V (d)⇤ U and so is normal
because the commutator of any two diagonal matrices vanishes

[V, V †] = [U † V (d) U,U † V (d)⇤ U ] = U †[V, V (d)⇤]U = 0. (1.354)

To see why a normal matrix can be diagonalized by a unitary transfor-
mation, we consider an n⇥ n normal matrix V which since it is square has
n eigenvectors |ki with eigenvalues vk

(V � vkI) |ki = 0 (1.355)

(section 1.26). The square of the norm (1.85) of this vector must vanish

k (V � vkI) |ki k2= hk| (V � vkI)
† (V � vkI) |ki = 0. (1.356)

But since V is normal, we also have

hk| (V � vkI)
† (V � vkI) |ki = hk| (V � vkI) (V � vkI)

† |ki. (1.357)

So the square of the norm of the vector
�
V † � v⇤kI

�
|ki = (V � vkI)

† |ki also
vanishes k

�
V † � v⇤kI

�
|ki k2= 0 which tells us that |ki also is an eigenvector

of V † with eigenvalue v⇤k

V †|ki = v⇤k|ki and so hk|V = vkhk|. (1.358)

If now |mi is an eigenvector of V with eigenvalue vm

V |mi = vm|mi (1.359)

then

hk|V |mi = vmhk|mi (1.360)

and also by (1.358)

hk|V |mi = vkhk|mi. (1.361)

Subtracting (1.360) from (1.361), we get

(vk � vm) hk|mi = 0 (1.362)
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which shows that any two eigenvectors of a normal matrix V with
di↵erent eigenvalues are orthogonal.

To see that a normal n ⇥ n matrix V has n orthogonal eigenvectors, we
first note that if |yi is any vector that is orthogonal to any eigenvector |ki
of the matrix V , that is both hk|yi = 0 and V |ki = vk|ki, then the property
(1.358) implies that

hk|V |yi = vkhk|yi = 0. (1.363)

Thus the space of vectors orthogonal to an eigenvector of a normal matrix
V is invariant under the action of V . The argument following the analo-
gous equation (1.342) applies also to normal matrices and shows that every
n ⇥ n normal matrix has n orthonormal eigenvectors. It follows then
from the argument of equations (1.343–1.346) that every n⇥n normal matrix
V can be diagonalized by an n⇥ n unitary matrix U

V = UV (d)U † (1.364)

whose kth column U`k = h↵`|ki is the eigenvector |ki in the arbitrary basis
|↵`i of the matrix Vm` = h↵m|V |↵`i as in (1.346).
Since the eigenstates |ni of a normal matrix V

V |ki = vk|ki (1.365)

are complete and orthonormal, we can write the identity operator I as

I =
nX

k=1

|kihk|. (1.366)

The product V I is V itself, so

V = V I = V
nX

k=1

|kihk| =
nX

k=1

vk |kihk|. (1.367)

It follows therefore that if f is a function, then f(V ) is

f(V ) =
nX

k=1

f(vk) |kihk| (1.368)

which is simpler than the corresponding formula (1.298) for an arbitrary
nondefective matrix. This is a good way to think about functions of normal
matrices.

Example 1.49 (Time-evolution operator). How do we handle the operator
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exp(�iHt/~) that translates states in time by t? The hamiltonian H is
hermitian and so is normal. Its orthonormal eigenstates |ki have energy Ek

H|ki = Ek|ki. (1.369)

So we apply (1.368) with V ! H and get

e�iHt/~ =
nX

k=1

e�iEkt/~ |kihk| (1.370)

which lets us compute the time evolution of any state | i as

e�iHt/~| i =
nX

k=1

e�iEkt/~ |kihk| i (1.371)

if we know the eigenstates |ki and eigenvalues Ek of the hamiltonian H.

The determinant |V | of a normal matrix V satisfies the identities

|V | = exp [Tr(lnV )] , ln |V | = Tr(lnV ), and � ln |V | = Tr
�
V �1�V

�
.

(1.372)

1.31 Compatible normal matrices

Two normal matrices A and B that commute

[A,B] ⌘ AB �BA = 0. (1.373)

are said to be compatible. Since these operators are normal, they have
complete sets of orthonormal eigenvectors. If |ui is an eigenvector of A with
eigenvalue z, then so is B|ui since

AB|ui = BA|ui = Bz|ui = z B|ui. (1.374)

We have seen that any normal matrix A can be written as a sum (1.30) of
outer products

A =
nX

k=1

|akiakhak| (1.375)

of its orthonormal eigenvectors |aki which are complete in the n-dimensional
vector space S on which A acts. Suppose now that the eigenvalues ak of A
are nondegenerate, and that B is another normal matrix acting on S and
that the matrices A and B are compatible. Then in the basis provided by
the eigenvectors (or eigenstates) |aki of the matrix A, the matrix B must
satisfy

0 = ha`|AB �BA|aki = (a` � ak) ha`|B|aki (1.376)
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which says that ha`|B|aki is zero unless a` = ak. Thus if the eigenvalues a`
of the operator A are nondegenerate, then the operator B is diagonal

B = IBI =
nX

`=1

|a`iha`|B
nX

k=1

|akihak| =
nX

`=1

|a`iha`|B|a`iha`| (1.377)

in the |a`i basis. Moreover B maps each eigenket |aki of A into

B|aki =
nX

`=1

|a`iha`|B|a`iha`|aki =
nX

`=1

|a`iha`|B|a`i�`k = hak|B|aki|aki

(1.378)
which says that each eigenvector |aki of the matrix A also is an eigenvector
of the matrix B with eigenvalue hak|B|aki. Thus two compatible nor-
mal matrices can be simultaneously diagonalized if one of them has
nondegenerate eigenvalues.

