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Probability and Statistics

15.1 Probability and Thomas Bayes

The probability P (A) of an outcome in a set A is the sum of the probabilities
Pj of all the di↵erent (mutually exclusive) outcomes j in A

P (A) =
X

j2A
Pj . (15.1)

For instance, if one throws two fair dice, then the probability that the sum
is 2 is P (1, 1) = 1/36, while the probability that the sum is 3 is P (1, 2) +
P (2, 1) = 1/18.
The set of all possible outcomes is called the sample space, and any

subset of the sample space is called an event.
If A and B are two sets of possible outcomes, then the probability of an

outcome in the union A[B is the sum of the probabilities P (A) and P (B)
minus that of their intersection A \B

P (A [B) = P (A) + P (B)� P (A \B). (15.2)

If the outcomes are mutually exclusive, then P (A\B) = 0, and the probabil-
ity of the union is the sum P (A[B) = P (A)+P (B). The joint probability
P (A,B) ⌘ P (A\B) is the probability of an outcome that is in both sets A
and B. If the joint probability is the product P (A \B) = P (A)P (B), then
the outcomes in sets A and B are statistically independent.
The probability that a result in set B also is in set A is the conditional

probability P (A|B) or the probability of A given B

P (A|B) =
P (A \B)

P (B)
. (15.3)
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Interchanging A and B, we get as the probability of B given A

P (B|A) =
P (B \A)

P (A)
. (15.4)

Since A \B = B \A, the last two equations (15.3 & 15.4) tell us that

P (A \B) = P (B \A) = P (B|A)P (A) = P (A|B)P (B) (15.5)

in which the last equality is Bayes’s theorem

P (A|B) =
P (B|A)P (A)

P (B)
. (15.6)

In this formula, the probability P (A|B) is the posterior distribution of
the observable A given the B data, while P (A) is the prior distribution of A
before the B data became available. The probability P (B|A) of the B data
given the observable A is the likelihood of the data B given A. (Thomas
Bayes, 1702–1761).

If a set B of outcomes is contained in a union of n sets Aj that are mutually
exclusive,

B ⇢
n[

j=1

Aj and Ai \Ak = ;, (15.7)

then we must sum over them

P (B) =
nX

j=1

P (B|Aj)P (Aj). (15.8)

If, for example, Aj were the probability of selecting an atom with Zj protons
and Nj neutrons, and if P (B|Aj) were the probability that such a nucleus
would decay in time t, then the probability that the nucleus of a selected
atom would decay in time t would be given by a sum (15.8) over di↵erent
kinds of atoms. In this case, if we replace A by Ak in the formula (15.5), then
we get P (B \ Ak) = P (B|Ak)P (Ak) = P (Ak|B)P (B). This last equality
and the sum (15.8) give us these forms of Bayes’s theorem

P (Ak|B) =
P (B|Ak)P (Ak)PN
j=1 P (B|Aj)P (Aj)

(15.9)

P (B|Ak) =
P (Ak|B)

P (Ak)

NX

j=1

P (B|Aj)P (Aj). (15.10)

Example 15.1 (Was the cab blue?) A cab was involved in a hit-and-run
accident at night. In the city 85% of the cabs are Green and 15% are Blue.
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A witness said the cab was Blue. Tests showed that the witness correctly
distinguished Green and Blue cabs only 80% of the time. What is the prob-
ability that the guilty cab was Blue? (Kahneman, 2011, p.166)
The probability of a random cab’s being Blue is P (B) = 0.15, and the

probability of a random cab’s being Green is P (G) = 0.85. The probabilities
that the witness would call a Blue or a Green cab Blue are P (wB|B) = 0.8
and P (wB|G) = 0.2. So the probability P (wB) that the witness said a
random cab was Blue is

P (wB) = P (wB|B)P (B) + P (wB|G)P (G) = 0.29. (15.11)

Now Bayes’s theorem (15.6) gives the probability P (B|wB) that a cab the
witness said was Blue actually was Blue is

P (B|wB) =
P (wB|B)P (B)

P (wB)
=

0.8 (0.15)

0.29
= 0.41 (15.12)

which is about half the naive answer of 80%.

Example 15.2 (Low-base-rate problem) Suppose the incidence of a rare
disease in a population is P (D) = 0.001. Suppose a test for the disease has
a sensitivity of 99%, that is, the probability that a carrier of the disease
will test positive is P (+|D) = 0.99. Suppose the test also is highly selective
with a false-positive rate of only P (+|N) = 0.005. Then the probability that
a random person in the population would test positive is by (15.8)

P (+) = P (+|D)P (D) + P (+|N)P (N) = 0.00599. (15.13)

So by Bayes’s theorem (15.6), the probability that a person who tests posi-
tive actually has the disease is only

P (D|+) =
P (+|D)P (D)

P (+)
=

0.99⇥ 0.001

0.00599
= 0.165 (15.14)

and the probability that a person testing positive actually is healthy is
P (N |+) = 1� P (D|+) = 0.835.
Even with an excellent test, screening for rare diseases is problematic.

Similarly, screening for rare behaviors, such as disloyalty in the FBI, is dicey
with a good test and absurd with a poor one like a polygraph.

Example 15.3 (Three-door problem) A prize lies behind one of three
closed doors. A contestant gets to pick which door to open, but before the
chosen door is opened, a door that does not lead to the prize and was not
picked by the contestant swings open. Should the contestant switch and
choose a di↵erent door?
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A contestant who picks the wrong door and switches always wins, so
P (W |Sw,WD) = 1, while one who picks the right door and switches never
wins P (W |Sw,RD) = 0. Since the probability of picking the wrong door is
P (WD) = 2/3, the probability of winning if one switches is

P (W |Sw) = P (W |Sw,WD)P (WD) + P (W |Sw,RD)P (RD) = 2/3.
(15.15)

The probability of picking the right door is P (RD) = 1/3, and the probabil-
ity of winning if one picks the right door and stays put is P (W |Sp,RD) = 1.
So the probability of winning if one stays put is

P (W |Sp) = P (W |Sp,RD)P (RD) + P (W |Sp,WD)P (WD) = 1/3.
(15.16)

Thus, one should switch after the door opens.

If the set A is the interval (x � dx/2, x + dx/2) of the real line, then
P (A) = P (x) dx, and version (15.9) of Bayes’s theorem says

P (x|B) =
P (B|x)P (x)R1

�1 P (B|x0)P (x0) dx0
. (15.17)

Example 15.4 (A tiny poll) We ask 4 likely voters if they will vote for
Nancy Pelosi, and 3 say “Yes.” If the probability that a random voter will
vote for her is y, then the probability that 3 in our sample of 4 will is

P (3|y) = 4 y3 (1� y) (15.18)

which is the value Pb(3, y, 4) of the binomial distribution (section 15.3, 15.50)
for n = 3, p = y, and N = 4. We don’t know the prior probability distri-
bution P (y), so we set it equal to unity on the interval (0, 1). Then the
continuous form of Bayes’s theorem (15.17) and our cheap poll give the
probability distribution of the fraction y who will vote for her as

P (y|3) = P (3|y)P (y)
R 1
0 P (3|y0)P (y0) dy0

=
P (3|y)

R 1
0 P (3|y0) dy0

=
4 y3 (1� y)

R 1
0 4 y03 (1� y0) dy0

= 20 y3 (1� y). (15.19)

Our best guess then for the probability that she will win the election is
Z 1

1/2
P (y|3) dy =

Z 1

1/2
20 y3 (1� y) dy =

13

16
(15.20)

which is slightly higher than the naive estimate of 3/4.
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Nontransitive probabilities

Figure 15.1 Chris Bishop, https://www.youtube.com/watch?v=8FHBh_
OmdsM

Example 15.5 (Quantum mechanics) But when are two sets A1 and A2 of
microscopic events mutually exclusive? Suppose a photon can go from a laser
through slits 1 and 2 and be detected at point B. Unless we measure which
slit the photon goes through, the two passages are not mutually exclusive.
So we can’t compute the probability P (B) that the photon is detected at
point B as the sum (15.8) P (B) = P (B|A1)P (A1) + P (B|A2)P (A2) in
which P (Ai) is the probability of its going through slit i. We must use the
quantum-mechanical formula P (B) = |hB|A1i + hB|A2i|2 in which hB|Aii
is the amplitude for the photon to get to B through slit i.

Example 15.6 (Transitivity) If a, b, c are numbers, then a > b and b > c
implies that a > c. Such transitivity works for numbers but not always
for probabilities. For instance, in a game in which the person throwing the
highest number wins, the utility of the red die of Fig. 15.1 is greater than that
of the green one; that of the yellow die is greater than that of the red one;
that of the purple die is greater than that of the yellow one; and that of the
green die is greater than that of the purple one: 1/3+(2/3)(1/3) = 5/9.
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15.2 Mean and Variance

In many games, N outcomes xj can occur with probabilities Pj that sum to
unity

NX

j=1

Pj = 1. (15.21)

The expected value E[x] of the outcome x is its mean µ or average value
hxi = x

E[x] = µ = hxi = x =
NX

j=1

xj Pj . (15.22)

The expected value E[x] also is variously called the expectation of x,
the expectation value of x, the mean value of x, and the average value
of x.
The `th moment of x is

E[x`] = µ` = hx`i =
NX

j=1

x`jPj (15.23)

and its `th central moment is

E[(x� µ)`] = ⌫` =
NX

j=1

(xj � µ)`Pj (15.24)

in which µ0 = ⌫0 = 1, and ⌫1 = 0 (exercise 15.3).
The variance V [x] is the second central moment ⌫2

V [x] ⌘ E[(x� hxi)2] = ⌫2

=
NX

j=1

(xj � hxi)2 Pj = hx2i � hxi2
(15.25)

and the standard deviation � is its square root

� =
p

V [x]. (15.26)

If the values of x are distributed continuously according to a probability
distribution or density P (x) normalized to unity

Z
P (x) dx = 1 (15.27)
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then the average value is

E[x] = µ = hxi =
Z

xP (x) dx (15.28)

and the `th moment is

E[x`] = µ` = hx`i =
Z

x` P (x) dx. (15.29)

The `th central moment is

E[(x� µ)`] = ⌫` =

Z
(x� µ)` P (x) dx. (15.30)

The variance of the distribution is the second central moment

V [x] = ⌫2 =

Z
(x� hxi)2 P (x) dx = µ2 � µ2 (15.31)

and the standard deviation � is its square root � =
p

V [x].
Many authors use f(x) for the probability distribution P (x) and F (x) for

the cumulative probability Pr(�1, x) of an outcome in the interval (�1, x)

F (x) ⌘ Pr(�1, x) =

Z x

�1
P (x0) dx0 =

Z x

�1
f(x0) dx0 (15.32)

a function that is necessarily monotonic

F 0(x) = Pr0(�1, x) = f(x) = P (x) � 0. (15.33)

Some mathematicians reserve the term probability distribution for prob-
abilities like Pr(�1, x) and Pj and call a continuous distribution P (x) a
probability density function or PDF.
Although a probability distribution P (x) is normalized (15.27), it can

have fat tails, which are important in financial applications (Bouchaud and
Potters, 2003). Fat tails can make the variance and even themean absolute
deviation

Eabs ⌘
Z

|x� µ|P (x) dx (15.34)

diverge.

Example 15.7 (Heisenberg’s uncertainty principle) In quantum mechan-
ics, the absolute-value squared | (x)|2 of a wave function  (x) is the prob-
ability distribution P (x) = | (x)|2 of the position x of the particle, and
P (x) dx is the probability that the particle is found between x � dx/2 and
x+dx/2. The variance h(x�hxi)2i of the position operator x is written as the
square (�x)2 of the standard deviation � = �x which is the uncertainty
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in the position of the particle. Similarly, the square of the uncertainty in the
momentum (�p)2 is the variance h(p� hpi)2i of the momentum.
For the wave function (4.74)

 (x) =

✓
2

⇡

◆1/4 1p
a
e�(x/a)2 (15.35)

these uncertainties are �x = a/2 and �p = ~/a. They provide a saturated
example �x�p = ~/2 of Heisenberg’s uncertainty principle

�x�p � ~
2
. (15.36)

If x and y are two random variables that occur with a joint distribution
P (x, y), then the expected value of the linear combination axnym + bxpyq is

E[axnym + bxpyq] =

Z
(axnym + bxpyq)P (x, y) dxdy

= a

Z
xnym P (x, y) dxdy + b

Z
xpyq P (x, y) dxdy

= aE[xnym] + bE[xpyq]. (15.37)

This result and its analog for discrete probability distributions show that
expected values are linear.

Example 15.8 (Jensen’s inequalities) A convex function is one that lies
above its tangents:

f(x) � f(y) + (x� y)f 0(y). (15.38)

For example, ex lies above 1 + x which is its tangent at x = 0. Multiplying
both sides of the definition (15.38) by the probability distribution P (x) and
integrating over x with y = hxi, we find that the mean value of a convex
function

hf(x)i =
Z

f(x)P (x)dx �
Z ⇥

f(hxi) + (x� hxi)f 0(hxi)
⇤
P (x)dx

=

Z
f(hxi)P (x) dx = f(hxi)

(15.39)

exceeds its value at hxi. Equivalently, E[f(x)] � f(E[x]).
For a concave function, the inequalities (15.38) and (15.39) reverse, and

f(E[x]) � E[f(x)]. Thus since log(x) is concave for x > 0, we have

log(E[x]) = log

 
1

n

nX

i=1

xi

!
� E[log(x)] =

nX

i=1

1

n
log(xi). (15.40)
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Exponentiating both sides, we get the inequality of arithmetic and ge-
ometric means

1

n

nX

i=1

xi �
 

nY

i=1

xi

!1/n

(15.41)

(Johan Jensen, 1859–1925).

The correlation coe�cient or covariance of two variables x and y that
occur with a joint distribution P (x, y) is

C[x, y] ⌘
Z
P (x, y)(x� x)(y � y) dxdy = h(x� x)(y � y)i = hx yi � hxihyi.

