$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~S}
\end{aligned}
$$

$$
\begin{aligned}
& |f\rangle=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \quad|g\rangle=\binom{z}{w} \\
& |f\rangle\langle g|=\left(\begin{array}{ccc}
a & b^{*} \\
b= & b^{*} \\
b= & b & w^{*} \\
c 弓 & w^{*}
\end{array}\right), \quad(h\rangle=\binom{d}{e} \\
& |f\rangle\langle g \mid h\rangle
\end{aligned}
$$

$$
\begin{aligned}
P(a \mid b) & =\left.\left\langle K_{a} \mid b\right\rangle\right|^{2} \\
& \left.=\left|\langle a| a^{+} u\right| b\right\rangle\left.\right|^{2} \\
& =\left|\left\langle a^{\prime} \mid b^{\prime}\right\rangle\right|^{2} \\
& =P\left(a^{\prime} \mid b^{\prime}\right) \\
y & =A x \quad x=A^{-1} y
\end{aligned}
$$

$$
\begin{aligned}
& V A V^{-1} V A V^{-1} \ldots V A V^{-1} \\
& V A^{2} V^{-1} \ldots V A^{2} V^{-1} \\
& V A^{4} V^{-1} \\
& \quad T^{-1},(X\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \eta=\left(\begin{array}{lll}
0 & \ddots \\
0 & 1 & 1
\end{array}\right) \\
& A=(\quad), A=C \quad) \\
& \langle n| A|m\rangle=\sum\left\langle m \mid \phi_{j}\right\rangle \Gamma_{j}\left\langle a_{j} \mid m\right\rangle \\
& =\sum_{j}^{j} U_{m j} S_{j} V_{m j}^{+} \\
& A=\sum\left\langle b_{j}\right\rangle S_{j}\left\langle a_{j}\right| \\
& \left\{\begin{array}{l}
=\sum_{j} \frac{A\left(a_{j}\right)_{S_{2}} S_{j}\left|=\sum_{j}\right|=A\left|a a_{j} a_{j}\right|}{} \\
=A \sum_{j}\left|a_{j}\right\rangle\left\langle a_{j}\right|=A I=A
\end{array}\right. \\
& A=\sum\left|a_{j}\right\rangle S_{j}\left\langle b_{j}\right\rangle \\
& =\sum_{k}\left|b_{,}\right\rangle S_{j}^{*}\left\langle a_{j}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \left.S_{j}=D_{j} \quad\left|a_{j}\right\rangle=w_{j}\right\rangle \\
& A=\sum\left|a_{j}\right\rangle 5_{j}\left\langle a_{j}\right| \\
& \sum=\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \sum t=\left(\begin{array}{ccc}
1 / 3 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& |\vec{r}\rangle=|x\rangle|y\rangle|z\rangle \\
& =|r\rangle|\theta\rangle|\phi\rangle \\
& 1+, \lambda\rangle=|t,-7,1-,+7,1-,\rangle \\
& \left.1+7=\binom{1}{6} \quad 1-\right\rangle=\binom{0}{1} \\
& |g n\rangle=\sum_{i k} S_{i k}|i, k\rangle \\
& |>1\rangle=\sum_{i n}^{i k} \phi_{i} \psi_{k}|i, k\rangle
\end{aligned}
$$

Sik n^{2} \#'s
$\phi_{i} \psi_{k} \quad 2 n^{\text {\#'s }}$

$$
\begin{aligned}
& E_{i}^{\prime \prime}(x)|\{\alpha\}\rangle \\
& =\sum_{k, s} e^{i n x} a(k, s) e_{i}(k, s)|\{\alpha\}\rangle \\
& a(k, s)|\{\alpha\}\rangle=\alpha(\xi, s)|\{\alpha\}\rangle \\
& \left.=\left\{\alpha(k, 1), \alpha(k, 2), \alpha(k, 1), \alpha\left(k_{0}\right)\right)\right] \\
& \sum_{k, 9} e^{i h x} \alpha(h, 9) e(k, s)|\{\alpha\}\rangle \\
& =\varepsilon_{i}^{+}(x) \\
& A=|k\rangle\langle k| A|l\rangle\langle 1| \\
& =|k\rangle\left\langle k \mid b_{j}\right\rangle S_{j}\left\langle a_{j} \mid l\right\rangle\langle l| \\
& \left\langle k \mid b_{j}\right\rangle S_{j}\left\langle a_{j} \mid l\right\rangle \\
& A_{k j}=U_{k j} \sum_{j} V_{j}^{+} \\
& \left|b_{j}\right\rangle=A\left|a_{j}\right\rangle=\alpha_{j}\left|a_{j}\right\rangle \\
& A\left(a_{j}\right\rangle=\alpha_{j}\left|a_{j}\right\rangle \\
& \text { (a.|A (ai) }=\alpha .
\end{aligned}
$$