If A’s eigenvalues a` are degenerate, each eigenvalue a` may have d` or-
thonormal eigenvectors |a`, ki for k = 1, . . . , d`. In this case, the matrix
elements ha`, k|B|am, k0i of B are zero unless the eigenvalues are the same,
a` = am. The matrix representing the operator B in this basis consists of
square, d` ⇥ d`, normal submatrices ha`, k|B|a`, k0i arranged along its main
diagonal; it is said to be in block-diagonal form. Since each submatrix
is a d` ⇥ d`, normal matrix, we may find linear combinations |a`, bki of the
degenerate eigenvectors |a`, ki that are orthonormal eigenvectors of both
compatible operators

A|a`, bki = a`|a`, bki and B|a`, bki = bk|a`, bki. (1.379)

Thus one can simultaneously diagonalize any two compatible operators.
The converse also is true: If the operators A and B can be simultaneously

diagonalized as in (1.379), then they commute

AB|a`, bki = Abk|a`, bki = a`bk|a`, bki = a`B|a`, bki = BA|a`, bki (1.380)

and so are compatible. Normal matrices can be simultaneously diagonalized
if and only if they are compatible, that is, if and only if they commute.
In quantum mechanics, compatible hermitian operators represent physical

observables that can be measured simultaneously to arbitrary precision (in
principle). A set of compatible hermitian operators {A,B,C, . . . } is said to
be complete if to every set of eigenvalues {aj , bk, c`, . . . } there is only a
single eigenvector |aj , bk, c`, . . .i.

Example 1.50 (Compatible Photon Observables). For example, the state
of a photon is completely characterized by its momentum and its angular
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momentum about its direction of motion. For a photon, the momentum
operator P and the dot product J · P of the angular momentum J with
the momentum form a complete set of compatible hermitian observables.
Incidentally, because its mass is zero, the angular momentum J of a photon
about its direction of motion can have only two values ±~, which correspond
to its two possible states of circular polarization.

Example 1.51 (Thermal Density Operator). A density operator ⇢ is the
most general description of a quantum-mechanical system. It is hermitian,
positive definite, and of unit trace. Since it is hermitian, it can be diagonal-
ized (section 1.29)

⇢ =
X

n

|nihn|⇢|nihn| (1.381)

and its eigenvalues ⇢n = hn|⇢|ni are real. Each ⇢n is the probability that the
system is in the state |ni and so is nonnegative. The unit-trace rule

X

n

⇢n = 1. (1.382)

ensures that these probabilities add up to one—the system is in some state.
The mean value of an operator F is the trace, hF i = Tr(⇢F ). So the av-

erage energy E is the trace, E = hHi = Tr(⇢H). The entropy operator S
is the negative logarithm of the density operator multiplied by Boltzmann’s
constant, S = �k ln ⇢, and the mean entropy S is S = hSi = �kTr(⇢ ln ⇢).
A density operator that describes a system in thermal equilibrium at

a constant temperature T is time independent and so commutes with the
hamiltonian, [⇢, H] = 0. Since ⇢ andH commute, they are compatible opera-
tors (1.373), and so they can be simultaneously diagonalized. Each eigenstate
|ni of ⇢ is an eigenstate of H; its energy En is its eigenvalue, H|ni = En|ni.
If we have no information about the state of the system other than its

mean energy E, then we take ⇢ to be the density operator that maximizes
the mean entropy S while respecting the constraints

c1 =
X

n

⇢n � 1 = 0 and c2 = Tr(⇢H)� E = 0. (1.383)

We introduce two Lagrange multipliers (section 1.24) and maximize the
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unconstrained function

L(⇢,�1,�2) = S � �1 c1 � �2 c2 (1.384)

= � k
X

n

⇢n ln ⇢n � �1

"
X

n

⇢n � 1

#
� �2

"
X

n

⇢nEn � E

#

by setting its derivatives with respect to ⇢n, �1, and �2 equal to zero

@L

@⇢n
= �k (ln ⇢n + 1)� �1 � �2En = 0 (1.385)

@L

@�1
=
X

n

⇢n � 1 = 0 (1.386)

@L

@�2
=
X

n

⇢nEn � E = 0. (1.387)

The first (1.385) of these conditions implies that

⇢n = exp [�(�1 + �2En + k)/k] (1.388)

We satisfy the second condition (1.386) by choosing �1 so that

⇢n =
exp(��2En/k)P
n exp(��2En/k)

. (1.389)

Setting �2 = 1/T , we define the temperature T so that ⇢ satisfies the third
condition (1.387). Its eigenvalue ⇢n then is

⇢n =
exp(�En/kT )P
n exp(�En/kT )

. (1.390)

In terms of the inverse temperature � ⌘ 1/(kT ), the density operator is

⇢ =
e��H

Tr (e��H)
(1.391)

which is the Boltzmann distribution, also called the canonical ensem-
ble.

Example 1.52 (Grand canonical ensemble). Lagrange’s function for the
density operator of a system of maximum entropy S = �kTr(⇢ ln ⇢) given
a fixed mean energy E = Tr(⇢H) and a fixed mean number of particles
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hNi = Tr(⇢N), in which N is the number operator N |ni = Nn|ni, is

L(⇢,�1,�2,�3) = � k
X

n

⇢n ln ⇢n � �1

"
X

n

⇢n � 1

#

� �2

"
X

n

⇢nEn � E

#
� �3

"
X

n

⇢nNn � hNi
#
.

(1.392)

Setting the partial derivative of L with respect to ⇢n

@L

@⇢n
= � k (ln ⇢n + 1)� �1 � �2En � �3Nn = 0 (1.393)

as well as the partial derivatives of L with respect to the three Lagrange
multipliers �i equal to zero, we get

⇢ =
e��(H�µN)

Tr(e��(H�µN))
(1.394)

in which µ is the chemical potential.

1.32 Singular-value decompositions

Every complex m ⇥ n rectangular matrix A is the product of an m ⇥ m
unitary matrix U , an m⇥ n rectangular matrix ⌃ that is zero except on its
main diagonal which consists of A’s nonnegative singular values Sk, and an
n⇥ n unitary matrix V †

A = U ⌃V †. (1.395)

This singular-value decomposition is a key theorem of matrix algebra.
Suppose A is a linear operator that maps vectors in an n-dimensional

vector space Vn into vectors in an m-dimensional vector space Vm. The
spaces Vn and Vm will have infinitely many orthonormal bases {|aji 2 Vn}
and {|bki 2 Vm} labeled by parameters a and b. Each pair of bases provides
a resolution of the identity operator In for Vn and Im for Vm

In =
nX

j=1

|ajihaj | and Im =
mX

k=1

|bkihbk| (1.396)

and lets us write linear operator A as

A = ImAIn =
mX

k=1

nX

j=1

|bkihbk|A|ajihaj | (1.397)
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in which the hbk|A|aji are the elements of a complex m⇥ n matrix.
The singular-value decomposition of the linear operator A is a choice of

two special bases {|aji} and {|bji} that make hbk|A|aji = Sj�kj and so
express A as

A =
X

j

|bjiSjhaj | (1.398)

in which the sum is over the nonzero singular values Sj , which will turn out
to be positive.