(15.42)
The variables x and y are said to be independent if

P (x, y) = P (x)P (y). (15.43)

Independence implies that the covariance vanishes, but C[x, y] = 0 does not
guarantee that x and y are independent (Roe, 2001, p. 9).
The variance of x+ y

h(x+ y)2i� hx+ yi2 = hx2i� hxi2+ hy2i� hyi2+2 (hx yi � hxihyi) (15.44)

is the sum

V [x+ y] = V [x] + V [y] + 2C[x, y]. (15.45)

It follows (exercise 15.6) that for any constants a and b the variance of ax+by
is

V [ax+ by] = a2 V [x] + b2 V [y] + 2 abC[x, y]. (15.46)

More generally (exercise 15.7), the variance of the sum a1x1 + a2x2 + . . .+
aNxN is

V [a1x1 + . . .+ aNxN ] =
NX

j=1

a2j V [xj ] +
NX

j,k=1,j<k

2ajak C[xj , xk]. (15.47)

If the variables xj and xk are independent for j 6= k, then their covariances
vanish C[xj , xk] = 0, and the variance of the sum a1x1 + . . .+ aNxN is

V [a1x1 + . . .+ aNxN ] =
NX

j=1

a2j V [xj ]. (15.48)
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15.3 Binomial distribution

If the probability of success is p on each try, then we expect that in N tries
the mean number of successes will be

hni = N p. (15.49)

The probability of failure on each try is q = 1 � p. So the probability of a
particular sequence of successes and failures, such as n successes followed by
N �n failures is pn qN�n. There are N !/n! (N �n)! di↵erent sequences of n
successes and N � n failures, all with the same probability pn qN�n. So the
probability of n successes (and N � n failures) in N tries is

Pb(n, p,N) =
N !

n! (N � n)!
pn qN�n =

✓
N

n

◆
pn (1� p)N�n. (15.50)

This binomial distribution also is called Bernoulli’s distribution (Ja-
cob Bernoulli, 1654–1705).

The sum (5.93) of the probabilities Pb(n, p,N) for n = 0, 1, 2, . . . , N is
unity

NX

n=0

Pb(n, p,N) =
NX

n=0

✓
N

n

◆
pn (1� p)N�n = (p+ 1� p)N = 1. (15.51)

In Fig. 15.2, the probabilities Pb(n, p,N) for 0  n  250 and p = 0.2 are
plotted for N = 125, 250, 500, and 1000 tries.

The mean number of successes

µ = hniB =
NX

n=0

nPb(n, p,N) =
NX

n=0

n

✓
N

n

◆
pnqN�n (15.52)

is a partial derivative with respect to p with q held fixed

hniB = p
@

@p

NX

n=0

✓
N

n

◆
pnqN�n

= p
@

@p
(p+ q)N = Np (p+ q)N�1 = Np (15.53)

which verifies the estimate (15.49).
One may show (exercise 15.9) that the variance (15.25) of the binomial

distribution is

VB = h(n� hni)2i = p (1� p)N. (15.54)

Its standard deviation (15.26) is

�B =
p
VB =

p
p (1� p)N. (15.55)
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Four binomial distributions
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Figure 15.2 The binomial probability distribution Pb(n, p,N) (15.50) is
plotted here for p = 0.2 and N = 125 (solid), 250 (dashes), 500 (dot dash),
and 1000 tries (dots). This chapter’s codes are in Probability and statistics
at github.com/kevinecahill.

The ratio of the width to the mean

�B
hniB

=

p
p (1� p)N

Np
=

r
1� p

Np
(15.56)

decreases with N as 1/
p
N .

Example 15.9 (Avogadro’s number) A mole of gas is Avogadro’s number
NA = 6 ⇥ 1023 of molecules. If the gas is in a cubical box, then the chance
that each molecule will be in the left half of the cube is p = 1/2. The mean
number of molecules there is hnib = pNA = 3⇥ 1023, and the uncertainty in
n is �b =

p
p (1� p)N =

p
3⇥ 1023/4 = 3 ⇥ 1011. So the numbers of gas

molecules in the two halves of the box are equal to within �b/hnib = 10�12

or to 1 part in 1012.

Example 15.10 (Counting fluorescent molecules) Molecular biologists can
insert the DNA that codes for a fluorescent protein next to the DNA that
codes for a specific natural protein in the genome of a bacterium. The bac-
terium then will make its natural protein with the fluorescent protein at-
tached to it, and the labeled protein will produce light of a specific color
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when suitably illuminated by a laser. The intensity I of the light is propor-
tional to the number n of labeled protein molecules I = ↵n, and one can
find the constant of proportionality ↵ by measuring the light given o↵ as the
bacteria divide. When a bacterium divides, it randomly separates the total
number N of fluorescent proteins inside it into its two daughter bacteria,
giving one n fluorescent molecules and the other N �n. The variance of the
di↵erence is

h(n� (N � n))2i = h(2n�N)2i = 4 hn2i � 4 hniN +N2. (15.57)

The mean number (15.53) is hni = pN , and our variance formula (15.54)
tells us that

hn2i = hni2 + p(1� p)N = (pN)2 + p(1� p)N. (15.58)

Since the probability p = 1/2, the variance of the di↵erence is

h(n� (N � n))2i = (2p� 1)2N2 + 4p(1� p)N = N. (15.59)

Thus the ratio of the variance of the di↵erence of daughters’ intensities
to the intensity of the parent bacterium reveals the unknown constant of
proportionality ↵ (Phillips et al., 2012)

h(In � IN�n)2i
hIN i =

↵2h(n� (N � n))2i
↵hNi =

↵2N

↵N
= ↵. (15.60)

15.4 Coping with big factorials

Because n! increases very rapidly with n, the rule

Pb(k + 1, p, n) =
p

1� p

n� k

k + 1
Pb(k, p, n) (15.61)

is helpful when n is big. But when n exceeds a few hundred, the formula
(15.50) for Pb(k, p, n) becomes unmanageable even in quadruple precision.
One solution is to work with the logarithm of the expression of interest.
The Fortran function log_gamma(x), the C function lgamma(x), the Mat-
lab function gammaln(x), and the Python function loggamma(x) all give
log(�(x)) = log((x � 1)!) for real x. Using the very tame logarithm of the
gamma function, one may compute Pb(k, p, n) even for n = 107 as

✓
n

k

◆
pkqn�k = exp

⇥
log (�(n+ 1))� log (�(n� k + 1))

� log (�(k + 1)) + k log p+ (n� k) log q
⇤
.

(15.62)
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Another way to cope with huge factorials is to use Stirling’s formula (5.40)
n! ⇡

p
2⇡n (n/e)n or Srinivasa Ramanujan’s correction (5.41) or Mermin’s

even more accurate approximations (5.42–5.44).

A third way to cope with the unwieldy factorials in the binomial formula
Pb(k, p, n) is to use its limiting forms due to Poisson and to Gauss.

15.5 Poisson’s distribution

Poisson approximated the formula (15.50) for the binomial distribution
Pb(n, p,N) by taking the two limits N ! 1 and p = hni/N ! 0 while
keeping n and the product pN = hni constant. Using Stirling’s formula
n! ⇡

p
2⇡n (n/e)n (6.338) for the two huge factorials N ! and (N � n)!, we

get as n/N ! 0 and hni/N ! 0 with hni = pN kept fixed

Pb(n, p,N) =

✓
N

n

◆
pn(1� p)N�n =

N !

(N � n)!

pn

n!
(1� p)N�n

⇡
r

N

N � n

✓
N

e

◆N ✓ e

N � n

◆N�n (pN)n

n!
(1� p)N�n

⇡ e�n
⇣
1� n

N

⌘�N+n hnin
n!

✓
1� hni

N

◆N�n

.

(15.63)

So using the definition exp(�x) = limN!1 (1� x/N)N to take the limits

⇣
1� n

N

⌘�N⇣
1� n

N

⌘n
! en and

✓
1� hni

N

◆N✓
1� hni

N

◆�n

! ehni,

(15.64)
we get from the binomial distribution Poisson’s estimate

PP (n, hni) =
hnin
n!

e�hni (15.65)

of the probability of n successes in a very large number N of tries, each with
a tiny chance p = hni/N of success. (Siméon-Denis Poisson, 1781–1840.
Incidentally, poisson means fish and sounds like pwahsahn.)
The Poisson distribution is normalized to unity

1X

n=0

PP (n, hni) =
1X

n=0

hnin
n!

e�hni = ehni e�hni = 1. (15.66)



15.5 Poisson’s distribution 645

Its mean µ is the parameter hni = pN of the binomial distribution

µ =
1X

n=0

nPP (n, hni) =
1X

n=1

n
hnin
n!

e�hni = hni
1X

n=1

hni(n�1)

(n� 1)!
e�hni

= hni
1X

n=0

hnin
n!

e�hni = hni. (15.67)

As N ! 1 and p ! 0 with pN = hni fixed, the variance (15.54) of the
binomial distribution tends to the limit

VP = lim
N!1
p!0

VB = lim
N!1
p!0

p (1� p)N = hni. (15.68)

Thus the mean and the variance of a Poisson distribution are equal

VP = h(n� hni)2i = hni = µ (15.69)

as one may show directly (exercise 15.12).

Example 15.11 (Accuracy of Poisson’s distribution ) If p = 0.0001 and
N = 10, 000, then hni = 1 and Poisson’s approximation to the probability
that n = 2 is 1/2e. The exact binomial probability (15.62) and Poisson’s
estimate are Pb(2, 0.01, 1000) = 0.18395 and PP (2, 1) = 0.18394.

Example 15.12 (Coherent states) The coherent state |↵i introduced in
equation (1.314)

|↵i = e�|↵|2/2e↵a
† |0i = e�|↵|2/2

1X

n=0

↵n

p
n!
|ni (15.70)

is an eigenstate a|↵i = ↵|↵i of the annihilation operator a with eigenvalue
↵. The probability P (n) of finding n quanta in the state |↵i is the square of
the absolute value of the inner product hn|↵i

P (n) = |hn|↵i|2 = |↵|2n
n!

e�|↵|2 (15.71)

which is a Poisson distribution P (n) = PP (n, |↵|2) with mean and variance
µ = hni = V (↵) = |↵|2.

Example 15.13 (Radiation and cancer) If a cell becomes cancerous only



646 Probability and Statistics

after being hit N times by ionizing radiation, then the probability of cancer
P (hni)N rises with the dose or mean number hni of hits per cell as

P (hni)N =
1X

n=N

hnin
n!

e�hni (15.72)

or P (hni)N ⇡ hniN/N ! for hni ⌧ 1. As illustrated in Fig. 15.3, although
the incidence of cancer P (hni)N rises linearly (solid) with the dose hni of
radiation if a single hit, N = 1, can cause a cell to become cancerous, it
rises more slowly if the threshold for cancer is N = 2 (dot dash), 3 (dashes),
or 4 (dots). Most mutations are harmless. The mean number N of harmful
mutations that occur before a cell becomes cancerous is about 4, but N
varies with the a↵ected organ from 1 to 10 (Martincorena et al., 2017).

Rates of cancer

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Figure 15.3 The incidence of cancer P (hni)N rises linearly (solid) with the
dose or mean number hni of times a cell is struck by ionizing radiation if
a single hit, N = 1 (solid), can cause a cell to become cancerous. It rises
more slowly if the threshold for cancer is N = 2 (dot dash), 3 (dashes), or
4 (dots) hits.
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15.6 Gauss’s distribution

Gauss considered the binomial distribution in the limits n ! 1 and N ! 1
with the probability p fixed. In this limit, all three factorials are huge, and
we may apply Stirling’s formula to each of them

Pb(n, p,N) =
N !

n! (N � n)!
pn qN�n

⇡

s
N

2⇡n(N � n)

✓
N

e

◆N ⇣ e
n

⌘n✓ e

N � n

◆N�n

pn qN�n

=

s
N

2⇡n(N � n)

✓
pN

n

◆n ✓ qN

N � n

◆N�n

. (15.73)

This probability Pb(n, p,N) is tiny unless n is near pN which means that
n ⇡ pN and N �n ⇡ (1� p)N = qN are comparable. So we set y = n� pN
and treat y/N as small. Since n = pN +y and N �n = (1�p)N +pN �n =
qN � y, we can write the square root as

s
N

2⇡ n (N � n)
=

1p
2⇡N [(pN + y)/N ] [(qN � y)/N ]

=
1p

2⇡ pqN (1 + y/pN) (1� y/qN)
. (15.74)

Because y remains finite as N ! 1, the limit of the square root is

lim
N!1

s
N

2⇡ n (N � n)
=

1p
2⇡ pqN

. (15.75)

Substituting pN + y for n and qN � y for N � n in (15.73), we find

Pb(n, p,N) ⇡ 1p
2⇡ pqN

✓
pN

pN + y

◆pN+y ✓ qN

qN � y

◆qN�y

=
1p

2⇡ pqN

✓
1 +

y

pN

◆�(pN+y) ✓
1� y

qN

◆�(qN�y)

(15.76)

which implies

log
h
Pb(n, p,N)

p
2⇡ pqN

i
⇡ �(pN+y) log


1 +

y

pN

�
�(qN�y) log


1� y

qN

�
.

(15.77)
The first two terms of the power series (5.101) for log(1 + ✏) are

log(1 + ✏) ⇡ ✏� 1

2
✏2. (15.78)
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So applying this expansion to the two logarithms and using the relation
1/p+ 1/q = (p+ q)/pq = 1/pq, we get

log
⇣
Pb(n, p,N)

p
2⇡ pqN

⌘
⇡ �(pN + y)

"
y

pN
� 1

2

✓
y

pN

◆2
#

(15.79)

� (qN � y)

"
� y

qN
� 1

2

✓
y

qN

◆2
#
⇡ � y2

2pqN
.

Remembering that y = n� pN , we get Gauss’s approximation to the bino-
mial probability distribution

PbG(n, p,N) =
1p

2⇡pqN
exp

✓
�(n� pN)2

2pqN

◆
. (15.80)

This probability distribution is normalized
1X

n=0

1p
2⇡pqN

exp

✓
�(n� pN)2

2pqN

◆
= 1 (15.81)

almost exactly for pN > 100.
Extending the integer n to a continuous variable x, we have

PG(x, p,N) =
1p

2⇡pqN
exp

✓
�(x� pN)2

2pqN

◆
(15.82)

which on the real line (�1,1) is (exercise 15.13) a normalized probability
distribution with mean hxi = µ = pN and variance h(x� µ)2i = �2 = pqN .
Replacing pN by µ and pqN by �2, we get the Standard form of Gauss’s
distribution

PG(x, µ,�) =
1

�
p
2⇡

exp

✓
�(x� µ)2

2�2

◆
. (15.83)

This distribution occurs so often in mathematics and in nature that it is
often called the normal distribution. Its odd central moments all vanish
⌫2n+1 = 0, and its even ones are ⌫2n = (2n� 1)!!�2n (exercise 15.15).

Example 15.14 (Acccuracy of Gauss’s distribution) If p = 0.1 and N =
104, then Gauss’s approximation to the probability that n = 103 is 1/(30

p
2⇡).

The exact binomial probability (15.62) is Pb(103, 0.1, 104) = 0.013297, and
Gauss’s estimate is PG(103, 0.1, 104) = 0.013298.