$$
\frac{\left\langle u_{j} \cdots \cdots\right)^{\prime}}{\text { if } A=A^{+}}
$$

becomes

$$
\begin{gathered}
A^{2}\left|a_{j}\right\rangle=S_{j}\left|a_{j}\right\rangle \\
A\left|a_{j}\right\rangle=\alpha_{j}\left|a_{j}\right\rangle \\
S_{j}=\alpha_{j}^{2}
\end{gathered}
$$

$$
A=U S U^{+}=U \Sigma u^{+}
$$

$$
A^{+} A=I
$$

$k\rangle\langle k)$

$$
\begin{gathered}
A|k\rangle=\left|b_{k}\right\rangle \\
A=\sum_{k}\left|b_{k}\right\rangle\left\langle b_{k}\right| A|h\rangle \psi \mid
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\frac{\partial^{2} f}{\partial x \partial y}=\frac{d^{2} f}{d y \partial x}}{f=z^{2} z^{x}} \\
& \frac{\partial f}{\partial z}=2 z z^{*} \\
& \frac{\partial f}{\partial z^{*}}=z^{2} \\
& \frac{\partial f}{\partial x}=f_{x}=\frac{\partial f}{\partial z} \frac{\partial z}{\partial x}+\frac{\partial f}{\partial z^{*}} \frac{\partial z^{*}}{\partial x} \\
& =\frac{\partial f}{\partial z}+\frac{\partial f}{\partial z} \\
& \frac{\partial f}{\partial \eta}=\frac{\partial f}{\partial z} \frac{\partial z}{\partial y} \\
& +\frac{\partial f}{\partial z^{*}} \frac{\partial z^{*}}{\partial r} \\
& =i \partial t-i \partial E
\end{aligned}
$$

$$
\begin{aligned}
& \delta(\vec{r}), f^{3}(\vec{r}) \\
& \delta^{(3)}(\vec{r})=\delta^{(3)}(\vec{r})
\end{aligned}
$$

$$
\begin{aligned}
A & =y \hat{x} \quad A_{1}=y \\
\nabla \times A & =\epsilon_{i j k} \partial_{j} A_{k} \\
& =\epsilon_{i j} \partial_{j} \varphi \\
& =\epsilon_{i z 1}
\end{aligned}
$$

$$
\begin{gathered}
|V \times A\rangle_{i}-\sim^{2}{ }^{3} \\
\vec{B}=-Z^{n}
\end{gathered}
$$

$$
-\Delta \frac{1}{(v-x \mid}=\delta^{(\overrightarrow{3})}(\vec{x})
$$

function

$$
\begin{aligned}
& x \rightarrow x^{\prime} \\
& x \rightarrow f(x)=y
\end{aligned}
$$

functional

$$
f \longrightarrow \underset{r}{ } f(x)
$$

$$
\delta(x)
$$

quantum. phus.unm.eda / 466-22

$$
\begin{aligned}
& \frac{\partial F}{\partial x} \equiv \partial_{x} f \\
& \partial_{y} f=\frac{\partial f}{\partial y} \\
& \nabla_{1} B=0 \\
& \vec{B}=\vec{D} \times \vec{A} \\
& x^{\prime}=x^{i}\left(x^{i}, x^{2} ; x^{n}\right) \\
& V_{i}=g_{i j}, V^{\prime} \\
& V^{k}=g^{k} \cdot V_{l}
\end{aligned}
$$

$$
\begin{aligned}
& y_{\text {Jik }} \rightarrow \\
& \eta=\left(\begin{array}{ccc}
-1 & \infty \\
\infty & 1 & 1
\end{array}\right)
\end{aligned}
$$

$$
\frac{e^{i 2 \pi(m-m)}-e^{0}}{2 \pi}=0 \quad n \neq m
$$

$$
\int_{0}^{2 x} \frac{e^{0}}{2 \pi} d x=1
$$

$$
\langle\vec{p} \mid \psi\rangle=\int \frac{d^{3} x e^{i \vec{p} \cdot \vec{x}}}{\left(2 \pi(\vec{x})^{3 / 2}\right.} \psi(\vec{x})
$$

$$
=\int \frac{d \vec{d} x}{(2 \pi)^{12}} e^{i \vec{p} \cdot \vec{x}}\langle\vec{x} \mid \psi\rangle
$$