The kets of the special basis {|aji} are the eigenstates of the hermitian
operator A†A

A†A|aji = ej |aji. (1.399)

These states {|aji} are orthogonal because A†A is hermitian, and we may
choose them to be normalized. The eigenvalue ej is the squared length of
the ket A|aji and so is positive or zero

haj |A†A|aji = ej haj |aji = ej � 0. (1.400)

The singular values are the square roots of these eigenvalues

Sj =
p
ej =

q
haj |A†A|aji. (1.401)

For Sj > 0, the special ket |bji is the suitably normalized image A|aji of the
special ket |aji

|bji =
A|aji
Sj

; (1.402)

for Sj = 0, the ket |bji vanishes. The nonzero special kets |bji are orthonor-
mal

hbk|bji =
1

SkSj
hak|A†A|aji =

ej
SkSj

hak|aji =
ej

SkSj
�kj = �kj . (1.403)

The number of positive singular values, Sj > 0, is at most n. It also is at
most m because each nonzero ket |bji is an orthonormal vector in the space
Vm which has only m dimensions. So the number of positive singular values,
Sj > 0, is at most min(m,n), the smaller of m and n.

The singular-value decomposition of the linear operator A then is the sum

A = AIn = A
nX

j=1

|ajihaj | =
nX

j=1

A |ajihaj | =
nX

j=1

|bjiSj haj | (1.404)

in which at most min(m,n) of the singular values are positive.
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In terms of any two bases, |ki for k = 1, . . . ,m for the space Vm and |`i
for ` = 1, . . . , n for the space Vn, and their identity operators

Im =
mX

k=1

|kihk| and In =
nX

`=1

|`ih`| (1.405)

the singular-value decomposition of the linear operator A is

A =
mX

k=1

|kihk|A
nX

`=1

|`ih`| =
mX

k=1

nX

j=1

nX

`=1

|kihk|bjiSj haj |`ih`|

=
mX

k=1

mX

i=1

nX

j=1

nX

`=1

|kihk|biiSi �ijhaj |`ih`| = U ⌃V †.

(1.406)

In this expansion, the k, i matrix element of the m ⇥ m unitary matrix U
is Uki = hk|bii, the i, j element of the m ⇥ n matrix ⌃ is ⌃ij = Sj �ij , and

the j, ` matrix element of the n⇥ n unitary matrix V † is V †
j` = haj |`i. Thus

V ⇤
`j = haj |`i, and so V`j = haj |`i⇤ = h`|aji.
The vectors |bji and |aji respectively are the left and right singular vec-

tors. Incidentally, the singular-value decomposition (1.404) shows that the
left singular vectors |bji are the eigenvectors of AA†

AA† =
nX

j=1

|bjiSj haj |
nX

k=1

|akiSk hbk| =
nX

j,k=1

|bjiSj haj |akiSk hbk|

=
nX

j,k=1

|bjiSj �jk Sk hbk| =
nX

j=1

|bjiS2
j hbj |

(1.407)

just as (1.399) the right singular vectors |aji are the eigenvectors of A†A.
The kets |aji whose singular values vanish, Sj = 0, span the null space

or kernel of the linear operator A.

Example 1.53 (Singular-Value Decomposition of a 2⇥ 3 Matrix). If A is

A =

✓
0 1 0
1 0 1

◆
(1.408)

then the positive hermitian matrix A†A is

A†A =

0

@
1 0 1
0 1 0
1 0 1

1

A . (1.409)
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The normalized eigenvectors and eigenvalues of A†A are

|a1i =
1p
2

0

@
1
0
1

1

A , |a2i =

0

@
0
1
0

1

A , |a3i =
1p
2

0

@
�1
0
1

1

A (1.410)

and their eigenvalues are e1 = 2, e2 = 1, and e3 = 0. The third eigenvalue
e3 had to vanish because A is a 3⇥ 2 matrix.

The vector A|a1i (as a row vector) is (0,
p
2), and its norm is

p
2, so the

normalized vector is |b1i = (0, 1). Similarly, the vector |b2i is A|a2i = (1, 0).
The SVD of A then is

A =
2X

n=1

|bjiSjhaj | = U⌃V † (1.411)

where Sn =
p
en. The unitary matrices are Uk,n = hk|bni and V`,n = h`|aji

are

U =

✓
0 1
1 0

◆
and V =

1p
2

0

@
1 0 �1
0

p
2 0

1 0 1

1

A (1.412)

and the diagonal matrix ⌃ is

⌃ =

✓p
2 0 0
0 1 0

◆
. (1.413)

So finally the SVD of A = U⌃V † is

A =

✓
0 1
1 0

◆✓p
2 0 0
0 1 0

◆
1p
2

0

@
1 0 1
0

p
2 0

�1 0 1

1

A . (1.414)

The null space or kernel of A is the set of vectors that are real multiples
c|a3i of the eigenvector |a3i which has a zero eigenvalue, e3 = 0. It is the
third column of the matrix V displayed in (1.412).