Example 15.15 (Single-molecule super-resolution microscopy) If the wave-
length of visible light were a nanometer, microscopes would yield much
sharper images. Each photon from a (single-molecule) fluorophore enter-
ing the lens of a microscope would follow ray optics and be focused within
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Super-resolution microscopy

Figure 15.4 Left: dSTORM image of actin filaments in a HeLa cell, courtesy
of Hanieh Mazloom Farsibaf and Keith Lidke, University of New Mexico.
Right: images of the nuclear-pore-complex protein (Nup98) in the 120 nm-
wide nuclear pores of a COS-7 cell, courtesy of Donghan Ma and Fang
Huang, Purdue University.

a tiny circle of about a nanometer on a detector. Instead, a photon arrives
not at x = (x1, x2) but at yi = (y1i, y2i) with gaussian probability

P (yi) =
1

2⇡�2
e�(yi�x)2/2�2

(15.84)

where � ⇡ 150 nm is about a quarter of a wavelength. What to do?
In the centroid method, one collects N ⇡ 500 points yi and finds the

point x that maximizes the joint probability of the N image points

P =
NY

i=1

P (yi) = dN
NY

i=1

e�(yi�x)2/(2�2) = dN exp

"
�

NX

i=1

(yi � x)2/(2�2)

#

(15.85)
where d = 1/2⇡�2 by solving for k = 1 and 2 the equations

@P

@xk
= 0 = P

@

@xk

"
�

NX

i=1

(yi � x)2/(2�2)

#
=

P

�2

NX

i=1

(yik � xk) . (15.86)

This maximum-likelihood estimate of the image point x is the average of
the observed points yi

x =
1

N

NX

i=1

yi. (15.87)
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This method is an improvement, but it is biased by auto-fluorescence and
out-of-focus fluorophores. Fang Huang and Keith Lidke use direct stochas-
tic optical reconstruction microscopy (dSTORM) to locate the image
point x of the fluorophore in ways that account for the finite accuracy of
their pixilated detector and the randomness of photo-detection (Smith et al.,
2010; Huang et al., 2011).
Actin filaments are double helices of the protein actin some 5–9 nm wide.

They occur throughout a eukaryotic cell but are concentrated near its surface
and determine its shape. Together with tubulin and intermediate filaments,
they form a cell’s cytoskeleton. The double membrane of a cell’s nucleus
is studded with 1000 nuclear pore complexes each of which regulates and
facilitates the translocation of 1000 molecules per second. Figure 15.4 shows
dSTORM images of actin filaments in a HeLa cell (left) and of the nuclear-
pore-complex protein (Nup98) in the nuclear pores of a COS-7 cell (right).
The finite size of the fluorophore and the motion of the molecules of living
cells limit dSTORM’s improvement in resolution to a factor of 10 to 20.

15.7 The error function erf

The probability that a random variable x distributed according to Gauss’s
distribution (15.83) has a value between µ� � and µ+ � is

P (|x� µ| < �) =

Z µ+�

µ��
PG(x, µ,�) dx =

1

�
p
2⇡

Z µ+�

µ��
exp

✓
� (x� µ)2

2�2

◆
dx

=
1

�
p
2⇡

Z �

��
exp

✓
� x2

2�2

◆
dx =

2p
⇡

Z �/�
p
2

0
e�t2 dt. (15.88)

The last integral is the error function

erf (x) =
2p
⇡

Z x

0
e�t2dt. (15.89)

The probability that x lies within � of the mean µ is

P (|x� µ| < �) = erf

✓
�

�
p
2

◆
. (15.90)

In particular, the probabilities that x falls within one, two, or three standard
deviations of µ are

P (|x� µ| < �) = erf (1/
p
2) = 0.6827

P (|x� µ| < 2�) = erf (2/
p
2) = 0.9545

P (|x� µ| < 3�) = erf (3/
p
2) = 0.9973. (15.91)
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Error function
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Figure 15.5 The error function erf (x) is plotted for 0 < x < 2.5. The
vertical lines are at x = ±�/(�

p
2) for � = �, 2�, and 3� with � = 1/

p
2.

The error function erf (x) is plotted in Fig. 15.5 in which the vertical lines
are at x = �/(�

p
2) for � = �, 2�, and 3�.

The probability that x falls between a and b is (exercise 15.16)

P (a < x < b) =
1

2


erf

✓
b� µ

�
p
2

◆
� erf

✓
a� µ

�
p
2

◆�
. (15.92)

In particular, the cumulative probability P (�1, x) that the random variable
is less than x is for µ = 0 and � = 1

P (�1, x) =
1

2


erf

✓
xp
2

◆
� erf

✓
�1p

2

◆�
=

1

2


erf

✓
xp
2

◆
+ 1

�
. (15.93)

The complement erfc of the error function is defined as

erfc (x) =
2p
⇡

Z 1

x
e�t2dt = 1� erf (x) (15.94)

and is numerically useful for large x where round-o↵ errors may occur in
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subtracting erf(x) from unity. Both erf and erfc are intrinsic functions in
Fortran available without any e↵ort on the part of the programmer.

Example 15.16 (Summing Binomial Probabilities) To add up several bi-
nomial probabilities when the factorials in Pb(n, p,N) are too big to handle,
we first use Gauss’s approximation (15.80)

Pb(n, p,N) =
N !

n! (N � n)!
pn qN�n ⇡ 1p

2⇡pqN
exp

✓
�(n� pN)2

2pqN

◆
.

(15.95)
Then using (15.92) with µ = pN , we find (exercise 15.14)

Pb(n, p,N) ⇡ 1

2

"
erf

 
n+ 1

2 � pN
p
2pqN

!
� erf

 
n� 1

2 � pN
p
2pqN

!#
(15.96)

which we can sum over the integer n to get

n2X

n=n1

Pb(n, p,N) ⇡ 1

2

"
erf

 
n2 +

1
2 � pN

p
2pqN

!
� erf

 
n1 � 1

2 � pN
p
2pqN

!#

(15.97)
which is easy to evaluate.

Example 15.17 (Polls) Suppose in a poll of 1000 likely voters, 600 have
said they would vote for Nancy Pelosi. Repeating the analysis of exam-
ple 15.4, we see that if the probability that a random voter will vote for her
is y, then the probability that 600 in our sample of 1000 will is by (15.95)

P (600|y) = Pb(600, y) =

✓
1000

600

◆
y600 (1� y)400

⇡ 1

10
p

20⇡y(1� y)
exp

✓
� 20(3� 5y)2

y(1� y)

◆
. (15.98)

So if we conservatively assume that the unknown probability density P (y)
that a random voter will vote for her is an unknown constant which cancels,
then the probability density that a random voter will vote for her, given
that 600 have, is

P (y|600) = P (600|y)P (y)
R 1
0 P (600, y0)P (y0) dy0

=
P (600|y)

R 1
0 P (600, y0) dy0

=
[y(1� y)]�1/2 exp

⇣
� 20(3�5y)2

y(1�y)

⌘

R 1
0 [y

0(1� y0)]�1/2 exp
⇣
� 20(3�5y0)2

y0(1�y0)

⌘
dy0

. (15.99)
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So we estimate the probability that y > 0.5 as the ratio of the integrals

P (y > 0.5) ⇡

R 1
1/2[y(1� y)]�1/2 exp

⇣
� 20(3�5y)2

y(1�y)

⌘
dy

R 1
0 [y(1� y)]�1/2 exp

⇣
� 20(3�5y)2

y(1�y)

⌘
dy

. (15.100)

The Mathematica script ratio.nb gives P (y > 1/2) ⇡ 0.999999999873.

The normalized probability distribution (15.100) is negligible except for
y near 3/5 (exercise 15.17), where it is approximately Gauss’s distribution

P (y|600) ⇡ 1

�
p
2⇡

exp

✓
�(y � 3/5)2

2�2

◆
(15.101)

with mean µ = 3/5 and variance �2 = 3/12500 = 2.4⇥10�4. The probability
that y > 1/2 then is by (15.92) approximately

P (y > 1/2) ⇡ 1

2


erf

✓
1� µ

�
p
2

◆
� erf

✓
1/2� µ

�
p
2

◆�

= 0.999999999946.

(15.102)

15.8 Error analysis

The mean value f̄ = hfi of a smooth function f(x) of a random variable x
is

f̄ =

Z
f(x)P (x) dx

⇡
Z 

f(µ) + (x� µ)f 0(µ) +
1

2
(x� µ)2f 00(µ)

�
P (x) dx

= f(µ) +
1

2
�2f 00(µ)

(15.103)
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as long as the higher central moments ⌫n and the higher derivatives f (n)(µ)
are small. The mean value of f2 then is

hf2i =
Z

f2(x)P (x) dx

⇡
Z 

f(µ) + (x� µ)f 0(µ) +
1

2
(x� µ)2f 00(µ)

�2
P (x) dx

⇡
Z ⇥

f2(µ) + (x� µ)2f 0 2(µ) + (x� µ)2f(µ)f 00(µ)
⇤
P (x) dx

= f2(µ) + �2 f 0 2(µ) + �2 f(µ) f 00(µ). (15.104)

Subtraction of f̄2 gives the variance of the variable f(x)

�2f = h
�
f � f̄

�2i = hf2i � f̄ 2 ⇡ �2 f 0 2(µ). (15.105)

A similar formula gives the variance of a smooth function f(x1, . . . , xn)
of several independent variables x1, . . . , xn as

�2f = h
�
f � f̄

�2i = hf2i � f̄ 2 ⇡
nX

i=1

�2i

✓
@f(x)

@xi

◆2
�����
x=x̄

(15.106)

in which x̄ is the vector (µ1, . . . , µn) of mean values, and �2i = h(xi � µi)2i
is the variance of xi.
This formula (15.106) implies that the variance of a sum f(x, y) = c x+d y

is

�2cx+dy = c2�2x + d2�2y . (15.107)

Similarly, the variance formula (15.106) gives as the variance of a product
f(x, y) = x y

�2xy = �2xµ
2
y + �2yµ

2
x = µ2

xµ
2
y

 
�2x
µ2
x
+
�2y
µ2
y

!
(15.108)

and as the variance of a ratio f(x, y) = x/y

�2x/y =
�2x
µ2
y
+ �2y

µ2
x

µ4
y
=

µ2
x

µ2
y

 
�2x
µ2
x
+
�2y
µ2
y

!
. (15.109)

The variance of a power f(x) = xa follows from the variance (15.105) of a
function of a single variable

�2xa = �2x
�
aµa�1

x

�2
. (15.110)

In general, the standard deviation � is the square root of the variance �2.
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Example 15.18 (Photon density) The 2009 COBE/FIRAS measurement
of the temperature of the cosmic microwave background (CMB) radiation
is T0 = 2.7255± 0.0006 K. The mass density (5.110) of these photons is

⇢� = �
8⇡5 (kBT0)

4

15h3c5
= 4.6451⇥ 10�31 kg m�3. (15.111)

Our formula (15.110) for the variance of a power says that the standard
deviation �⇢ of the photon density is its temperature derivative times the
standard deviation �T of the temperature

�⇢ = ⇢�
4�T
T0

= 0.00088 ⇢� . (15.112)

So the probability that the photon mass density lies within the range

⇢� = (4.6451± 0.0041)⇥ 10�31 kg m�3 (15.113)

is 0.68.

15.9 Maxwell-Boltzmann distribution

It is a small jump from Gauss’s distribution (15.83) to the Maxwell-Boltzmann
distribution of velocities of molecules in a gas. We start in one dimension
and focus on a single molecule that is being knocked forward and backward
with equal probabilities by other molecules. If each tiny hit increases or de-
creases its speed by dv, then after n hits from behind and N � n hits from
in front, the speed vx of a molecule initially at rest would be

vx = ndv � (N � n)dv = (2n�N)dv. (15.114)

The probability of this speed is given by Gauss’s approximation (15.80) to
the binomial distribution Pb(n,

1
2 , N) as

PbG(n,
1
2 , N) =

r
2

⇡N
exp

✓
�(2n�N)2

2N

◆
=

r
2

⇡N
exp

✓
� v2x
2Ndv2

◆
.

(15.115)

In this formula, the productNdv2 is the variance �2vx which is the mean value
hv2xi because hvxi = 0. Kinetic theory says that this variance �2vx = hv2xi
is hv2xi = kT/m in which m is the mass of the molecule, k Boltzmann’s
constant, and T the temperature. So the probability of the molecule’s having



656 Probability and Statistics

velocity vx is the Maxwell-Boltzmann distribution

PG(vx) =
1

�v
p
2⇡

exp

✓
� v2x
2�2v

◆
=

r
m

2⇡kT
exp

✓
�mv2x
2kT

◆
(15.116)

when normalized over the line �1 < vx < 1.
In three space dimensions, the Maxwell-Boltzmann distribution PMB(v)

is the product

PMB(v)d
3v = PG(vx)PG(vy)PG(vz)d

3v =
⇣ m

2⇡kT

⌘3/2
e�

1
2mv2/(kT )4⇡v2dv.

(15.117)
The mean value of the velocity of a Maxwell-Boltzmann gas vanishes

hvi =
Z

v PMB(v)d
3v = 0 (15.118)

but the mean value of the square of the velocity v
2 = v · v is the sum of the

three variances �2x = �2y = �2z = kT/m

hv2i = V [v2] =

Z
v
2 PMB(v) d

3v = 3kT/m (15.119)

which is the familiar statement

1

2
mhv2i = 3

2
kT (15.120)

that each degree of freedom gets kT/2 of energy.

15.10 Fermi-Dirac and Bose-Einstein distributions

The commutation and anticommutation relations (11.143)

 s(t,x) s0(t,x
0)� (�1)2j s0(t,x

0) s(t,x) = 0 (15.121)

of Bose fields (�1)2j = 1 and of Fermi fields (�1)2j = �1 determine the
statistics of bosons and fermions.
One can put any number Nn of noninteracting bosons, such as photons or

gravitons, into any state |ni of energy En. The energy of that state is NnEn,
and the states |n,Nni form an independent thermodynamical system for
each state |ni. The grand canonical ensemble (1.425) gives the probability
of the state |n,Nni as

⇢n,Nn = hn,Nn|⇢|n,Nni =
e��(En�µ)Nn

P
Nn

hn,Nn|⇢|n,Nni
. (15.122)
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For each state |ni, the partition function is a geometric sum

Z(�, µ, n) =
1X

Nn=0

e��(En�µ)Nn =
1X

Nn=0

⇣
e��(En�µ)

⌘Nn

=
1

1� e��(En�µ)
.

(15.123)
So the probability of the state |n,Nni is

⇢n,Nn =
e��(En�µ)Nn

1� e��(En�µ)
, (15.124)

and the mean number of bosons in the state |ni is

hNni =
1

�

@

@µ
logZ(�, µ, n) =

1

e�(En�µ) � 1
. (15.125)

One can put at most one fermion into a given state |ni. If like neutrinos the
fermions don’t interact, then the states |n, 0i and |n, 1i form an independent
thermodynamical system for each state |ni. So for noninteracting fermions,
the partition function is the sum of only two terms

Z(�, µ, n) =
1X

Nn=0

e��(En�µ)Nn = 1 + e��(En�µ), (15.126)

and the probability of the state |n,Nni is

⇢n,Nn =
e��(En�µ)Nn

1 + e��(En�µ)
. (15.127)

So the mean number of fermions in the state |ni is

hNni = =
1

e�(En�µ) + 1
. (15.128)

15.11 Di↵usion

We may apply the same reasoning as in the preceding section (15.9) to the
di↵usion of a gas of particles treated as a random walk with step size dx. In
one dimension, after n steps forward and N � n steps backward, a particle
starting at x = 0 is at x = (2n�N)dx. Thus as in (15.115), the probability
of being at x is given by Gauss’s approximation (15.80) to the binomial
distribution Pb(n,

1
2 , N) as

PbG(n,
1
2 , N) =

r
2

⇡N
exp

✓
�(2n�N)2

2N

◆
=

r
2

⇡N
exp

✓
� x2

2Ndx2

◆
.

