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ordinary di↵erential equation

(1� v2)�uu =
dV

d�
= V,�. (7.515)

We multiply both sides of this equation by �u to get (1�v2)�u �uu = �u V,�
which we can integrate to (1� v2) 1
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u� u0 =

Z p
1� v2p

2(E + V (�))
d� (7.516)

in which E is a constant of integration. This integral gives us u(�) which
we then invert to get �(u� u0) = �(x� x0 � v(t� t0)), which is a lump of
energy traveling with speed v.

Example 7.75 (Soliton of the �4 theory) To simplify the integration
(7.516), we take as the action density
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Our formal solution (7.516) gives

u� u0 = ±
Z p

1� v2

�
�
�2 � �2

0

� d� = ⌥
p
1� v2

��0
tanh�1(�/�0) (7.518)

or

�(x� vt) = ⌥�0 tanh
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which is a soliton (or an antisoliton) at x0 + v(t� t0). A unit soliton at rest
is plotted in Fig. 7.6. Its energy is concentrated at x = 0 where |�2 � �2

0| is
maximal.
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Example 7.76 (First-order nonlinear ordinary di↵erential equation)
>> syms y(t) a Y

ode = diff(y,t) == a*y*(1-y/Y);

cond = y(0) == y0;

ySol(t) = dsolve(ode,cond);

>> ySol = simplify(ySol)

ySol(t) = (Y*y0*exp(a*t))/(Y - y0 + y0*exp(a*t))

which is the solution (7.66) of the logistic equation (7.63).
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Example 7.77 (Second-order linear ordinary di↵erential equation)
>> syms u(x) x

>> cond = u(1) == 1;

>> ode = -(1-x^2)*diff(u,x,2) + 2*x*diff(u,x,1) == 6*u;

>> uSol(x) = dsolve(ode,cond);

>> uSol = simplify(uSol)

uSol(x) = (3*x^2)/2 - 1/2

which is the Legendre polynomial (example 9.1) P2(x). A second boundary
condition is not needed because the solution Q2(x) is singular at x = 1.

Example 7.78 (Second-order linear ode with two conditions)
>> syms u(x) x

>> cond1 = u(0) == 1;

>> cond2 = u(pi) == 0;

>> ode = x^2*diff(u,x,2) + 2*x*diff(u,x,1) + x^2*u ==0;

>> uSol(x) = dsolve(ode,cond1,cond2);

>> uSol = simplify(uSol)

uSol(x) = sin(x)/x

which is the spherical Bessel function j0(x).

Further reading

One can learn more about di↵erential equations in Advanced Mathematical
Methods for Scientists and Engineers (Bender and Orszag, 1978).

Exercises

7.1 In rectangular coordinates, the curl of a curl is by definition (2.45)

(r ⇥ (r ⇥ E))i =
3X

j,k=1

✏ijk@j(r ⇥ E)k =
3X

j,k,`,m=1

✏ijk@j✏k`m@`Em.

(7.520)
Use Levi-Civita’s identity (1.535) to show that

r ⇥ (r ⇥ E) = r(r · E) � 4E. (7.521)

This formula defines 4E in any system of orthogonal coordinates.
7.2 Show that since the Bessel function Jn(x) satisfies Bessel’s equation

(7.26), the function Pkn(⇢) = Jn(k⇢) satisfies (7.25).
7.3 Show that (7.38) implies that Rk,`(r) = j`(kr) satisfies (7.37).
7.4 Use (7.36, 7.37), and �00

m = �m2�m to show in detail that the product
f(r, ✓,�) = Rk`(r)⇥`m(✓)�m(�) satisfies �4f = k2f .