Example 1.54 (Matlab’s SVD). Matlab’s command [U,S,V] = svd(X) per-
forms the singular-value decomposition of the matrix X. For instance

>> X = rand(3,3) + i*rand(3,3)

0.6551 + 0.2551i 0.4984 + 0.8909i 0.5853 + 0.1386i

X = 0.1626 + 0.5060i 0.9597 + 0.9593i 0.2238 + 0.1493i

0.1190 + 0.6991i 0.3404 + 0.5472i 0.7513 + 0.2575i

>> [U,S,V] = svd(X)
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-0.3689 - 0.4587i 0.4056 - 0.2075i 0.4362 - 0.5055i

U = -0.3766 - 0.5002i -0.5792 - 0.2810i 0.0646 + 0.4351i

-0.2178 - 0.4626i 0.1142 + 0.6041i -0.5938 - 0.0901i

2.2335 0 0

S = 0 0.7172 0

0 0 0.3742

-0.4577 0.5749 0.6783

V = -0.7885 - 0.0255i -0.6118 - 0.0497i -0.0135 + 0.0249i

-0.3229 - 0.2527i 0.3881 + 0.3769i -0.5469 - 0.4900i .

The singular values are 2.2335, 0.7172, and 0.3742.

We may use the SVD to solve, when possible, the matrix equation

A |xi = |yi (1.415)

for the n-dimensional vector |xi in terms of the m-dimensional vector |yi
and the m⇥ n matrix A. Using the SVD expansion (1.404), we have

min(m,n)X

j=1

|bjiSj haj |xi = |yi. (1.416)

The orthonormality (1.403) of the vectors |bji then tells us that

Sj haj |xi = hbj |yi. (1.417)

If the singular value is positive, Sj > 0, then we may divide by it to get
haj |xi = hbj |yi/Sj and so find the solution

|xi =
min(m,n)X

j=1

hbj |yi
Sj

|aji. (1.418)

But this solution is not always available or unique.
For instance, if for some ` the inner product hb`|yi 6= 0 while the singular

value S` = 0, then there is no solution to equation (1.415). This problem
occurs when m > n because there are at most n < m nonzero singular
values.

Example 1.55. Suppose A is the 3⇥ 2 matrix

A =

0

@
r1 p1
r2 p2
r3 p3

1

A (1.419)
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and the vector |yi is the cross-product |yi = L = r⇥p. Then no solution |xi
exists to the equation A|xi = |yi (unless r and p are parallel) because A|xi
is a linear combination of the vectors r and p while |yi = L is perpendicular
to both r and p.

Even when the matrix A is square, the equation (1.415) sometimes has
no solutions. For instance, if A is a square defective matrix (section 1.26),
then A|xi = |yi will fail to have a solution when the vector |yi lies outside
the space spanned by the linearly dependent eigenvectors of the matrix A.
And when n > m, as in for instance

✓
a b c
d e f

◆0

@
x1
x2
x3

1

A =

✓
y1
y2

◆
(1.420)

the solution (1.418) is never unique, for we may add to it any linear combi-
nation of the vectors |aji that have zero as their singular values

|xi =
min(m,n)X

j=1

hbj |yi
Sn

|aji+
X

j,Sj=0

xj |aji (1.421)

of which there are at least n�m.

Example 1.56 (The CKM Matrix). In the standard model, the mass ma-
trices of the u, c, t and d, s, b quarks are 3 ⇥ 3 complex matrices Mu and
Md with singular-value decompositions Mu = Uu⌃uV

†
u and Md = Ud⌃dV

†
d

whose singular-values are the quark masses. The unitary CKM matrix U †
uUd

(Cabibbo, Kobayashi, Maskawa) describes transitions among the quarks
mediated by the W± gauge bosons. By redefining the quark fields, one
may make the CKM matrix real, apart from a phase that violates charge-
conjugation-parity (CP ) symmetry.

The adjoint of a complex symmetric matrix M is its complex conjugate,
M † = M⇤. So by (1.399), its right singular vectors |ni are the eigenstates of
M⇤M

M⇤M |ni = S2
n|ni (1.422)

and by (1.407) its left singular vectors |mni are the eigenstates of MM⇤

MM⇤|mni = (M⇤M)⇤ |mni = S2
n|mni. (1.423)

Thus its left singular vectors are the complex conjugates of its right singular
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vectors, |mni = |ni⇤. So the unitary matrix V is the complex conjugate of
the unitary matrix U , and the SVD of M is (Autonne, 1915)

M = U⌃UT. (1.424)

1.33 Moore-Penrose pseudoinverses

Although a matrix A has an inverse A�1 if and only if it is square and has a
nonzero determinant, one may use the singular-value decomposition to make
a pseudoinverse A+ for an arbitrary m ⇥ n matrix A. If the singular-value
decomposition of the matrix A is

A = U ⌃V † (1.425)

then the Moore-Penrose pseudoinverse (Eliakim H. Moore 1862–1932, Roger
Penrose 1931–) is

A+ = V ⌃+ U † (1.426)

in which ⌃+ is the transpose of the matrix ⌃ with every nonzero entry
replaced by its inverse (and the zeros left as they are). One may show that
the pseudoinverse A+ satisfies the four relations

AA+A = A and A+AA+ = A+

�
AA+

�†
= AA+ and

�
A+A

�†
= A+A. (1.427)

and that it is the only matrix that does so.
Suppose that all the singular values of the m⇥n matrix A are positive. In

this case, if A has more rows than columns, so that m > n, then the product
AA+ is the n⇥ n identity matrix In

A+A = V †⌃+⌃V = V †InV = In (1.428)

and AA+ is an m⇥m matrix that is not the identity matrix Im. If instead
A has more columns than rows, so that n > m, then AA+ is the m ⇥ m
identity matrix Im

AA+ = U⌃⌃+U † = UImU † = Im (1.429)

but A+A is an n⇥n matrix that is not the identity matrix In. If the matrix
A is square with positive singular values, then it has a true inverse A�1

which is equal to its pseudoinverse

A�1 = A+. (1.430)
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If the columns of A are linearly independent, then the matrix A†A has an
inverse, and the pseudoinverse is

A+ =
⇣
A†A

⌘�1
A†. (1.431)

The solution (1.243) to the complex least-squares method used this pseu-
doinverse.