(15.129)
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In terms of the di↵usion constant

D =
Ndx2

2t
(15.130)

this distribution is

PG(x) =

✓
1

4⇡Dt

◆1/2

exp

✓
� x2

4Dt

◆
(15.131)

when normalized to unity on (�1,1).
In three dimensions, this gaussian distribution is the product

P (r, t) = PG(x)PG(y)PG(z) =

✓
1

4⇡Dt

◆3/2

exp

✓
� r

2

4Dt

◆
. (15.132)

The variance �2 = 2Dt gives the average of the squared displacement of
each of the three coordinates. Thus the mean of the squared displacement
hr2i rises linearly with the time as

hr2i = V [r] = 3�2 =

Z
r
2 P (r, t) d3r = 6D t. (15.133)

The distribution P (r, t) satisfies the di↵usion equation

Ṗ (r, t) = Dr2P (r, t) (15.134)

in which the dot means time derivative.

15.12 Langevin’s theory of brownian motion

Einstein made the first theory of brownian motion in 1905, but Langevin’s
approach (Langevin, 1908) is simpler. A tiny particle of colloidal size and
mass m in a fluid is bu↵eted by a force F (t) due to the 1021 collisions per
second it su↵ers with the molecules of the surrounding fluid. Its equation of
motion is

m
dv(t)

dt
= F (t). (15.135)

Langevin suggested that the force F (t) is the sum of a viscous drag �v(t)/B
and a rapidly fluctuating part f(t)

F (t) = � v(t)/B + f(t) (15.136)

so that

m
dv(t)

dt
= � v(t)

B
+ f(t). (15.137)



15.12 Langevin’s theory of brownian motion 659

The parameter B = ⌧/m is called the mobility. The ensemble average
(the average over all the particles) of the fluctuating force f(t) is zero

hf(t)i = 0. (15.138)

Thus the ensemble average of the velocity satisfies

m
dhvi
dt

= � hvi
B

⌘ �mhvi
⌧

(15.139)

whose solution is

hv(t)i = hv(0)i e�t/⌧ . (15.140)

The instantaneous equation (15.137) divided by the mass m is

dv(t)

dt
= � v(t)

⌧
+ a(t) (15.141)

in which a(t) = f(t)/m is the acceleration. The ensemble average of the
scalar product of the position vector r with this equation is

⌧
r · dv

dt

�
= � hr · vi

⌧
+ hr · ai. (15.142)

But since the ensemble average hr · ai of the scalar product of the position
vector r with the random, fluctuating part a of the acceleration vanishes,
we have ⌧

r · dv
dt

�
= � hr · vi

⌧
. (15.143)

Now

1

2

d r2

dt
=

1

2

d

dt
(r · r) = r · v (15.144)

and so

1

2

d2r2

dt2
= r · dv

dt
+ v

2. (15.145)

The ensemble average of this equation is

d2hr2i
dt2

= 2

⌧
r · dv

dt

�
+ 2hv2i (15.146)

or in view of (15.143)

d2hr2i
dt2

= �2
hr · vi
⌧

+ 2hv2i. (15.147)
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We now use (15.144) to replace hr · vi with half the first time derivative of
hr2i so that we have

d2hr2i
dt2

= �1

⌧

dhr2i
dt

+ 2hv2i. (15.148)

If the fluid is in equilibrium, then the ensemble average of v2 is given by the
Maxwell-Boltzmann value (15.120)

hv2i = 3kT

m
(15.149)

and so the acceleration (15.148) of hr2i is

d2hr2i
dt2

+
1

⌧

dhr2i
dt

=
6kT

m
(15.150)

which we can integrate.
The general solution (7.12) to a second-order linear inhomogeneous dif-

ferential equation is the sum of any particular solution to the inhomo-
geneous equation plus the general solution of the homogeneous equation.
The function hr2(t)ipi = 6kT t⌧/m is a particular solution of the inho-
mogeneous equation. The general solution to the homogeneous equation is
hr2(t)igh = U +W exp(�t/⌧) where U and W are constants. So hr2(t)i is

hr2(t)i = U +W e�t/⌧ + 6kT ⌧ t/m (15.151)

where U and W make hr2(t)i fit the boundary conditions. If the individual
particles start out at the origin r = 0, then one boundary condition is

hr2(0)i = 0 (15.152)

which implies that

U +W = 0. (15.153)

And since the particles start out at r = 0 with an isotropic distribution of
initial velocities, the formula (15.144) for ṙ2 implies that at t = 0

d hr2i
dt

����
t=0

= 2hr(0) · v(0)i = 0. (15.154)

This boundary condition means that our solution (15.151) must satisfy

d hr2(t)i
dt

����
t=0

= � W

⌧
+

6kT ⌧

m
= 0. (15.155)

Thus W = �U = 6kT ⌧2/m, and so our solution (15.151) is

hr2(t)i = 6kT ⌧2

m


t

⌧
+ e�t/⌧ � 1

�
. (15.156)
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At times short compared to ⌧ , the first two terms in the power series for
the exponential exp(�t/⌧) cancel the terms �1 + t/⌧ , leaving

hr2(t)i = 6kT ⌧2

m


t2

2⌧2

�
=

3kT

m
t2 = hv2i t2. (15.157)

But at times long compared to ⌧ , the exponential vanishes, leaving

hr2(t)i = 6kT ⌧

m
t = 6B kT t. (15.158)

The di↵usion constant D is defined by

hr2(t)i = 6D t (15.159)

and so we arrive at Einstein’s relation

D = B kT or ⇣D = kT (15.160)

in which ⇣ = 1/B is the viscous-friction coe�cient. For a fluid or gas of
viscosity ⌘, Stokes’s formula for ⇣ is

⇣ ⌘ 1

B
=

m

⌧
= 6⇡⌘r. (15.161)

These equations (15.160 and 15.161) express Boltzmann’s constant k in
terms of three quantities ⇣, D, and T that were accessible to measurement
in the first decade of the 20th century. They enabled scientists to measure
Boltzmann’s constant k for the first time. And since Avogadro’s number NA

was the known gas constant R divided by k, the number of molecules in a
mole was revealed to be NA = 6.022⇥ 1023. Chemists could then divide the
mass of a mole of any pure substance by 6.022 ⇥ 1023 and find the mass
of the molecules that composed it. Suddenly the masses of the molecules of
chemistry became known, and molecules were recognized as real particles
and not tricks for balancing chemical equations.

15.13 Einstein-Nernst relation

If a particle of mass m carries an electric charge q and is exposed to an
electric field E, then in addition to viscosity � v/B and random bu↵eting
f , the constant force qE acts on it

m
dv

dt
= � v

B
+ qE + f . (15.162)
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The mean value of its velocity satisfies the di↵erential equation
⌧
dv

dt

�
= �hvi

⌧
+

qE

m
(15.163)

where ⌧ = mB. A particular solution of this inhomogeneous equation is

hv(t)ipi =
q⌧E

m
= qBE. (15.164)

The general solution of its homogeneous version is hv(t)igh = A exp(�t/⌧)
in which the constant A is chosen to give hv(0)i at t = 0. So by (7.12), the
general solution hv(t)i to equation (15.163) is (exercise 15.18) the sum of
hv(t)ipi and hv(t)igh

hv(t)i = qBE + [hv(0)i � qBE] e�t/⌧ . (15.165)

By applying the tricks of the previous section (15.12), one may show
(exercise 15.19) that the variance of the position r about its mean hr(t)i is

D
(r � hr(t)i)2

E
=

6kT ⌧2

m

✓
t

⌧
� 1 + e�t/⌧

◆
(15.166)

where for hr(0)i = 0

hr(t)i = (q⌧2E/m)
⇣
t/⌧ � 1 + e�t/⌧

⌘
+ ⌧

⇣
1� e�t/⌧

⌘
hv(0)i. (15.167)

For times t � ⌧ , the variance (15.166) is
D
(r � hr(t)i)2

E
=

6kT ⌧ t

m
. (15.168)

Since the di↵usion constant D is defined by (15.159) as
D
(r � hr(t)i)2

E
= 6D t (15.169)

we arrive at the Einstein-Nernst relation

D =
kT ⌧

m
= kTB =

µ

q
kT (15.170)

in which the electric mobility is µ = qB.

Example 15.19 (Coronavirus in air) How long does it take for an aerosol
particle of radius r = 0.1µm containing SARS-CoV-2 to fall 2 m in the
local gravitational field �gẑ? In the distance formula (15.167), we replace
qE with �mgẑ and get hr(t)i ⇡ �g⌧ tẑ+ ⌧hv(0)i for t � ⌧ . The parameter
⌧ is given by Stokes’s formula (15.161) as ⌧ = m/(6⇡⌘r) for a gas or a fluid
of viscosity ⌘. So the time for the aerosol particle to fall a distance d is
t = 6⇡⌘rd/(gm) or t = 9⌘d/(2g⇢r2) in which ⇢ is the density of the aerosol.
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Time for an aerosol of radius r to fall 2 m in air
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Figure 15.6 The time (15.171) for an aerosol of radius r to fall 2 m is
plotted against the radius r in microns. Most airborne infections are spread
by aerosols of radius 0.1 < r < 1 micron.

The Cunningham slip correction C slightly changes the time to fall a
distance d to

t =
9⌘d

2g⇢r2C
(15.171)

in which (Hinds, 1999; Pöhlker et al., 2021)

C = 1 +
�

r

⇣
1.17 + 0.525 e�0.78 r/�

⌘
(15.172)

and � = 68 nm is the mean free path of air.
At T = 25 C, the viscosity of air is ⌘ = 1.849⇥10�5 kg/(m s). If the density

of the aerosol particle is that of water, then the time (15.171) for it to fall
2 m varies inversely with the square of its radius and for 0.1 < r < 1µm
is as plotted in Fig. 15.6. The time to fall 2m is 1.69 ⇥ 106 s or 19.5 days.
For r = 1µm, the time to fall 2m is 4.7 hours. SARS-CoV-2 spreads mainly
via aerosol particles of 0.05 < r < 5µm with peak transmission carried by
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those with 0.1 < r < 1 micron. Thus Covid is airborne (Wang et al., 2021;
Pöhlker et al., 2021; Hawks et al., 2021).
The radius � of the falling ball into which the aerosol di↵uses is ap-

proximately the square-root of the variance (15.168), and so is only � =
2.06⇥ 10�4m for r = 1µm and � = 6.52⇥ 10�4 m for r = 0.1µm.
The transverse distance ⌧hv(0)i is negligible because the time ⌧ is less

than 3ms for r < 5µm. So even for coughs with hv(0)i = 10 m/s, the
distance ⌧hv(0)i is less than 3 cm, although the air flow of a cough can blow
aerosols farther.

15.14 Fluctuation and dissipation

Let’s look again at Langevin’s equation (15.141)

dv(t)

dt
+

v(t)

⌧
= a(t). (15.173)

If we multiply both sides by the exponential exp(t/⌧)
✓
dv

dt
+

v

⌧

◆
et/⌧ =

d

dt

⇣
v et/⌧

⌘
= a(t) et/⌧ (15.174)

and integrate from 0 to t
Z t

0

d

dt0

⇣
v et

0/⌧
⌘
dt0 = v(t) et/⌧ � v(0) =

Z t

0
a(t0) et

0/⌧ dt0 (15.175)

then we get

v(t) = e�t/⌧
v(0) + e�t/⌧

Z t

0
a(t0) et

0/⌧ dt0. (15.176)

Thus the ensemble average of the square of the velocity is

hv2(t)i = e�2t/⌧ hv2(0)i+ 2e�2t/⌧
Z t

0
hv(0) · a(t0)i et0/⌧ dt0 (15.177)

+e�2t/⌧
Z t

0

Z t

0
ha(u1) · a(t2)i e(u1+t2)/⌧ du1dt2.

The second term on the RHS is zero, so we have

hv2(t)i = e�2t/⌧ hv2(0)i+ e�2t/⌧
Z t

0

Z t

0
ha(t1) · a(t2)i e(t1+t2)/⌧ dt1dt2.

(15.178)
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The ensemble average

C(t1, t2) = ha(t1) · a(t2)i (15.179)

is an example of an autocorrelation function.
All autocorrelation functions have some simple properties, which are easy

to prove (Pathria, 1972, p. 458):

1. If the system is independent of time, then its autocorrelation function for
any given variable A(t) depends only upon the time delay s:

C(t, t+ s) = hA(t) ·A(t+ s)i ⌘ C(s). (15.180)

2. The autocorrelation function for s = 0 is necessarily nonnegative

C(t, t) = hA(t) ·A(t)i = hA(t)2i � 0. (15.181)

If the system is time independent, then C(t, t) = C(0) � 0.

3. The absolute value of C(t1, t2) is never greater than the average of C(t1, t1)
and C(t2, t2) because

h|A(t1)±A(t2)|2i = hA(t1)
2i+ hA(t2)

2i±2hA(t1) ·A(t2)i � 0 (15.182)

which implies that �2C(t1, t2)  C(t1, t1) + C(t2, t2) � 2C(t1, t2) or

2 |C(t1, t2)|  C(t1, t1) + C(t2, t2). (15.183)

For a time-independent system, this inequality is |C(s)|  C(0) for every
time delay s.

4. If the variables A(t1) and A(t2) commute, then their autocorrelation
function is symmetric

C(t1, t2) = hA(t1) ·A(t2)i = hA(t2) ·A(t1)i = C(t2, t1). (15.184)

For a time-independent system, this symmetry is C(s) = C(�s).