$$
\begin{aligned}
& \theta(x)= \begin{cases}1 & x>0 \\
1 / 2 & x=0 \\
0 & x<0\end{cases} \\
& \frac{d \theta(x)}{d x}=\delta(x) \text {. } \\
& \int f(x) f(x) d x=f(0) \\
& =\int_{-1}^{1} f(x) \frac{d \theta}{d x} d x \\
& =\int_{-1}^{1}-f^{\prime}(x) \theta(x) d x \text { hep Sufnce } \\
& =\int_{0}^{1}-f^{\prime}(x) d x \stackrel{\operatorname{tam}}{\sim(1)} \\
& =-f(1) f f(0)
\end{aligned}
$$

$$
\int_{a}^{b} f(x) d x=\sum_{i} f\left(x_{i}\right) m\left(s_{i}\right)
$$

measure of set S_{i} of points \therefore maps to interval J_{i} containing $f\left(x_{i}\right)$.

$$
\begin{aligned}
& \text { virs } 10 \quad x<0 \\
& \theta^{\prime}(x)=f(x) \\
& \int_{-1}^{1}(f(x) \theta(x))^{\prime} d x \\
& =f(1) \theta(1)-f(-1) \theta(-1)=f(1) \\
& =\int_{-1}^{1} f(x) \theta^{\prime}(x) d x \\
& +\int_{-1}^{1} f^{\prime}(x) \theta(x) d x \\
& =\int_{-1}^{1} f(x) \theta^{\prime}(x) d x+\int_{0}^{1} f^{\prime}(x) d x \\
& =\int^{1} f(x) \theta^{\prime}(x) d x+f(1)-f(0) \\
& f(1)=f(1)-f(0)+\int_{-1}^{1} f(x) \theta^{\prime}(x) d x \\
& f(0)=\int^{1} f(x) \theta^{\prime}(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-1}^{-1} f(x) \delta(x) d x \\
& =f(0) .
\end{aligned}
$$

$$
\begin{aligned}
& z=x+i y \\
& y=\frac{k}{m^{2}}
\end{aligned}
$$

$$
\int e^{-b^{2} / 2 n^{2}}
$$

$$
\begin{aligned}
& \text { shup } \\
& \int_{\text {shap }} e^{-\min ^{2} x^{2} / 2} \operatorname{big} x \\
& e^{-k^{2} / 2 m m^{2}} \\
& \text { Snooth } \\
& \delta(x-y)=\int_{-\infty}^{\infty} \frac{d h e^{i k}}{2 \pi} \\
& f(x)=\int f(y) \delta(x-y) d y \\
& =\int^{\infty} f(y) d y \int_{0}^{\infty} d k c h(x-y) \\
& \begin{array}{l}
=\int f(\eta) d y \int_{\frac{d}{2}} \frac{d k}{2 \pi} \\
=\left[\frac{d y}{\sqrt{2 \pi}} e^{+i k x}\left[\frac{d h e^{-i n n}}{} \frac{(2 \pi}{2 \pi}\right)\right]
\end{array}
\end{aligned}
$$

$$
[p]=n
$$

$$
\phi f(z) d z=U
$$

$$
\begin{aligned}
& f_{N}(x)=\frac{\sin N x}{\pi x} \\
& \begin{array}{r}
\left.\phi(x)=\int \frac{d k^{\prime}\left[a(k) e^{i h \cdot x}\right.}{\sqrt{2 \pi \omega_{k}}}+a^{f}(h) e^{-i h \cdot x}\right]
\end{array} \\
& \text { (3) } \\
& {[a(h, a(p)]=\delta(h-p)} \\
& =a(h) a^{\dagger}(p)-a^{\dagger}(p) a(k) \\
& \left\{a(k, s), a^{+}\left(p s^{\prime}\right)\right\} \\
& \text { - a(bes)at/,s) }
\end{aligned}
$$

$$
\begin{aligned}
& +a^{+}(p, s) a(k, s)=\delta_{(s} \delta(h-p) \\
& \psi(x)=\sum_{s} \int k a(k, s) e^{i h \cdot x} \in(h, s) \\
& \text {-el. } \quad+a_{c}^{+}(k, s) e^{-i h x t} e^{*}(h, s) \\
& \left.\operatorname{Tr}[e(A-\angle A\rangle)^{2}\right] \\
& \left.=\operatorname{Tr} \rho A^{2}-2 \operatorname{Tr} p A<A\right) \\
& +\operatorname{Tr} \rho\langle A\rangle^{2}-\operatorname{tapR}\langle A\rangle^{2} \\
& p \geqslant 0 \quad<5 \mid p(s) \geqslant 0 \\
& T_{n}(p)=\sum\langle\text { inp|m) }=1 \\
& p=p^{t} \\
& =\sum|n\rangle\langle n| p_{n}
\end{aligned}
$$