If the rows of A are linearly independent, then the matrix AA† has an
inverse, and the pseudoinverse is

A+ = A†
⇣
AA†

⌘�1
. (1.432)

If both the rows and the columns of A are linearly independent, then the
matrix A has an inverse A�1 which is its pseudoinverse

A�1 = A+. (1.433)

Example 1.57 (The pseudoinverse of a 2 ⇥ 3 matrix). The pseudoinverse
A+ of the matrix A

A =

✓
0 1 0
1 0 1

◆
(1.434)

with singular-value decomposition (1.414) is

A+ = V ⌃+ U †

=
1p
2

0

@
1 0 �1
0

p
2 0

1 0 1

1

A

0

@
1/
p
2 0

0 1
0 0

1

A
✓
0 1
1 0

◆

=

0

@
0 1/2
1 0
0 1/2

1

A (1.435)

which satisfies the four conditions (1.427). The product AA+ gives the 2⇥2
identity matrix

AA+ =

✓
0 1 0
1 0 1

◆ 0

@
0 1/2
1 0
0 1/2

1

A =

✓
1 0
0 1

◆
(1.436)

which is an instance of (1.429). Moreover, the rows of A are linearly inde-
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pendent, and so the simple rule (1.432) works:

A+ = A†
⇣
AA†

⌘�1

=

0

@
1 0
0 1
1 0

1

A

0

@
✓
0 1 0
1 0 1

◆0

@
1 0
0 1
1 0

1

A

1

A
�1

=

0

@
1 0
0 1
1 0

1

A
✓
0 1
2 0

◆�1

=

0

@
1 0
0 1
1 0

1

A
✓
0 1/2
1 0

◆
=

0

@
0 1/2
1 0
0 1/2

1

A (1.437)

which is (1.435).
The columns of the matrix A are not linearly independent, however, and

so the simple rule (1.431) fails. Thus the product A+A

A+A =

0

@
0 1/2
1 0
0 1/2

1

A
✓
0 1 0
1 0 1

◆
=

1

2

0

@
1 0 1
0 2 0
1 0 1

1

A (1.438)

is not the 3⇥ 3 identity matrix which it would be if (1.431) held.

1.34 Rank of a matrix

Four equivalent definitions of the rank R(A) of an m⇥ n matrix A are:

1. the number of its linearly independent rows,
2. the number of its linearly independent columns,
3. the number of its nonzero singular values, and
4. the number of rows in its biggest square nonsingular submatrix.

A matrix of rank zero has no nonzero singular values and so is zero.

Example 1.58 (Rank). The 3⇥ 4 matrix

A =

0

@
1 0 1 �2
2 2 0 2
4 3 1 1

1

A (1.439)

has three rows, so its rank can be at most 3. But twice the first row added
to thrice the second row equals twice the third row

2r1 + 3r2 � 2r3 = 0 (1.440)

so R(A)  2. The first two rows obviously are not parallel, so they are
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linearly independent. Thus the number of linearly independent rows of A is
2, and so A has rank 2.

1.35 Software

High-quality software for virtually all numerical problems in linear algebra
are available in the linear-algebra package Lapack. Codes in Fortran and
C++ are available at netlib.org/lapack/ and at math.nist.gov/tnt/.
Apple’s Xcode command -framework accelerate links this software into gnu
executables.

Matlab is a superb commercial program for numerical problems. A free
gnu version of it is available at gnu.org/software/octave/. Maple and
Mathematica are good commercial programs for symbolic problems. Python
(python.org), Scientific Python (scipy.org), and Sage (sagemath.org) are
free websites of excellent software. Intel gives software freely to academics
(software.intel.com/en-us/qualify-for-free-software) and students
(software.intel.com/en-us/qualify-for-free-software/student).

1.36 Tensor products and entanglement

Tensor products are used to describe composite systems, such as the
spins of two electrons. The terms direct product and tensor product some-
times are used interchangeably.

If A is an n⇥ n matrix with elements Aij and B is a m⇥m matrix with
elements Bk`, then their tensor product C = A⌦B is an nm⇥nm matrix
with elements Cik,j` = Aij Bk`. This tensor-product matrix A ⌦ B maps a
vector Vj` into the vector

Wik =
nX

j=1

mX

`=1

Cik,j` Vj` =
nX

j=1

mX

`=1

Aij Bk` Vj` (1.441)

in which the second double index j` of C and the second indices of A and
B match the double index j` of the vector V .
A tensor-product operator is a product of two operators that act on

two di↵erent vector spaces. Suppose that an operator A acts on a space
S spanned by n kets |ii, and that an operator B acts on a space T spanned
by m kets |ki, and that both operators map vectors into their spaces S and
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T . Then we may write A and B as

A = ISAIS =
nX

i,j=1

|iihi|A|jihj| (1.442)

and as

B = ITBIT =
mX

k,s=1

|kihk|B|`ih`|. (1.443)

Their tensor product C = A⌦B is

C = A⌦B =
nX

i,j=1

mX

k,`=1

|ii ⌦ |ki hi|A|jihk|B|`i hj|⌦ h`| (1.444)

and it acts on the tensor-product vector space S ⌦ T which is spanned by
the tensor-product kets |i, ki = |ii |ki = |ii ⌦ |ki and has dimension nm.
An arbitrary vector in the space S ⌦ T is of the form

| i =
nX

i=1

mX

k=1

 (i, k) |ii ⌦ |ki =
nX

i=1

mX

k=1

|i, kihi, k| i. (1.445)

Vectors |�S ,�T i that are tensor products |�Si⌦ |�T i of two vectors |�Si 2 S
and |�T i 2 T

|�Si ⌦ |�T i =
 

nX

i=1

�i|ii
!

⌦
 

mX

k=1

�k|ki
!