5. If the variable A(t) is randomly fluctuating with zero mean, then we
expect both that its ensemble average vanishes

hA(t)i = 0 (15.185)

and that there is some characteristic time scale T beyond which the
correlation function falls to zero:

hA(t1) ·A(t2)i ! hA(t1)i · hA(t2)i = 0 (15.186)

when |t1 � t2| � T .
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In terms of the autocorrelation function C(t1, t2) = ha(t1) · a(t2)i of the
acceleration, the variance of the velocity (15.178) is

hv2(t)i = e�2t/⌧ hv2(0)i+ e�2t/⌧
Z t

0

Z t

0
C(t1, t2) e

(t1+t2)/⌧ dt1dt2. (15.187)

Since C(t1, t2) is big only for tiny values of |t2� t1|, it makes sense to change
variables to

s = t2 � t1 and w =
1

2
(t1 + t2). (15.188)

The element of area then is by (14.6–14.14)

dt1 ^ dt2 = dw ^ ds (15.189)

and the limits of integration are �2w  s  2w for 0  w  t/2 and
�2(t� w)  s  2(t� w) for t/2  w  t. So hv2(t)i is

hv2(t)i = e�2t/⌧ hv2(0)i+ e�2t/⌧
Z t/2

0
e2w/⌧dw

Z 2w

�2w
C(s) ds

+ e�2t/⌧
Z t

t/2
e2w/⌧dw

Z 2(t�w)

�2(t�w)
C(s) ds. (15.190)

Since by (15.186) the autocorrelation function C(s) vanishes outside a nar-
row window of width 2T , we may approximate each of the s-integrals by

C =

Z 1

�1
C(s) ds. (15.191)

It follows then that

hv2(t)i = e�2t/⌧ hv2(0)i+ C e�2t/⌧
Z t

0
e2w/⌧dw

= e�2t/⌧ hv2(0)i+ C e�2t/⌧ ⌧

2

⇣
e2t/⌧ � 1

⌘

= e�2t/⌧ hv2(0)i+ C
⌧

2

⇣
1� e�2t/⌧

⌘
. (15.192)

As t ! 1, hv2(t)i must approach its equilibrium value of 3kT/m, and so

lim
t!1

hv2(t)i = C
⌧

2
=

3kT

m
(15.193)

which implies that

C =
6kT

m⌧
or

1

B
=

m2C

6kT
. (15.194)
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Our final formula for hv2(t)i then is

hv2(t)i = e�2t/⌧ hv2(0)i+ 3kT

m

⇣
1� e�2t/⌧

⌘
. (15.195)

Referring back to the definition (15.161) of the viscous-friction coe�cient
fv = 1/B, we see that fv is related to the integral

fv =
1

B
=

m2

6kT
C =

m2

6kT

Z 1

�1
ha(0) · a(s)ids = 1

6kT

Z 1

�1
hf(0) · f(s)ids

(15.196)
of the autocorrelation function of the random acceleration a(t) or equiva-
lently of the random force f(t). This equation relates the dissipation of vis-
cous friction to the random fluctuations. It is an example of a fluctuation-
dissipation theorem.
If we substitute our formula (15.195) for hv2(t)i into the expression (15.148)

for the acceleration of hr2i, then we get

d2hr2(t)i
dt2

= �1

⌧

dhr2(t)i
dt

+ 2e�2t/⌧ hv2(0)i+ 6kT

m

⇣
1� e�2t/⌧

⌘
. (15.197)

The solution with both hr2(0)i = 0 and dhr2(0)i/dt = 0 is (exercise 15.20)

hr2(t)i = hv2(0)i ⌧2
⇣
1� e�t/⌧

⌘2
� 3kT

m
⌧2
⇣
1� e�t/⌧

⌘⇣
3� e�t/⌧

⌘
+
6kT ⌧

m
t.

(15.198)

15.15 Fokker-Planck equation

Let P (v, t) be the probability distribution of particles in velocity space at
time t, and  (v;u) be a normalized transition probability that the velocity
changes from v to v+u in the time interval [t, t+�t]. We take the interval�t
to be much longer than the interval between successive particle collisions but
much shorter than the time over which the velocity v changes appreciably.
So |u| ⌧ |v|. We also assume that the successive changes in the velocities
of the particles is a Marko↵ stochastic process, that is, that the changes
are random and that what happens at time t depends only upon the state
of the system at time t and not upon the history of the system. We then
expect that the velocity distribution at time t+�t is related to that at time
t by

P (v, t+�t) =

Z
P (v � u, t) (v � u;u) d3u. (15.199)
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Since |u| ⌧ |v|, we can expand P (v, t+�t), P (v � u, t), and  (v � u;u)
in Taylor series in u like

 (v � u;u) =  (v;u)� u ·rv (v;u) +
1

2

X

i,j

uiuj
@2 (v;u)

@vi@vj
(15.200)

and get

P (v, t)+�t
@P (v, t)

@t
=

Z 
P (v, t)� u ·rvP (v, t) +

1

2

X

i,j

uiuj
@2P (v, t)

@vi@vj

�

⇥

 (v;u)� u ·rv (v;u) +

1

2

X

i,j

uiuj
@2 (v;u)

@vi@vj

�
d3u.

(15.201)

The normalization of the transition probability  and the average changes
in velocity are

1 =

Z
 (v;u) d3u

huii =
Z

ui  (v;u) d
3
u

huiuji =
Z

ui uj  (v;u) d
3
u

(15.202)

in which the dependence of the mean values huii and huiuji upon the velocity
v is implicit. In these terms, the expansion (15.201) is

�t
@P (v, t)

@t
= � hui ·rvP (v, t) +

1

2

X

i,j

huiuji
@2P (v, t)

@vi@vj

� P (v, t)rv · hui+ P (v, t)
1

2

X

i,j

@2huiuji
@vi@vj

+
X

i,j

@P (v, t)

@vi

@huiuji
@vj

.

(15.203)

Combining terms, we get the Fokker-Planck equation in its most general
form (Chandrasekhar, 1943)

�t
@P (v, t)

@t
= �rv [P (v, t) · hui] + 1

2

X

i,j

@2

@vi@vj
[P (v, t)huiuji] .

(15.204)

Example 15.20 (Brownian motion) Langevin’s equation (15.137) gives
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the change u in the velocity v as the viscous drag plus some 1021 random
tiny accelerations per second

u = � v�t

mB
+

f�t

m
(15.205)

in which B is the mobility of the colloidal particle. The random changes
f�t/m in velocity are gaussian, and the transition probability is

 (v;u) =

✓
�m2B

4⇡�t

◆3/2

exp

 
� �m2B

4�t

����u+
v�t

mB

����
2
!
. (15.206)

Here � = 1/kT , and Stokes’s formula for the mobility B of a spherical
colloidal particle of radius r in a fluid of viscosity ⌘ is 1/B = 6⇡r⌘. The
moments (15.202) of the changes u in velocity are in the limit �t ! 0

hui = � v�t

mB

hui uji = 2�ij
kT

m2B
�t.

(15.207)

So for Brownian motion, the Fokker-Planck equation is

@P (v, t)

@t
=

1

mB
rv [P (v, t) · v] + kT

m2B
r2

v P (v, t). (15.208)

15.16 Characteristic and moment-generating functions

The Fourier transform (4.9) of a probability distribution P (x) is its char-
acteristic function P̃ (k) sometimes written as �(k)

P̃ (k) ⌘ �(k) ⌘ E[eikx] =

Z
eikx P (x) dx. (15.209)

The probability distribution P (x) is the inverse Fourier transform (4.9)

P (x) =

Z
e�ikx P̃ (k)

dk

2⇡
=

Z
e�ikx �(k)

dk

2⇡
. (15.210)

Example 15.21 (Gauss) The characteristic function of the gaussian

PG(x, µ,�) =
1

�
p
2⇡

exp

✓
�(x� µ)2

2�2

◆
(15.211)
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is by (4.19)

P̃G(k, µ,�) =
1

�
p
2⇡

Z
exp

✓
ikx� (x� µ)2

2�2

◆
dx (15.212)

=
eikµ

�
p
2⇡

Z
exp

✓
ikx� x2

2�2

◆
dx = exp

✓
iµk � 1

2
�2k2

◆
.

For a discrete probability distribution Pn the characteristic function is

�(k) ⌘ E[eikn] =
X

n

eikn Pn. (15.213)

The normalization of both continuous and discrete probability distributions
implies that their characteristic functions satisfy P̃ (0) = �(0) = 1.

Example 15.22 (Binomial and Poisson) The characteristic function of
the binomial distribution (15.50)

Pb(n, p,N) =

✓
N

n

◆
pn (1� p)N�n (15.214)

is

�b(k) =
NX

n=0

eikn
✓
N

n

◆
pn(1� p)N�n =

NX

n=0

✓
N

n

◆
(peik)n(1� p)N�n

=
⇣
peik + 1� p

⌘N
=
h
p
⇣
eik � 1

⌘
+ 1
iN

.

(15.215)

The Poisson distribution (15.65)

PP (n, hni) =
hnin
n!

e�hni (15.216)

has the characteristic function

�P (k) =
1X

n=0

eikn
hnin
n!

e�hni = e�hni
1X

n=0

(hnieik)n
n!

= exp
h
hni
⇣
eik � 1

⌘i
.

(15.217)

The moment-generating function is the characteristic function evalu-
ated at an imaginary argument

M(k) ⌘ E[ekx] = P̃ (�ik) = �(�ik). (15.218)
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For a continuous probability distribution P (x), it is

M(k) = E[ekx] =

Z
ekx P (x) dx (15.219)

and for a discrete probability distribution Pn, it is

M(k) = E[ekx] =
X

n

ekxn Pn. (15.220)

In both cases, the normalization of the probability distribution implies that
M(0) = 1.
Derivatives of the moment-generating function and of the characteristic

function give the moments µn

E[xn] = µn =
dnM(k)

dkn

����
k=0

= (�i)n
dnP̃ (k)

dkn

�����
k=0

. (15.221)

Example 15.23 (Three moment-generating functions) The characteristic
functions of the binomial distribution (15.215) and those of the distribu-
tions of Poisson (15.217) and Gauss (15.211) give us the moment-generating
functions

Mb(k, p,N) =
h
p
⇣
ek � 1

⌘
+ 1
iN

, MP (k, hni) = exp
h
hni
⇣
ek � 1

⌘i
,

and MG(k, µ,�) = exp

✓
µk +

1

2
�2k2

◆
. (15.222)

Thus by (15.221), the first three moments of these three distributions are

µb0 =1, µb1 = Np, µb2 = N2p

µP0 =1, µP1 = hni, µP2 = hni+ hni2 (15.223)

µG0 =1, µG1 = µ, µG2 = µ2 + �2

(exercise 15.21).

Since the characteristic and moment-generating functions have derivatives
(15.221) proportional to the moments µn, their Taylor series are

P̃ (k) = E[eikx] =
1X

n=0

(ik)n

n!
E[xn] =

1X

n=0

(ik)n

n!
µn (15.224)

and

M(k) = E[ekx] =
1X

n=0

kn

n!
E[xn] =

1X

n=0

kn

n!
µn. (15.225)
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The cumulants cn of a probability distribution are the derivatives of the
logarithm of its moment-generating function at k = 0

cn =
dn logM(k)

dkn

����
k=0

= (�i)n
dn log P̃ (k)

dkn

�����
k=0

. (15.226)

One may show (exercise 15.23) that the first five cumulants of an arbitrary
probability distribution are

c0 = 0, c1 = µ, c2 = �2, c3 = ⌫3, and c4 = ⌫4 � 3�4 (15.227)

where the ⌫’s are its central moments (15.30). The 3d and 4th normalized
cumulants are the skewness v = c3/�3 = ⌫3/�3 and the kurtosis  =
c4/�4 = ⌫4/�4 � 3.

Example 15.24 (Gaussian Cumulants) The logarithm of the moment-
generating function (15.222) of Gauss’s distribution is µk + �2k2/2. Thus
by (15.226), PG(x, µ,�) has no skewness or kurtosis, its cumulants vanish
cGn = 0 for n > 2, and its fourth central moment is ⌫4 = 3�4.

15.17 Fat tails

The gaussian probability distribution PG(x, µ,�) falls o↵ for |x � µ| � �
very fast—as exp

�
� (x� µ)2/2�2

�
. Many other probability distributions

fall o↵ more slowly; they have fat tails. Rare “black-swan” events—wild
fluctuations, market bubbles, and crashes—lurk in their fat tails.
Gosset’s distribution, which is known as Student’s t-distribution

with ⌫ degrees of freedom

PS(x, ⌫, a) =
1p
⇡

�((1 + ⌫)/2)

�(⌫/2)

a⌫

(a2 + x2)(1+⌫)/2
(15.228)

has power-law tails. Its even moments are

µ2n = (2n� 1)!!
�(⌫/2� n)

�(⌫/2)

✓
a2

2

◆n

(15.229)

for 2n < ⌫ and infinite otherwise. For ⌫ = 1, it coincides with the Breit-
Wigner or Cauchy distribution

PS(x, 1, a) =
1

⇡

a

a2 + x2
(15.230)

in which x = E � E0 and a = �/2 is the half-width at half-maximum.
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Two representative cumulative probabilities are (Bouchaud and Potters,
2003, pp.15–16)

Pr(x,1) =

Z 1

x
PS(x

0, 3, 1) dx0 =
1

2
� 1

⇡


arctanx+

x

1 + x2

�
(15.231)

Pr(x,1) =

Z 1

x
PS(x

0, 4,
p
2) dx0 =

1

2
� 3

4
u+

1

4
u3 (15.232)

where u = x/
p
2 + x2 and a is picked so �2 = 1. William Gosset (1876–

1937), who worked for Guinness, wrote as Student because Guinness didn’t
let its employees publish.
The log-normal probability distribution on (0,1)

Pln(x) =
1

�x
p
2⇡

exp


� log2(x/x0)

2�2

�
(15.233)

describes distributions of rates of return (Bouchaud and Potters, 2003, p. 9).
Its moments are (exercise 15.26)

µn = xn0 e
n2�2/2. (15.234)

The exponential distribution on [0,1)

Pe(x) = ↵e�↵x (15.235)

has (exercise 15.27) mean µ = 1/↵ and variance �2 = 1/↵2. The sum of
n independent exponentially and identically distributed random variables
x = x1 + · · ·+ xn is distributed on [0,1) as (Feller, 1966, p.10)

Pn,e(x) = ↵
(↵x)n�1

(n� 1)!
e�↵x. (15.236)

The sum of the squares x2 = x21+ · · ·+x2n of n independent normally and
identically distributed random variables of zero mean and variance �2 gives
rise to Pearson’s chi-squared distribution on (0,1)

Pn,P (x,�)dx =

p
2

�

1

�(n/2)

✓
x

�
p
2

◆n�1

e�x2/(2�2)dx (15.237)

which for x = v, n = 3, and �2 = kT/m is (exercise 15.28) the Maxwell-
Boltzmann distribution (15.117). In terms of � = x/�, it is

Pn,P (�
2/2) d�2 =

1

�(n/2)

✓
�2

2

◆n/2�1

e��2/2d
�
�2/2

�
. (15.238)



674 Probability and Statistics

It has mean and variance

µ = n and �2 = 2n (15.239)

and is used in the chi-squared test (Pearson, 1900). The Porter-Thomas
distribution PPT (x) = e�x/2/

p
2⇡x and the exponential distribution Pe(x)

(15.235) are special cases of the class (15.237) of chi-squared distributions.
Personal income, the amplitudes of catastrophes, the price changes of fi-

nancial assets, and many other phenomena occur on both small and large
scales. Lévy distributions describe such multi-scale phenomena. The char-
acteristic function for a symmetric Lévy distribution is for ⌫  2

L̃⌫(k, a⌫) = exp (� a⌫ |k|⌫) . (15.240)

Its inverse Fourier transform (15.210) is for ⌫ = 1 (exercise 15.29) the
Cauchy or Lorentz distribution

L1(x, a1) =
a1

⇡(x2 + a21)
(15.241)

and for ⌫ = 2 the gaussian

L2(x, a2) = PG(x, 0,
p
2a2) =

1

2
p
⇡a2

exp

✓
� x2

4a2

◆
(15.242)

but for other values of ⌫ no simple expression for L⌫(x, a⌫) is available.
For 0 < ⌫ < 2 and as x ! ±1, it falls o↵ as |x|�(1+⌫), and for ⌫ > 2 it
assumes negative values, ceasing to be a probability distribution (Bouchaud
and Potters, 2003, pp. 10–13).