$$
\begin{gathered}
\left\langle(A-\langle A\rangle)^{2}\right\rangle=\left\langle A^{2}\right\rangle-\langle A\rangle^{2} \\
f(x)=\int \frac{d^{2} h}{(2 \pi)^{2 / 2}} e^{i(k \cdot x} \tilde{f}(k) \\
x=x_{1}, x_{2} \ldots \\
h=h_{1}, h_{2}, \ldots
\end{gathered}
$$

Coherent state $|\alpha\rangle$

$$
\left[\begin{array}{l}
a|\alpha\rangle=\alpha|\alpha\rangle \\
e^{-S^{*} a}|\alpha\rangle=e^{-\xi^{*} \alpha} \\
\langle\alpha| \partial^{j}=\langle\alpha| \alpha=\alpha^{*}\langle\alpha| \\
\langle\alpha| e^{\xi a^{t}}=\langle\alpha| e^{\xi \alpha^{*}} \\
v \ldots 1-T i n\left(\rho e^{\xi a^{t}} e^{-\frac{x}{\xi a}}\right)
\end{array}\right.
$$

$$
\begin{aligned}
& C_{0}(x)-10 y \\
& =\operatorname{Tr}\left(e^{-\xi a} \rho e^{\xi a^{+}}\right) \\
& \nabla_{x} e^{\vec{i} \vec{k} \cdot \vec{x}}=\vec{i} \cdot e^{i k \cdot x} \\
& \nabla^{2} e^{i k x}=-\vec{k}^{2} e^{i k \cdot x}
\end{aligned}
$$

$$
\begin{aligned}
& =\delta^{i}\left(\vec{x}-\vec{x}^{\prime}\right) \\
& E=-\nabla \phi+\nabla \times A \\
& \nabla \cdot A=0 \\
& \text { Colomb-gaige } \\
& \text { condition } \\
& A\left(\underline{\tilde{x}+\vec{a})}=\frac{\mu_{1}}{4 \pi} \int \frac{{ }^{3} x^{\prime} J(\vec{x})}{|\vec{x}+\vec{a}-x|}\right. \\
& \text { (1. }(\vec{A})_{1}, T\left(x_{x}^{\prime \prime}-\vec{a}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\mu v}{4 \pi} \int^{0 n} \frac{1}{\left|x-x^{\prime}\right|} \\
& \widetilde{f * g(k)}=\int_{-\infty}^{\infty} \frac{d x}{\sqrt{2 \pi}} e^{-i h x} \quad f \times g(x) \\
& \int x f(x) d x=0 \\
& \int f(x) \delta(x) d x=f(0) \\
& \int e^{i k \cdot x} \delta(P(i k)) h(k) d^{3} k
\end{aligned}
$$

quantum. phys. uncm. eln / 4t6-22

$$
\frac{1}{1-x}=\sum x^{n}
$$

Is $-1(x, y)$ onak $j^{\prime} \backslash i c$!

$$
\begin{aligned}
& f(x, y)=u(x, y)+i \sigma(x, y) \\
& \frac{d f}{d z}=\frac{f^{\prime} d z}{d z}=f^{\prime} \\
& g=(3,2) \\
& \operatorname{Reg} g=3 \quad \ln g=2 \\
& u_{x}=r_{y} \quad r_{x}=-u_{y} \\
& \frac{\partial u}{\partial x}=\frac{\partial r}{\partial y} \quad \frac{\partial r}{\partial x}=-\frac{\partial u}{\partial y} \\
& p d e \quad f=u+i v
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \\
& \oint f(z) d z=0 \\
& \text { al } R \text { 's it }
\end{aligned}
$$

$$
f(z) \text { is antire }
$$

i. e_{1}) analatic orergure i.e., difterontirblle
(e.) Cavoly-Riemmn

$$
, 1 \leftarrow^{-\epsilon} A: c \quad d t
$$

$$
\begin{aligned}
& A=\int_{C_{1}} \int_{C_{4}} \\
& 0=\oint f(z) d z=\int_{C_{4}} f(z) d z \\
& \theta \int_{C_{1}} f(z) d z=\oint f(z) d z
\end{aligned}
$$

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{1}} d z=f\left(z_{0}\right)
$$

singly connected analuticith