=
nX

i=1

mX

k=1

�i�k|i, ki (1.446)

are separable. States represented by vectors that are not separable are said
to be entangled. Most states in a tensor-product space are entangled.
In the simpler notation |i, ki for |ii⌦ |ki, a tensor-product operator A⌦B

maps an arbitrary vector (1.445) to

(A⌦B) | i =
nX

i,j=1

mX

k,`=1

|i, ki hi|A|jihk|B|`i hj, `| i. (1.447)

Direct-product operators are special. An arbitrary linear operator on the
space S ⌦ T

D =
nX

i,j=1

mX

k,`=1

|i, kihi, k|D|j, `ihj, `| (1.448)
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maps an arbitrary vector (1.445) into the vector

D | i =
nX

i,j=1

mX

k,`=1

|i, kihi, k|D|j, `ihj, `| i. (1.449)

Example 1.59 (States of the hydrogen atom ). Suppose the state |n, `,mi
is an eigenvector of the hamiltonian H, the square L2 of the orbital angular
momentum L, and the third component of the orbital angular momentum
L3 of a hydrogen atom without spin:

H|n, `,mi = En|n, `,mi
L

2|n, `,mi = ~2`(`+ 1)|n, `,mi
L3|n, `,mi = ~m|n, `,mi. (1.450)

The state |n, `,mi = |ni ⌦ |`,mi is separable. Suppose the states |�i for
� = ± are the eigenstates of the third component S3 of the operator S that
represents the spin of the electron

S3|�i = �
~
2
|�i. (1.451)

The separable, tensor-product states

|n, `,m,�i ⌘ |n, `,mi ⌦ |�i ⌘ |n, `,mi|�i (1.452)

represent a hydrogen atom including the spin of its electron. These separable
states are eigenvectors of all four operators H, L2, L3, and S3:

H|n, `,m,�i = En|n, `,m,�i L
2|n, `,m,�i = ~2`(`+ 1)|n, `,m,�i

L3|n, `,m,�i = ~m|n, `,m,�i S3|n, `,m,�i = � 1
2~|n, `,m,�i.

(1.453)

Suitable linear combinations of these states are eigenstates of the square J2

of the composite angular momentum J = L + S as well as of J3, L3, and
S3. Many of these states are entangled.

Example 1.60 (Adding Two Spins). The smallest positive value of angular
momentum is ~/2. The spin-one-half angular momentum operators S are
represented by three 2⇥ 2 matrices

Sa = 1
2~�a, (1.454)

the Pauli matrices

�1 =

✓
0 1
1 0

◆
, �2 =

✓
0 �i
i 0

◆
, and �3 =

✓
1 0
0 �1

◆
(1.455)
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which are both hermitian and unitary. They map the basis vectors

|+i =
✓
1
0

◆
and |�i =

✓
0
1

◆
(1.456)

to �1|±i = |⌥i, �2|±i = ±i|⌥i, and �3|±i = ±|±i.
Suppose two spin operators S

(1) and S
(2) act on two spin-one-half sys-

tems with states |±i1 that are eigenstates of S(1)
3 and states |±i2 that are

eigenstates of S(2)
3

S(1)
3 |±i1 = ± 1

2~|±i1 and S(2)
3 |±i2 = ± 1

2~|±i2. (1.457)

Then the tensor-product states |±,±i = |±i1|±i2 = |±i1 ⌦ |±i2 are eigen-

states of both S(1)
3 and S(2)

3

S(1)
3 |±, s2i = ±1

2~ |+, s2i and S(2)
3 |s1,±i = ±1

2~ |s1,±i. (1.458)

These states also are eigenstates of the third component of the spin operator
of the combined system

S3 = S(1)
3 + S(2)

3 that is S3|s1, s2i = 1
2~ (s1 + s2) |s1, s2i. (1.459)

Thus S3|+,+i = ~|+,+i, and S3|�,�i = �~|�,�i, while S3|+,�i = 0 and
S3|�,+i = 0.
Using the notation (1.454–1.456), we can compute the e↵ect of the oper-

ator S2 on the state |++i. We find for S2
1

S2
1 |++i =

⇣
S(1)
1 + S(2)

1

⌘2
|++i = ~2

4

⇣
�(1)1 + �(2)1

⌘2
|++i

= 1
2~

2
⇣
1 + �(1)1 �(2)1

⌘
|++i = 1

2~
2
⇣
|++i+ �(1)1 |+i�(2)1 |+i

⌘

= 1
2~

2 (|++i+ |��i) (1.460)

and leave S2
2 and S2

3 to exercise 1.36.

Example 1.61 (Entangled states). A neutral pion ⇡0 has zero angular
momentum and negative parity. Its mass is 135 MeV/c2 and 99% of them
decay into two photons with a mean lifetime of 8.5 ⇥ 10�17 s. A ⇡0 at rest
decays into two photons moving in opposite directions along the same axis,
and the spins of the photons must be either parallel to their momenta |+,+i,
positive helicity, or antiparallel to their momenta |�,�i, negative helicity.
Parity reverses helicity, and so the state of negative parity and zero angular
momentum is

|�, �i = 1p
2

⇣
|+,+i � |�,�i

⌘
. (1.461)
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The two photons have the same helicity. If the helicity of one photon is
measured to be positive, then a measurement of the other photon will show
it to have positive helicity. The state is entangled.

One ⇡0 in 17 million will decay into a positron and an electron in a state
of zero angular momentum. The spin part of the final state is

|e+, e�i = 1p
2

⇣
|+,�i � |�,+i

⌘
. (1.462)

If the spin along any axis of one of the electrons is measured to be positive,
then a measurement of the spin of the other electron along the same axis
will be negative. The state is entangled.

1.37 Density operators

A general quantum-mechanical system is represented by a density op-
erator ⇢ that is hermitian ⇢† = ⇢, of unit trace Tr⇢ = 1, and positive
h |⇢| i � 0 for all kets | i.
If the state | i is normalized, then h |⇢| i is the nonnegative probability

that the system is in that state. This probability is real because the density
matrix is hermitian. If {|ki} is any complete set of orthonormal states

I =
X

k

|kihk| (1.463)

then the probability that the system is in the state |ki is

pk = hk|⇢|ki = Tr (⇢|kihk|) . (1.464)

Since Tr⇢ = 1, the sum of these probabilities is unity

X

k

pk =
X

k

hk|⇢|ki = Tr

 
⇢
X

k

|kihk|
!