15.18 Central limit theorem and Jarl Lindeberg

We have seen in sections (15.9 & 15.11) that unbiased fluctuations tend to
distribute the position and velocity of molecules according to Gauss’s distri-
bution (15.83). Gaussian distributions occur very frequently. The central
limit theorem suggests why they occur so often.
Let x1, . . . , xN be N independent random variables described by proba-

bility distributions P1(x1), . . . , PN (xN ) with finite means µj and finite vari-
ances �2j . The Pj ’s may be all di↵erent. The central limit theorem says that

as N ! 1 the probability distribution P (N)(y) for the average of the xj ’s

y =
1

N
(x1 + x2 + . . .+ xN ) (15.243)

tends to a gaussian in y quite independently of what the underlying proba-
bility distributions Pj(xj) happen to be.
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Because expected values are linear (15.37), the mean value of the average
y is the average of the N means

µy = E[y] = E[(x1 + . . .+ xN ) /N ] =
1

N
(E[x1] + . . .+ E[xN ])

=
1

N
(µ1 + . . .+ µN ) . (15.244)

The independence of the random variables x1, x2, . . . , xN implies (15.43)
that their joint probability distribution factorizes

P (x1, . . . , xN ) = P1(x1)P2(x2) . . . PN (xN ). (15.245)

And our rule (15.48) for the variance of a linear combination of independent
variables says that the variance of the average y is the sum of the variances

�2y = V [(x1 + . . .+ xN ) /N ] =
1

N2

�
�21 + . . .+ �2N

�
. (15.246)

The conditional probability (15.3) P (N)(y|x1, . . . , xN ) that the average of
the x’s is y is the delta function (4.36)

P (N)(y|x1, . . . , xN ) = �(y � (x1 + x2 + . . .+ xN )/N). (15.247)

Thus by (15.8) the probability distribution P (N)(y) for the average y =
(x1 + x2 + . . .+ xN )/N of the xj ’s is

P (N)(y) =

Z
P (N)(y|x1, . . . , xN )P (x1, . . . , xN ) dNx

=

Z
�(y � (x1 + x2 + . . .+ xN )/N)P (x1, . . . , xN ) dNx

(15.248)

where dNx = dx1 . . . dxN . Its characteristic function is then

P̃ (N)(k) =

Z
eiky P (N)(y) dy

=

Z
eiky �(y � (x1 + x2 + . . .+ xN )/N)P (x1, . . . , xN ) dNx dy

=

Z
exp


ik

N
(x1 + x2 + . . .+ xN )

�
P (x1, . . . , xN ) dNx (15.249)

=

Z
exp


ik

N
(x1 + x2 + . . .+ xN )

�
P1(x1)P2(x2) . . . PN (xN ) dNx

which is the product

P̃ (N)(k) = P̃1(k/N) P̃2(k/N) . . . P̃N (k/N) (15.250)
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of the characteristic functions

P̃j(k/N) =

Z
eikxj/N Pj(xj) dxj (15.251)

of the probability distributions P1(x1), . . . , PN (xN ).
The Taylor series (15.224) for each characteristic function is

P̃j(k/N) =
1X

n=0

(ik)n

n!Nn
µnj (15.252)

and so for big N we can use the approximation

P̃j(k/N) ⇡ 1 +
ik

N
µj �

k2

2N2
µ2j (15.253)

in which µ2j = �2j + µ2
j by the formula (15.25) for the variance. So we have

P̃j(k/N) ⇡ 1 +
ik

N
µj �

k2

2N2

�
�2j + µ2

j

�
(15.254)

or for large N

P̃j(k/N) ⇡ exp

✓
ik

N
µj �

k2

2N2
�2j

◆
. (15.255)

Thus as N ! 1, the characteristic function (15.250) for the variable y
converges to

P̃ (N)(k) =
NY

j=1

P̃j(k/N) =
NY

j=1

exp

✓
ik

N
µj �

k2

2N2
�2j

◆

= exp

2

4
NX

j=1

✓
ik

N
µj �

k2

2N2
�2j

◆3

5 = exp

✓
iµyk � 1

2
�2yk

2

◆ (15.256)

which is the characteristic function (15.212) of a gaussian (15.211) with
mean and variance

µy =
1

N

NX

j=1

µj and �2y =
1

N2

NX

j=1

�2j . (15.257)

The inverse Fourier transform (15.210) now gives the probability distribution
P (N)(y) for the average y = (x1 + x2 + . . .+ xN )/N as

P (N)(y) =

Z 1

�1
e�iky P̃ (N)(k)

dk

2⇡
(15.258)
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which in view of (15.256) and (15.212) tends as N ! 1 to Gauss’s distri-
bution PG(y, µy,�y)

lim
N!1

P (N)(y) =

Z 1

�1
e�iky lim

N!1
P̃ (N)(k)

dk

2⇡

=

Z 1

�1
e�iky exp

✓
iµyk � 1

2
�2yk

2

◆
dk

2⇡
(15.259)

= PG(y, µy,�y) =
1

�y
p
2⇡

exp


�(y � µy)2

2�2y

�

with mean µy and variance �2y as given by (15.257). The sense in which the

exact distribution P (N)(y) converges to PG(y, µy,�y) is that for all a and b
the probability PrN (a < y < b) that y lies between a and b as determined
by the exact P (N)(y) converges as N ! 1 to the probability that y lies
between a and b as determined by the gaussian PG(y, µy,�y)

lim
N!1

PrN (a < y < b) = lim
N!1

Z b

a
P (N)(y) dy =

Z b

a
PG(y, µy,�y) dy.

(15.260)
This type of convergence is called convergence in probability (Feller,
1966, pp. 231, 241–248).

For the special case in which all the means and variances are the same,
with µj = µ and �2j = �2, the definitions in (15.257) imply that µy = µ and
�2y = �2/N . In this case, one may show (exercise 15.31) that in terms of the
variable

u ⌘
p
N(y � µ)

�
=

⇣PN
n=1 xj

⌘
�Nµ

p
N �

(15.261)

P (N)(y) converges to a distribution that is normal

lim
N!1

P (N)(y) dy =
1p
2⇡

e�u2/2 du. (15.262)

To get a clearer idea of when the central limit theorem holds, let us
write the sum of the N variances as

SN ⌘
NX

j=1

�2j =
NX

j=1

Z 1

�1
(xj � µj)

2 Pj(xj) dxj (15.263)

and the part of this sum due to the regions within � of the means µj as

SN (�) ⌘
NX

j=1

Z µj+�

µj��
(xj � µj)

2 Pj(xj) dxj . (15.264)
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Central limit of a uniform distribution
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Figure 15.7 The probability distributions P (N)(y) (Eq. 15.248) for the
mean y = (x1 + . . . + xN )/N of N random variables drawn from the uni-
form distribution are plotted for N = 1 (dots), 2 (dot dash), 4 (dashes),
and 8 (solid). The distributions P (N)(y) rapidly approach gaussians with
the same mean µy = 1/2 but with shrinking variances �2 = 1/(12N).

In these terms, Jarl Lindeberg (1876–1932) showed that the exact distribu-
tion P (N)(y) converges (in probability) to the gaussian (15.259) as long as
the part SN (�) is most of SN in the sense that for every ✏ > 0

lim
N!1

SN
�
✏
p
SN
�

SN
= 1. (15.265)

This is Lindeberg’s condition (Feller 1968, p. 254; Feller 1966, pp. 252–
259; Gnedenko 1968, p. 304).
Because we dropped all but the first three terms of the series (15.252) for

the characteristic functions P̃j(k/N), we may infer that the convergence of
the distribution P (N)(y) to a gaussian is quickest near its mean µy. If the
higher moments µnj are big, then for finite N the distribution P (N)(y) can
have tails that are fatter than those of the limiting gaussian PG(y, µy,�y).

Example 15.25 (Illustration of the central-limit theorem) The simplest
probability distribution is a random number x uniformly distributed on the
interval (0, 1). The probability distribution P (2)(y) of the mean of two such
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random numbers is the integral

P (2)(y) =

Z 1

0
dx1

Z 1

0
dx2 �((x1 + x2)/2� y). (15.266)

Letting u1 = x1/2, we find

P (2)(y) = 4

Z min(y, 12 )

max(0,y� 1
2 )
✓(12 + u1 � y) du1 = 4y ✓(12 � y) + 4(1� y) ✓(y � 1

2)

(15.267)
which is the dot-dashed triangle in Fig. 15.7. The probability distribution
P (4)(y) is the dashed somewhat gaussian curve in the figure, while P (8)(y)
is the solid, nearly gaussian curve.

To work through a more complicated example of the central limit theo-
rem, we first need to learn how to generate random numbers that follow an
arbitrary distribution.

15.19 Random-number generators

To generate truly random numbers, one might use decaying nuclei or an
electronic device that makes white noise. But people usually settle for pseu-
dorandom numbers computed by a mathematical algorithm. Such algo-
rithms are deterministic, so the numbers they generate are not truly random.
But for most purposes, they are random enough.

The standard way to generate pseudorandom numbers is to use the random-
number generator of a Fortran, C, or C++ compiler (gcc.gnu.org/). In
GFortran, the statement call random_number(r) returns an array r of ran-
dom numbers uniformly distributed on the interval (0, 1) and generated by
PRNG whose period is 2256�1. Quasirandom numbers (section 16.3) are
somewhat better than pseudorandom ones.

Random-number generators distribute random numbers u uniformly on
the interval (0, 1). How do we make them follow an arbitrary distribution
P (r)? If the distribution is strictly positive P (r) > 0 on the relevant interval
(a, b), then its integral

F (x) =

Z x

a
P (r) dr (15.268)

is a strictly increasing function on (a, b), that is, a < x < y < b implies
F (x) < F (y). Moreover, the function F (x) rises from F (a) = 0 to F (b) = 1
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and takes on every value 0 < y < 1 for exactly one x in the interval (a, b).
Thus the inverse function F�1(y)

x = F�1(y) if and only if y = F (x) (15.269)

is well defined on the interval (0, 1).
Our random-number generator gives us random numbers u that are uni-

form on (0, 1). We want a random variable r whose probability Pr(r < x) of
being less than any x is F (x). The trick (Knuth, 1981, p. 116) is to generate
a uniformly distributed random number u and then replace it with

r = F�1(u). (15.270)

For then, since F (x) is one-to-one (15.269), the statements F�1(u) < x and
u < F (x) are equivalent, and therefore

Pr(r < x) = Pr(F�1(u) < x) = Pr(u < F (x)). (15.271)

Example 15.26 (P (r) = 3r2) To turn a distribution of random numbers
u uniform on (0, 1) into a distribution P (r) = 3r2 of random numbers r, we
integrate and find

F (x) =

Z x

0
P (r) dr =

Z x

0
3r2 dr = x3. (15.272)

We then set r = F�1(u) = u1/3.

Example 15.27 (P (r) = 12 (r � 1/2)2) To turn a distribution of random
numbers u uniform on (0, 1) into a distribution P (r) = 12 (r � 1/2)2, we
integrate and find

F (x) =

Z x

0
P (r) dr =

Z x

0
12 (r � 1/2)2 dr = 4x3 � 6x2 + 3x. (15.273)

We set u = 4r3 � 6r2 + 3r and solve this cubic equation for r

r =
1

2

h
1� (1� 2u)1/3

i
(15.274)

(or we ask Wolfram Alpha for the inverse function to F (x)).

15.20 Illustration of the central limit theorem

To make things simple, we’ll take all the probability distributions Pj(x)
to be the same and equal to Pj(xj) = 3x2j on the interval (0, 1) and zero
elsewhere. Our random-number generator gives us random numbers u that
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are uniformly distributed on (0, 1), so by the example (15.26) the variable
r = u1/3 is distributed as Pj(x) = 3x2.

The central limit theorem tells us that the distribution

P (N)(y) =

Z
3x21 3x

2
2 . . . 3x2N �((x1 + x2 + . . .+ xN )/N � y) dNx (15.275)

of the mean y = (x1+ . . .+xN )/N tends as N ! 1 to Gauss’s distribution

lim
N!1

P (N)(y) =
1

�y
p
2⇡

exp

✓
�(x� µy)2

2�2y

◆
(15.276)

with mean µy and variance �2y given by (15.257). Since the Pj ’s are all the
same, they all have the same mean

µy = µj =

Z 1

0
3x3dx =

3

4
(15.277)

and the same variance

�2j =

Z 1

0
3x4dx�

✓
3

4

◆2

=
3

5
� 9

16
=

3

80
. (15.278)

By(15.257), the variance of the mean y is then �2y = 3/(80N). Thus as N
increases, the mean y tends to a gaussian with mean µy = 3/4 and ever
narrower peaks.
For N = 1, the probability distribution P (1)(y) is

P (1)(y) =

Z
3x21 �(x1 � y) dx1 = 3y2 (15.279)

which is the probability distribution we started with. In Fig. 15.8, this is
the quadratic, dotted curve.
For N = 2, the probability distribution P (1)(y) is (exercise 15.30)

P (2)(y) =

Z
3x21 3x

2
2 �((x1 + x2)/2� y) dx1 dx2 (15.280)

= ✓(12 � y)
96

5
y5 + ✓(y � 1

2)

✓
36

5
� 96

5
y5 + 48y2 � 36y

◆
.

You can get the probability distributions P (N)(y) for N = 2j by running
the Fortran or C++ version of the program central limit of 3x2 both of
which are in Probability and statistics at github.com/kevinecahill.

The distributions P (N)(y) for N = 1, 2, 4, and 8 are plotted in Fig. 15.8.
P (1)(y) = 3y2 is the original distribution. P (2)(y) is trying to be a gaussian,
while P (4)(y) and P (8)(y) have almost succeeded. The variance �2y = 3/80N
shrinks with N .
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Central limit of 3x2
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Figure 15.8 The probability distributions P (N)(y) (Eq. 15.275) for the
mean y = (x1 + . . . + xN )/N of N random variables drawn from the
quadratic distribution P (x) = 3x2 are plotted for N = 1 (dots), 2 (dot
dash), 4 (dashes), and 8 (solid). The four distributions P (N)(y) rapidly
approach gaussians with the same mean µy = 3/4 but with shrinking vari-
ances �2

y = 3/(80N).

