ordinary differential equation

$$
\begin{equation*}
\left(1-v^{2}\right) \phi_{u u}=\frac{d V}{d \phi}=V_{, \phi} \tag{7.515}
\end{equation*}
$$

We multiply both sides of this equation by ϕ_{u} to get $\left(1-v^{2}\right) \phi_{u} \phi_{u u}=\phi_{u} V_{, \phi}$ which we can integrate to $\left(1-v^{2}\right) \frac{1}{2} \phi_{u}^{2}=V+E$ or (exercise 7.41)

$$
\begin{equation*}
u-u_{0}=\int \frac{\sqrt{1-v^{2}}}{\sqrt{2(E+V(\phi))}} d \phi \tag{7.516}
\end{equation*}
$$

in which E is a constant of integration. This integral gives us $u(\phi)$ which we then invert to get $\phi\left(u-u_{0}\right)=\phi\left(x-x_{0}-v\left(t-t_{0}\right)\right)$, which is a lump of energy traveling with speed v.

Example 7.75 (Soliton of the ϕ^{4} theory) To simplify the integration (7.516), we take as the action density

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\dot{\phi}^{2}-\phi^{\prime 2}\right)-\left[\frac{\lambda^{2}}{2}\left(\phi^{2}-\phi_{0}^{2}\right)^{2}-E\right] \tag{7.517}
\end{equation*}
$$

Our formal solution (7.516) gives

$$
\begin{equation*}
u-u_{0}= \pm \int \frac{\sqrt{1-v^{2}}}{\lambda\left(\phi^{2}-\phi_{0}^{2}\right)} d \phi=\mp \frac{\sqrt{1-v^{2}}}{\lambda \phi_{0}} \tanh ^{-1}\left(\phi / \phi_{0}\right) \tag{7.518}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi(x-v t)=\mp \phi_{0} \tanh \left[\lambda \phi_{0} \frac{x-x_{0}-v\left(t-t_{0}\right)}{\sqrt{1-v^{2}}}\right] \tag{7.519}
\end{equation*}
$$

which is a soliton (or an antisoliton) at $x_{0}+v\left(t-t_{0}\right)$. A unit soliton at rest is plotted in Fig. 7.6. Its energy is concentrated at $x=0$ where $\left|\phi^{2}-\phi_{0}^{2}\right|$ is maximal.

7.48 Matlab Solves Differential Equations

Example 7.76 (First-order nonlinear ordinary differential equation)
>> syms y(t) a Y
ode $=\operatorname{diff}(y, t)==a * y *(1-y / Y)$;
cond $=y(0)==y 0$;
ySol(t) = dsolve(ode, cond);
>> ySol = simplify(ySol)
$\mathrm{ySol}(\mathrm{t})=(\mathrm{Y} * \mathrm{y} 0 * \exp (\mathrm{a} * \mathrm{t})) /(\mathrm{Y}-\mathrm{y} 0+\mathrm{y} 0 * \exp (\mathrm{a} * \mathrm{t}))$
which is the solution (7.66) of the logistic equation (7.63).

Example 7.77 (Second-order linear ordinary differential equation)

```
>> syms u(x) x
>> cond = u(1) == 1;
>> ode = -(1-x^2)*diff(u,x,2) + 2*x*diff(u,x,1) == 6*u;
>> uSol(x) = dsolve(ode,cond);
>> uSol = simplify(uSol)
uSol(x) = (3*x^2)/2 - 1/2
```

which is the Legendre polynomial (example 9.1) $P_{2}(x)$. A second boundary condition is not needed because the solution $Q_{2}(x)$ is singular at $x=1$.

Example 7.78 (Second-order linear ODE with two conditions)
>> syms $u(x) x$
\gg cond1 $=u(0)==1$;
>> cond2 = u(pi) == 0;
>> ode $=x^{\wedge} 2 * \operatorname{diff}(u, x, 2)+2 * x * \operatorname{diff}(u, x, 1)+x^{\wedge} 2 * u==0 ;$
>> uSol(x) = dsolve(ode, cond1,cond2);
>> uSol = simplify(uSol)
$u \operatorname{Sol}(x)=\sin (x) / x$
which is the spherical Bessel function $j_{0}(x)$.

Further reading

One can learn more about differential equations in Advanced Mathematical Methods for Scientists and Engineers (Bender and Orszag, 1978).

Exercises

7.1 In rectangular coordinates, the curl of a curl is by definition (2.45)

$$
\begin{equation*}
(\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \boldsymbol{E}))_{i}=\sum_{j, k=1}^{3} \epsilon_{i j k} \partial_{j}(\boldsymbol{\nabla} \times \boldsymbol{E})_{k}=\sum_{j, k, \ell, m=1}^{3} \epsilon_{i j k} \partial_{j} \epsilon_{k \ell m} \partial_{\ell} E_{m} \tag{7.520}
\end{equation*}
$$

Use Levi-Civita's identity (1.535) to show that

$$
\begin{equation*}
\nabla \times(\nabla \times E)=\nabla(\nabla \cdot E)-\triangle E \tag{7.521}
\end{equation*}
$$

This formula defines $\triangle \boldsymbol{E}$ in any system of orthogonal coordinates.
7.2 Show that since the Bessel function $J_{n}(x)$ satisfies Bessel's equation (7.26), the function $P_{k n}(\rho)=J_{n}(k \rho)$ satisfies (7.25).
7.3 Show that (7.38) implies that $R_{k, \ell}(r)=j_{\ell}(k r)$ satisfies (7.37).
7.4 Use (7.36, 7.37), and $\Phi_{m}^{\prime \prime}=-m^{2} \Phi_{m}$ to show in detail that the product $f(r, \theta, \phi)=R_{k \ell}(r) \Theta_{\ell m}(\theta) \Phi_{m}(\phi)$ satisfies $-\triangle f=k^{2} f$.