= Tr (⇢I) = Tr⇢ = 1. (1.465)

A system that is measured to be in a state |ki cannot simultaneously be
measured to be in an orthogonal state |`i. The probabilities sum to unity
because the system must be in some state.
Since the density operator ⇢ is hermitian, it has a complete, orthonormal

set of eigenvectors |ki all of which have nonnegative eigenvalues ⇢k

⇢|ki = ⇢k|ki. (1.466)
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They a↵ord for it the expansion

⇢ =
X

k

⇢k|kihk| (1.467)

in which the eigenvalue ⇢k is the probability that the system is in the state
|ki.
A system composed of two systems, one with basis kets |ii and the other

with basis kets |ki, has basis states |i, ki = |ii|ki and can be described by
the density operator

⇢ =
X

ijk`

|i, kihi, k|⇢|j, `ihj, `|. (1.468)

The density operator for the first system is the trace of ⇢ over the states |ki
of the second system

⇢1 =
X

k

hk|⇢|ki =
X

ijk

|iihi, k|⇢|j, kihj| (1.469)

and similarly the density operator for the second system is the trace of ⇢
over the states |ii of the first system

⇢2 =
X

i

hi|⇢|ii =
X

jk`

|kihi, k|⇢|i, `ih`|. (1.470)

Classical entropy is an extensive quantity like volume, mass, and en-
ergy. The classical entropy of a composite system is the sum of the classical
entropies of its parts. But quantum entropy S = �kTr(⇢ log ⇢) is not neces-
sarily extensive. The quantum entropy of an entangled system can be less
than the sum of the quantum entropies of its parts. The quantum entropy
of each of the eigenstates |�, �i and |e+, e�i of example ?? is zero, but the
sum of the quantum entropies of their parts is in both cases 2k log 2.

1.38 Correlation functions

We can define two Schwarz inner products for a density matrix ⇢. If |fi and
|gi are two states, then the inner product

(f, g) ⌘ hf |⇢|gi (1.471)

for g = f is nonnegative, (f, f) = hf |⇢|fi � 0, and satisfies the other
conditions (1.78, 1.79, & 1.81) for a Schwarz inner product.
The second Schwarz inner product applies to operators A and B and is
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defined (Titulaer and Glauber, 1965) as

(A,B) = Tr
⇣
⇢A†B

⌘
= Tr

⇣
B⇢A†

⌘
= Tr

⇣
A†B⇢

⌘
. (1.472)

This inner product is nonnegative when A = B and obeys the other rules
(1.78, 1.79, & 1.81) for a Schwarz inner product.
These two degenerate inner products are not inner products in the strict

sense of (1.78–1.84), but they are Schwarz inner products, and so (1.97–1.98)
they satisfy the Schwarz inequality (1.98)

(f, f)(g, g) � |(f, g)|2. (1.473)

Applied to the first, vector, Schwarz inner product (1.471), the Schwarz
inequality gives

hf |⇢|fihg|⇢|gi � |hf |⇢|gi|2 (1.474)

which is a useful property of density matrices. Application of the Schwarz
inequality to the second, operator, Schwarz inner product (1.472) gives (Tit-
ulaer and Glauber, 1965)

Tr
⇣
⇢A†A

⌘
Tr
⇣
⇢B†B

⌘
�
���Tr
⇣
⇢A†B

⌘���
2
. (1.475)

The operator Ei(x) that represents the ith component of the electric field

at the point x is the hermitian sum of the “positive-frequency” part E(+)
i (x)

and its adjoint E(�)
i (x) = (E(+)

i (x))†

Ei(x) = E(+)
i (x) + E(�)

i (x). (1.476)

Glauber has defined the first-order correlation functionG(1)
ij (x, y) as (Glauber,

1963b)

G(1)
ij (x, y) = Tr

⇣
⇢E(�)

i (x)E(+)
j (y)

⌘
(1.477)

or in terms of the operator inner product (1.472) as

G(1)
ij (x, y) =

⇣
E(+)

i (x), E(+)
j (y)

⌘
. (1.478)

By setting A = E(+)
i (x), etc., it follows then from the Schwarz inequality

(1.475) that the correlation function G(1)
ij (x, y) is bounded by (Titulaer and

Glauber, 1965)

���G(1)
ij (x, y)

���
2
 G(1)

ii (x, x)G(1)
jj (y, y). (1.479)
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Interference fringes are sharpest when this inequality is saturated
���G(1)

ij (x, y)
���
2
= G(1)

ii (x, x)G(1)
jj (y, y) (1.480)

which can occur only if the correlation function G(1)
ij (x, y) factorizes (Titu-

laer and Glauber, 1965)

G(1)
ij (x, y) = E⇤

i (x)Ej(y) (1.481)

as it does when the density operator is an outer product of coherent states

⇢ = |{↵k}ih{↵k}| (1.482)

which are eigenstates of E(+)
i (x) with eigenvalue Ei(x) (Glauber, 1963b,a)

E(+)
i (x)|{↵k}i = Ei(x)|{↵k}i. (1.483)

The higher-order correlation functions

G(n)
i1...i2n

(x1 . . . x2n) = Tr
⇣
⇢E(�)

i1
(x1) . . . E

(�)
in

(xn)E
(+)
in+1

(xn+1) . . . E
(+)
i2n

(xn)
⌘

(1.484)
satisfy similar inequalities (Glauber, 1963b) which also follow from the
Schwarz inequality (1.475).

Exercises

1.1 Why is the most complicated function of two Grassmann numbers a
polynomial with at most four terms as in (1.12)?

1.2 Derive the cyclicity (1.24) of the trace from Eq.(1.23).
1.3 Show that (AB) T = BTAT, which is Eq.(1.26).
1.4 Show that a real hermitian matrix is symmetric.
1.5 Show that (AB)† = B†A†, which is Eq.(1.29).
1.6 Show that the matrix (1.41) is positive on the space of all real 2-vectors

but not on the space of all complex 2-vectors.
1.7 Show that the two 4 ⇥ 4 matrices (1.46) satisfy Grassmann’s algebra

(1.11) for n = 2.
1.8 Show that the operators ai = ✓i defined in terms of the Grassmann

matrices (1.46) and their adjoints a†i = ✓†i satisfy the anticommutation
relations (1.47) of the creation and annihilation operators for a system
with two fermionic states.