The quadratic distribution P (x) = 12 (x� 1/2)2 of example 15.27 is very
di↵erent from a gaussian centered at x = 1/2. Yet we see in Fig. 15.9 that the
probability distributions P (N)(y) (15.248) for the mean y = (x1+· · ·+xN )/N
of N random variables drawn from it do converge to such a gaussian.
Although fortran95 is an ideal language for computation, C++ is more

versatile and modular, and Java is easier to use.

15.21 Measurements, estimators, and Friedrich Bessel

The exact, physical probability distribution P (x;✓) for a stochastic variable
x may depend upon one or more unknown parameters ✓ = (✓1, . . . , ✓m).
Experimenters seek to determine the unknown parameters ✓, such as the
mean µ and the variance �2, by collecting data in the form of observed
values x = x1, . . . , xN of the stochastic variable x. They assume that the
probability distribution for the sequence x = (x1, . . . , xN ) is the product of
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Central limit of 12 (x � 1/2)2
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Figure 15.9 The probability distributions P (N)(y) (15.248) for the mean
y = (x1 + · · · + xN )/N of N random variables drawn from the quadratic
distribution P (x) = 12 (x � 1/2)2 of example 15.27 are plotted for N = 1
(dots), 2 (dot dash), 4 (dashes), and 32 (solid). The distributions have the
same mean µy = 1/2 and shrinking variances �2

y = 3/(20N).

N factors of the physical distribution P (x;✓)

P (x;✓) =
NY

j=1

P (xj ;✓). (15.281)

They approximate the unknown value of a parameter ✓` as the mean value
of its estimator u(N)

` (x)

E[u(N)
` ] =

Z
u(N)
` (x)P (x;✓) dNx = ✓` + b(N)

` (✓). (15.282)

If as N ! 1, the bias b(N)
` (✓) ! 0, then the estimator u(N)

` (x) is consis-
tent.

Inasmuch as the mean (15.28) is the integral of the physical distribution

µ =

Z
xP (x;✓) dx (15.283)
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a natural estimator for the mean is

u(N)
µ (x) = (x1 + . . .+ xN )/N. (15.284)

Its expected value is

E[u(N)
µ ] =

Z
u(N)
µ (x)P (x;✓) dNx =

Z
x1 + . . .+ xN

N
P (x;✓) dNx (15.285)

=
1

N

NX

k=1

Z
xk P (xk;✓) dxk

NY

k 6=j=1

Z
P (xj ;✓) dxj =

1

N

NX

k=1

µ = µ.

Thus the natural estimator u(N)
µ (x) of the mean (15.284) has b(N)

` = 0, and
so it is a consistent and unbiased estimator for the mean.
Since the variance (15.31) of the probability distribution P (x;✓) is the

integral

�2 =

Z
(x� µ)2 P (x;✓) dx (15.286)

the variance of the estimator uNµ is

V [u(N)
µ ] =

Z ⇣
u(N)
µ (x)� µ

⌘2
P (x;✓) dNx =

Z 2

4 1

N

NX

j=1

(xj � µ)

3

5
2

P (x;✓) dNx

=
1

N2

NX

j,k=1

Z
(xj � µ) (xk � µ)P (x;✓) dNx (15.287)

=
1

N2

NX

j,k=1

�jk

Z
(xj � µ)2 P (x;✓) dNx =

1

N2

NX

k=1

�2 =
�2

N

in which �2 is the variance (15.286) of the physical distribution P (x;✓).
We’ll learn in the next section that no estimator of the mean can have a
lower variance than this.
A natural estimator for the variance of the probability distribution P (x;✓)

is

u(N)
�2 (x) = B

NX

j=1

⇣
xj � u(N)

µ (x)
⌘2

(15.288)

in which B = B(N) is a constant of proportionality. The naive choice
B(N) = 1/N leads to a biased estimator. To find the correct value of B, we
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set the expected value E[u(N)
�2 ] equal to �2

E[u(N)
�2 ] =

Z
B

NX

j=1

⇣
xj � u(N)

µ (x)
⌘2

P (x;✓) dNx = �2 (15.289)

and solve for B. Subtracting the mean µ from both xj and u(N)
µ (x), we

express �2/B as the sum of three terms

�2

B
=

NX

j=1

Z h
xj � µ�

⇣
u(N)
µ (x)� µ

⌘i2
P (x;✓) dNx = Sjj + Sjµ + Sµµ

(15.290)
the first of which is

Sjj =
NX

j=1

Z
(xj � µ)2 P (x;✓) dNx = N�2. (15.291)

The cross-term Sjµ is

Sjµ = � 2
NX

j=1

Z
(xj � µ)

⇣
u(N)
µ (x)� µ

⌘
P (x;✓) dNx (15.292)

= � 2

N

NX

j=1

Z
(xj � µ)

NX

k=1

(xk � µ)P (x;✓) dNx = � 2�2.

The third term is the variance (15.287) multiplied by N

Sµµ =
NX

j=1

Z ⇣
u(N)
µ (x)� µ

⌘2
P (x;✓) dNx = NV [uNµ ] = �2. (15.293)

Thus the factor B must satisfy

�2/B = N�2 � 2�2 + �2 = (N � 1)�2 (15.294)

which tells us that B = 1/(N � 1), which is Bessel’s correction. Our esti-

mator for the variance �2 = E[u(N)
�2 ] of the probability distribution P (x;✓)

then is

u(N)
�2 (x) =

1

N � 1

NX

j=1

⇣
xj � u(N)

µ (x)
⌘2

=
1

N � 1

NX

j=1

 
xj �

1

N

NX

k=1

xk

!2

.

(15.295)

It is consistent and unbiased since E[u(N)
�2 ] = �2 by construction (15.289).

It gives for the variance �2 of a single measurement the undefined ratio 0/0,
as it should, whereas the naive choice B = 1/N absurdly gives zero.
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On the basis of N measurements x1, . . . , xN we can estimate the mean of
the unknown probability distribution P (x;✓) as µN = (x1 + . . . + xN )/N .
And we can use Bessel’s formula (15.295) to estimate the variance �2 of the
unknown distribution P (x;✓). Our formula (15.287) for the variance �2(µN )
of the mean µN then gives

�2(µN ) =
�2

N
=

1

N(N � 1)

NX

j=1

 
xj �

1

N

NX

k=1

xk

!2

. (15.296)

Thus we can use N measurements xj to estimate the mean µ to within a
standard error or standard deviation of

�(µN ) =

r
�2

N
=

vuuut 1

N(N � 1)

NX

j=1

 
xj �

1

N

NX

k=1

xk

!2

. (15.297)

Few formulas have seen so much use.

15.22 Information and Ronald Fisher

The elements of the Fisher information matrix of a distribution P (x;✓)
are the averages of products of pairs of the partial logarithmic derivatives
@✓P (x;✓) integrated over the possible values of the N measurements

Fk`(✓) ⌘ E


@ logP (x;✓)

@✓k

@ logP (x;✓)

@✓`

�

=

Z
@ logP (x;✓)

@✓k

@ logP (x;✓)

@✓`
P (x;✓) dNx (15.298)

(Ronald Fisher, 1890–1962). Fisher’s matrix (exercise 15.32) is not only
symmetric Fk` = F`k but also nonnegative (1.43) because for real ck

JX

`,k=1

ckFk`c` =

Z  JX

k=1

ck
@ logP (x;✓)

@✓k

!2

P (x;✓) dNx � 0. (15.299)

When the Fisher matrix is positive (1.44), it has an inverse. By di↵erentiat-
ing the normalization condition

Z
P (x;✓) dNx = 1 (15.300)

we get

0 =

Z
@P (x;✓)

@✓k
dNx =

Z
@ logP (x;✓)

@✓k
P (x;✓) dNx (15.301)
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which says that the average value of the score or the logarithmic derivative
of the probability distribution vanishes. Using commas to denote ✓ deriva-
tives as in

(logP ),k ⌘ @ logP

@✓k
and (logP ),k` ⌘

@2 logP

@✓k@✓`
(15.302)

and di↵erentiating the identity (15.301), one has (exercise 15.33)

0 =

Z
(logP ),k (logP ),` P dNx+

Z
(logP ),k` P dNx (15.303)

so that another form of Fisher’s information matrix is

Fk`(✓) = � E [(logP ),k`] = �
Z
(logP ),k` P dNx. (15.304)

Cramér and Rao used Fisher’s information matrix to form a lower bound
on the covariance (15.42) matrix C[uk, u`] of any two estimators. Since both
✓` and b` are constants independent of x, the vanishing (15.301) of the mean
of the score implies that the covariance of the `th estimator u`(x) with the
kth score (logP (x;✓)),k is related to the ✓k-derivative hu`i,k of the mean
hu`i

C[u`, (logP ),k] =

Z
(u` � ✓` � b`) (logP ),k P dNx

=

Z
u` (logP ),k P dNx =

Z
u` P,k d

Nx

= hu`i,k = (✓` + b`),k = �`k + b`,k.

(15.305)

Thus for any constants y1, y2, . . . , yJ and w1, w2, . . . , wJ , where J is the
number of estimators uk, we have

Z JX

`,k=1

y` (u`�✓`�b`)
p
P (logP ),k

p
P wk d

Nx =
JX

`,k=1

y` hu`i,k wk. (15.306)

In matrix notation with u0`k = hu`i,k and (logP )0k = (logP ),k, the square of
this equation is

✓Z
y · (u� ✓ � b)

p
P

p
P (logP )0 · w dNx

◆2

= (y| u0w)2. (15.307)
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The Schwarz inequality (7.425) says that
Z �

y · (u� ✓ � b)
�2

P dNx

Z �
(logP )0 · w

�2
P dNx

�
✓Z

y · (u� ✓ � b)
p
P

p
P (logP )0 · w dNx

◆2

.

(15.308)

The last two equations (15.307 and 15.308) now give us the key inequality
Z �

y · (u� ✓ � b)
�2

P dNx

Z �
(logP )0 · w

�2
P dNx �

�
y|u0w

�2
. (15.309)

On the left-hand side of this equation, the first term is y|Cy in which C``0 =
C[u`, u`0 ] is the covariance (15.42) of the estimators u`(x) and u`0(x), and the
second term is w|Fw in which Fkk0 is Fisher’s information matrix (15.298):

y|Cy w|Fw �
�
y|u0w

�2
. (15.310)

The Fisher information matrix F is real and symmetric, and its eigenval-
ues are nonnegative. If all its eigenvalues are positive (as they are unless P
is independent of one or more of the ✓k’s), then F has an inverse F�1, and
we can set w = F�1u0|y. The inequality (15.310) then becomes

y|Cy y|u0F�1FF�1u0|y � y|u0F�1u0|y y|u0F�1u0|y. (15.311)

Setting FF�1 = I and canceling the common factor y|u0F�1u0|y, we arrive
at the Cramér-Rao inequality

y|Cy � y|u0F�1u0|y. (15.312)

Recalling the formula (15.305) which expresses u0 as u0`k = hu`i,k = �`k+b`,k,
we have

y`C[u`, uk] yk � yr (�rs + br,s)F
�1
sm (�mn + bn,m) yn (15.313)

or more succinctly

C � (I + b0)F�1(I + b0|). (15.314)

In these inequalities, the y’s are arbitrary numbers. Thus setting y` = �`k
and using the symmetry Fk` = F`k, we can write the Cramer-Rao inequality
(15.313) in terms of the variance V [uk] = C[uk, uk] as

V [uk] = C[uk, uk] � F�1
kk + 2F�1

k` bk,` + bk,`F
�1
`m bk,m. (15.315)

If the estimator uk is unbiased, this lower bound simplifies to

V [uk] � F�1
kk . (15.316)
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Example 15.28 (Cramér-Rao bound for a gaussian) The diagonal ele-
ments of Fisher’s information matrix for the mean µ and variance �2 of
Gauss’s distribution for N data points x1, . . . , xN

P (N)
G (x, µ,�) =

NY

j=1

PG(xj ;µ,�) =

✓
1

�
p
2⇡

◆N

exp

0

@�
NX

j=1

(xj � µ)2

2�2

1

A

(15.317)
are

Fµµ =

Z ⇣
logP (N)

G (x, µ,�)
⌘

,µ

�2
P (N)
G (x, µ,�) dNx

=
NX

i,j=1

Z ✓
xi � µ

�2

◆✓
xj � µ

�2

◆
P (N)
G (x, µ,�) dNx

=
NX

i=1

Z ✓
xi � µ

�2

◆2

P (N)
G (x, µ,�) dNx =

N

�2
(15.318)

and

F�2�2 =

Z h
(logP (N)

G (x, µ,�)),�2

i2
P (N)
G (x, µ,�) dNx

=
NX

i,j=1

Z 
(xi � µ)2

2�4
� 1

2�2

� 
(xj � µ)2

2�4
� 1

2�2

�
P (N)
G (x, µ,�) dNx

=
N

2�4
. (15.319)

The o↵-diagonal terms are

Fµ�2 =

Z
(logP (N)

G (x, µ,�)),µ (logP
(N)
G (x, µ,�)),�2 P (N)

G (x, µ,�) dNx

=
NX

i,j=1

Z 
xi � µ

�2

�
(xj � µ)2

2�4
� 1

2�2

�
P (N)
G (x, µ,�)dNx (15.320)

which vanishes as does F�2µ = Fµ�2 = 0. The inverse of Fisher’s matrix then
is diagonal with (F�1)µµ = �2/N and (F�1)�2�2 = 2�4/N .
The variance of any unbiased estimator uµ(x) of the mean must exceed

its Cramér-Rao lower bound (15.316), and so V [uµ] � (F�1)µµ = �2/N .

The variance V [u(N)
µ ] of the natural estimator of the mean u(N)

µ (x) = (x1 +
. . .+xN )/N is �2/N by (15.287), and so it respects and saturates the lower
bound (15.316)

V [u(N)
µ ] = E[(u(N)

µ � µ)2] = �2/N = (F�1)µµ. (15.321)
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One may show (exercise 15.34) that the variance V [u(N)
�2 ] of Bessel’s esti-

mator (15.295) of the variance is (Riley et al., 2006, p. 1248)

V [u(N)
�2 ] =

1

N

✓
⌫4 �

N � 3

N � 1
�4
◆

(15.322)

where ⌫4 is the fourth central moment (15.30) of the probability distribution.
For the gaussian PG(x;µ,�) one may show (exercise 15.35) that this moment
is ⌫4 = 3�4, and so for it

VG[u
(N)
�2 ] =

2

N � 1
�4. (15.323)

Thus the variance of Bessel’s estimator of the variance respects but does not
saturate its Cramér-Rao lower bound (15.316, 15.319)

VG[u
(N)
�2 ] =

2

N � 1
�4 >

2

N
�4. (15.324)

Estimators that saturate their Cramér-Rao lower bounds are e�cient.
The natural estimator u(N)

µ (x) of the mean is e�cient as well as consistent

and unbiased, and Bessel’s estimator u(N)
�2 (x) of the variance is consistent

and unbiased but not e�cient.