1.9 Derive (1.66) from (1.63–1.65).
1.10 Fill in the steps leading to the formulas (1.74) for the vectors b01 and

b02 and the formula (1.75) for the matrix a0.
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1.11 Show that the antilinearity (1.81) of the inner product follows from its
first two properties (1.78 & 1.79).

1.12 Show that the Minkowski product (x, y) = x ·y�x0y0 of two 4-vectors
x and y is an inner product obeying the rules (1.78, 1.79, and 1.84).

1.13 Show that if f = 0, then the linearity (1.79) of the inner product
implies that (f, f) and (g, f) vanish.

1.14 Show that the condition (1.80) of being positive definite implies non-
degeneracy (1.84).

1.15 Show that the nonnegativity (1.82) of the Schwarz inner product im-
plies the condition (1.83). Hint: the inequality (f � �g, f � �g) � 0
must hold for every complex � and for all vectors f and g.

1.16 Show that the inequality (1.102) follows from the Schwarz inequality
(1.101).

1.17 Show that the inequality (1.104) follows from the Schwarz inequality
(1.103).

1.18 Use the Gram-Schmidt method to find orthonormal linear combina-
tions of the three vectors

s1 =

0

@
1
0
0

1

A , s2 =

0

@
1
1
0

1

A , s3 =

0

@
1
1
1

1

A . (1.485)

1.19 Now use the Gram-Schmidt method to find orthonormal linear combi-
nations of the same three vectors but in a di↵erent order

s
0
1 =

0

@
1
1
1

1

A , s
0
2 =

0

@
1
1
0

1

A , s
0
3 =

0

@
1
0
0

1

A . (1.486)

Did you get the same orthonormal vectors as in the previous exercise?
1.20 Derive the linearity (1.124) of the outer product from its definition

(1.123).
1.21 Show that a linear operator A that is represented by a hermitian matrix

(1.166) in an orthonormal basis satisfies (g,A f) = (Ag, f).
1.22 Show that a unitary operator maps one orthonormal basis into another.
1.23 Show that the integral (1.182) defines a unitary operator that maps

the state |x0i to the state |x0 + ai.
1.24 For the 2⇥ 2 matrices

A =

✓
1 2
3 �4

◆
and B =

✓
2 �1
4 �3

◆
(1.487)

verify equations (1.216–1.218).
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1.25 Derive the least-squares solution (1.243) for complex A, x, and y when
the matrix A†A is positive.

1.26 Show that the eigenvalues � of a unitary matrix are unimodular, that
is, |�| = 1.

1.27 What are the eigenvalues and eigenvectors of the two defective matrices
(1.281)?

1.28 Use (1.292) to derive expression (1.293) for the 2 ⇥ 2 rotation matrix
exp(�i✓ · �/2).

1.29 Compute the characteristic equation for the matrix �i✓ · J in which
the generators are (Jk)ij = i✏ikj and ✏ijk is totally antisymmetric with
✏123 = 1.

1.30 Use the characteristic equation of exercise 1.29 to derive identities
(1.296) and (1.297) for the 3⇥3 real orthogonal matrix exp(�i✓ · J).

1.31 Show that the sum of the eigenvalues of a normal antisymmetric matrix
vanishes.

1.32 Consider the 2⇥ 3 matrix A

A =

✓
1 2 3
�3 0 1

◆
. (1.488)

Perform the singular value decomposition A = USV T, where V T the
transpose of V . Find the singular values and the real orthogonal ma-
trices U and V . Students may use Lapack, Octave, Matlab, Maple or
any other program to do this exercise.

1.33 Consider the 6⇥ 9 matrix A with elements

Aj,k = x+ xj + i(y � yk) (1.489)

in which x = 1.1 and y = 1.02. Find the singular values, and the
first left and right singular vectors. Students may use Lapack, Octave,
Matlab, Maple or any other program to do this exercise.

1.34 Show that the totally antisymmetric Levi-Civita symbol ✏ijk satisfies
the useful relation

3X

i=1

✏ijk ✏inm = �jn �km � �jm �kn. (1.490)

1.35 Consider the hamiltonian

H = 1
2~!�3 (1.491)

where �3 is defined in (1.455). The entropy S of this system at temper-
ature T is

S = �kTr [⇢ ln(⇢)] (1.492)



Exercises 87

in which the density operator ⇢ is

⇢ =
e�H/(kT )

Tr
⇥
e�H/(kT )

⇤ . (1.493)

Find expressions for the density operator ⇢ and its entropy S.

1.36 Find the action of the operator S2 =
⇣
S

(1) + S
(2)
⌘2

defined by (1.454)

on the four states | ± ±i and then find the eigenstates and eigenvalues
of S2 in the space spanned by these four states.

1.37 A system that has three fermionic states has three creation operators a†i
and three annihilation operators ak which satisfy the anticommutation
relations {ai, a†k} = �ik and {ai, ak} = {a†i , a

†
k} = 0 for i, k = 1, 2,

3. The eight states of the system are |t, u, vi ⌘ (a†1)
t(a†2)

u(a†3)
v|0, 0, 0i.

We can represent them by eight 8-vectors each of which has seven 0’s
with a 1 in position 4t+ 2u+ v + 1. How big should the matrices that
represent the creation and annihilation operators be? Write down the
three matrices that represent the three creation operators.

1.38 Show that the Schwarz inner product (1.471) is degenerate because
it can violate (1.84) for certain density operators and certain pairs of
states.

1.39 Show that the Schwarz inner product (1.472) is degenerate because
it can violate (1.84) for certain density operators and certain pairs of
operators.

1.40 The coherent state |{↵k}i is an eigenstate of the annihilation operator
ak with eigenvalue ↵k for each mode k of the electromagnetic field,
ak|{↵k}i = ↵k|{↵k}i. The positive-frequency part E(+)

i (x) of the elec-
tric field is a linear combination of the annihilation operators

E(+)
i (x) =

X

k

ak E(+)
i (k) ei(kx�!t). (1.494)

Show that |{↵k}i is an eigenstate of E(+)
i (x) as in (1.483) and find its

eigenvalue Ei(x).
1.41 Show that if X is a non defective, nonsingular square matrix, then the

variation of the logarithm of its determinant is � ln(detX) = Tr(X�1�X).