15.23 Maximum likelihood

Suppose we measure some quantity x at various values of another variable
t and find the values x1, x2, . . . , xN at the known points t1, t2, . . . , tN . We
might want to fit these measurements to a curve x = f(t;↵) where ↵ =
↵1, . . . ,↵M is a set of M < N parameters. In view of the central limit
theorem, we’ll assume that the points xj fall in Gauss’s distribution about
the values xj = f(tj ;↵) with some known variance �2. The probability of
getting the N values x1, . . . , xN then is

P (x) =
NY

j=1

P (xj , tj ,�) =

✓
1

�
p
2⇡

◆N

exp

0

@�
NX

j=1

(xj � f(tj ;↵))2

2�2

1

A .

(15.325)
To find theM parameters↵, we maximize the likelihood P (x) by minimizing
the argument of its exponential

0 =
@

@↵`

NX

j=1

(xj � f(tj ;↵))2 = �2
NX

j=1

(xj � f(tj ;↵))
@f(tj ;↵)

@↵`
. (15.326)
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If the function f(t;↵) depends nonlinearly upon the parameters ↵, then we
may need to use numerical methods to solve this least-squares problem.
But if the function f(t;↵) depends linearly upon the M parameters ↵

f(t;↵) =
MX

k=1

gk(t)↵k (15.327)

then the equations (15.326) that determine these parameters ↵ are linear

0 =
NX

j=1

 
xj �

MX

k=1

gk(tj)↵k

!
g`(tj). (15.328)

In matrix notation with G the N⇥M rectangular matrix with entries Gjk =
gk(tj), they are

GT
x = GTG↵. (15.329)

The basis functions gk(t) may depend nonlinearly upon the independent
variable t. If one chooses them to be su�ciently di↵erent that the columns
of G are linearly independent, then the rank of G is M , and the nonnegative
matrix GTG has an inverse. The matrix G then has a pseudoinverse (1.467)

G+ =
�
GTG

��1
GT (15.330)

and it maps the N -vector x into our parameters ↵

↵ = G+
x. (15.331)

The product G+G = IM is the M ⇥M identity matrix, while

GG+ = P (15.332)

is an N ⇥N projection operator (exercise 15.36) onto the M ⇥M subspace
for which G+G = IM is the identity operator. Like all projection operators,
P satisfies P 2 = P .

15.24 Karl Pearson’s chi-squared statistic

The argument of the exponential (15.325) in P (x) is (the negative of) Karl
Pearson’s chi-squared statistic (Pearson, 1900)

�2 ⌘
NX

j=1

(xj � f(tj ;↵))2

2�2
. (15.333)
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When the function f(t;↵) is linear (15.327) in ↵, the N -vector f(tj ;↵) is
f = G↵. Pearson’s �2 then is

�2 = (x�G↵)2/2�2. (15.334)

Now (15.331) tells us that ↵ = G+
x, and so in terms of the projection

operator P = GG+, the vector x�G↵ is

x�G↵ = x�GG+
x =

�
I �GG+

�
x = (I � P )x. (15.335)

So �2 is proportional to the squared length

�2 = x̃
2/2�2 (15.336)

of the vector

x̃ = x�G↵ ⌘ (I � P )x. (15.337)

Thus if the matrix G has rank M , and the vector x has N independent
components, then the vector x̃ has only N �M independent components.

Example 15.29 (Two Position Measurements) Suppose we measure a
position twice with error � and get x1 and x2. If we choose

G =

✓
1
1

◆
then its pseudoinverse (1.471) is G+ =

1

2

�
1 1

�
. (15.338)

The single parameter

↵ = G+x =
1

2

�
1 1

�✓x1
x2

◆
=

1

2
(x1 + x2) (15.339)

is the average of the two positions, and our formula (15.336) gives �2 as

�2 =
n
[x1 � (x1 + x2)/2]

2 + [x2 � (x1 + x2)/2]
2
o.

2�2

=
n
[(x1 � x2)/2]

2 + [(x2 � x1)/2]
2
o.

2�2

=
h
(x1 � x2)/

p
2
i2

/2�2. (15.340)

Thus instead of having two independent components x1 and x2, �2 just has
one (x1 � x2)/

p
2.

We can see how this happens more generally if we use as basis vectors
the N � M orthonormal vectors |ji in the kernel of P (that is, the |ji’s
annihilated by P )

P |ji = 0 1  j  N �M (15.341)
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and the M that lie in the range of the projection operator P

P |ki = |ki N �M + 1  k  N. (15.342)

In terms of these basis vectors, the N -vector x is

x =
N�MX

j=1

xj |ji +
NX

k=N�M+1

xk|ki (15.343)

and the last M components of the vector x̃ vanish

x̃ = (I � P )x =
N�MX

j=1

xj |ji. (15.344)

Example 15.30 (N position measurements) Suppose the N values of xj
are the measured values of the position f(tj ;↵) = xj of some object. Then
M = 1, and we choose Gj1 = g1(tj) = 1 for j = 1, . . . , N . Now GTG = N is
a 1⇥ 1 matrix, the number N , and the parameter ↵ is the mean x

↵ = G+
x =

�
GTG

��1
GT

x =
1

N

NX

j=1

xj = x (15.345)

of the N position measurements xj . So the vector x̃ has components x̃j =
xj � x and is orthogonal to GT = (1, 1, . . . , 1)

GT
x̃ =

0

@
NX

j=1

xj

1

A�Nx = 0. (15.346)

The matrix GT has rank 1, and the vector x̃ has N � 1 independent com-
ponents.

Suppose now that we have determined our M parameters ↵ and have a
theoretical fit

x = f(t;↵) =
MX

k=1

gk(t)↵k (15.347)

which when we apply it to N measurements xj gives �2 as

�2 = (x̃)2 /2�2. (15.348)

How good is our fit?
A �2 distribution with N�M degrees of freedom has by (15.239) mean

E[�2] = N �M (15.349)
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Figure 15.10 The probabilities PrN�M (�2 > �2
0) are plotted from left to

right for N �M = 2, 4, 6, 8, and 10 degrees of freedom as functions of �2
0.

and variance

V [�2] = 2(N �M). (15.350)

So our �2 should be about

�2 ⇡ N �M ±
p

2(N �M). (15.351)

If it lies within this range, then (15.347) is a good fit to the data. But if
it exceeds N � M +

p
2(N �M), then the fit isn’t so good. On the other

hand, if �2 is less than N �M �
p
2(N �M), then we may have used too

many parameters or overestimated �. Indeed, by using N parameters with
GG+ = IN , we could get �2 = 0 every time.
The probability that �2 exceeds �2

0 is the integral (15.238)

Prn(�
2 > �2

0) =

Z 1

�2
0

Pn(�
2/2) d�2 =

Z 1

�2
0

1

2�(n/2)

✓
�2

2

◆n/2�1

e��2/2d�2

(15.352)
in which n = N � M is the number of data points minus the number
of parameters, and �(n/2) is the gamma function (5.57, 5.67). So an M -
parameter fit to N data points has only a chance of ✏ of being good if its
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�2 is greater than a �2
0 for which PrN�M (�2 > �2

0) = ✏. These probabilities
PrN�M (�2 > �2

0) are plotted in Fig. 15.10 for N�M = 2, 4, 6, 8, and 10. In
particular, the probability of a value of �2 greater than �2

0 = 20 respectively
is 0.000045, 0.000499, 0.00277, 0.010336, and 0.029253 for N �M = 2, 4, 6,
8, and 10.

15.25 Kolmogorov’s test

Suppose we want to use a sequence of N measurements xj to determine
the probability distribution that they come from. Our empirical probability
distribution is

P (N)
e (x) =

1

N

NX

j=1

�(x� xj). (15.353)

Our cumulative probability for events less than x then is

Pr(N)
e (�1, x) =

Z x

�1
P (N)
e (x0) dx0 =

Z x

�1

1

N

NX

j=1

�(x0 � xj) dx
0. (15.354)

So if we label our events in increasing order x1  x2  . . .  xN , then the
probability of an event less than x is a staircase

Pr(N)
e (�1, x) =

j

N
for xj < x < xj+1. (15.355)

Having approximately and experimentally determined our empirical cu-
mulative probability distribution Pr(N)

e (�1, x), we might want to know
whether it comes from some hypothetical cumulative probability distribu-
tion Prh(�1, x). One way to do this is to compute the distance DN between
the two cumulative probability distributions

DN = sup
�1<x<1

���Pr(N)
e (�1, x)� Prh(�1, x)

��� (15.356)

in which sup stands for supremum and means least upper bound. Since
cumulative probabilities lie between zero and one, it follows (exercise 15.37)
that the Kolmogorov distance is bounded by 0  DN  1.

In general, as the number N of data points increases, we expect that
our empirical distribution Pr(N)

e (�1, x) should approach the actual or true
distribution Prt(�1, x) from which the events xj came. In this case, the
Kolmogorov distance DN should converge to a limiting value D1 for the
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Figure 15.11 Kolmogorov’s cumulative probability distribution K(u) de-
fined by (15.358) rises from zero to unity as u runs from zero to about
two.

distance between the true distribution Prt(�1, x) and the hypothetical dis-
tribution Prh(�1, x)

lim
N!1

DN = D1 = sup
�1<x<1

|Prt(�1, x)� Prh(�1, x)| 2 [0, 1]. (15.357)

If the true distribution Prt(�1, x) is the same as the hypothetical distribu-
tion Prh(�1, x), then we expect thatD1 = 0. This expectation is confirmed
by a theorem due to Glivenko (Glivenko, 1933; Cantelli, 1933) according to
which the probability that the Kolmogorov distance DN should go to zero
as N ! 1 is unity, Pr(D1 = 0) = 1.

The real issue is how fast DN should decrease with N if our events xj
do come from Prt(�1, x). This question was answered by Kolmogorov who
showed (Kolmogorov, 1933) that if the events xj of the empirical distribution

Pr(N)
e (�1, x) do come from the hypothetical distribution Prh(�1, x), and

if Prh(�1, x) is continuous, then for large N the probability that
p
N DN

(DN being the Kolmogorov distance between the empirical Pr(N)
e (�1, x)

and hypothetical Prh(�1, x) cumulative distributions) is less than u is given
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Figure 15.12 The probability distributions of Gauss PG(x, 0, 1) and Gos-
set/Student PS(x, 3, 1) with zero mean and unit variance.

by the Kolmogorov function K(u)

lim
N!1

Pr(
p
N DN < u) = K(u) ⌘ 1 + 2

1X

k=1

(�1)ke�2k2u2
. (15.358)

Amazingly, this upper bound is universal and independent of the true
Prt(�1, x) and hypothetical Prh(�1, x) probability distributions.

But if the events xj of the empirical distribution Pr(N)
e (�1, x) come

from a probability distribution Prt(�1, x) that is di↵erent from the hy-
pothetical distribution Prh(�1, x), then as N ! 1 we should expect that

Pr(N)
e (�1, x) ! Prt(�1, x), and so that DN would converge to a positive

constant D1 2 (0, 1]. In this case, we expect that as N ! 1 the quantityp
N DN would grow with N as

p
N D1.

Example 15.31 (Kolmogorov’s Test) How do we use (15.358)? As illus-
trated in Fig. 15.11, Kolmogorov’s distribution K(u) rises from zero to unity
on (0,1), reaching 0.9993 already at u = 2. So if our points xj come from
the hypothetical distribution, then Kolmogorov’s theorem (15.358) tells us
that as N ! 1, the probability that

p
N DN is less than 2 is more than
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99.9%. But if the experimental points xj do not come from the hypothetical
distribution, then the quantity

p
N DN should grow as

p
N D1 as N ! 1.

To see what this means in practice, I took as the true distribution Pt(x) =
PG(x, 0, 1) which has the cumulative probability distribution (15.93)

Prt(�1, x) =
1

2

h
erf
⇣
x/

p
2
⌘
+ 1
i
. (15.359)

I generated N = 10m experimental points xj for m = 1, 2, 3, 4, 5, and 6 from
this true distribution Pt(x) = PG(x, 0, 1) and computed uN =

p
10mD10m

for these points. I found
p
10mD10m = 0.6928, 0.7074, 1.2000, 0.7356, 1.2260,

and 1.0683. All were less than 2, as expected since I had taken the experi-
mental points xj from the true distribution.
To see what happens when the experimental points do not come from the

true distribution Pt(x) = PG(x, 0, 1), I generated N = 10m points xj form =
1, 2, 3, 4, 5, and 6 from Gosset’s Student’s distribution Ph(x) = PS(x, 3, 1)
defined by (15.228) with ⌫ = 3 and a = 1. Both Pt(x) = PG(x, 0, 1) and
Ph(x) = PS(x, 3, 1) have the same mean µ = 0 and standard deviation � = 1,
as illustrated in Fig. 15.12. For these points, I computed uN =

p
N DN and

found
p
10mD10m = 0.7741, 1.4522, 3.3837, 9.0478, 27.6414, and 87.8147.

Only the first two are less than 2, and the last four grow as
p
N , indicating

that the xj had not come from the theoretical distribution. In fact, we can
approximate the limiting value of DN as D1 ⇡ u106/

p
106 = 0.0878. The

exact value is (exercise 15.40) D1 = 0.0868552356.
At the risk of overemphasizing this example, I carried it one step further.

I generated ` = 1, 2, . . . 100 sets of N = 10m points x(`)j for m = 2, 3, and
4 drawn from Pt(x) = PG(x, 0, 1) and from Ph(x) = PS(x, 3, 1) and used

them to form 100 empirical cumulative probabilities Pr(`,10
m)

e,G (�1, x) and

Pr(`,10
m)

e,S (�1, x) as defined by (15.353–15.355). Next, I computed the dis-

tances D(`)
G,G,10m and D(`)

S,G,10m of each of these cumulative probabilities from
the gaussian distribution PG(x, 0, 1). I labeled the two sets of 100 quantities

u(`,m)
G,G =

p
10mD(`)

G,G,10m and u(`,m)
S,G =

p
10mD(`)

S,G,10m in increasing order as

u(m)
G,G,1  u(m)

G,G,2  . . .  u(m)
G,G,100 and u(m)

S,G,1  u(m)
S,G,2  . . .  u(m)

S,G,100. I then
used (15.353–15.355) to form the cumulative probabilities

Pr(m)
e,G,G(�1, u) =

j

Ns
for u(m)

G,G,j < u < u(m)
G,G,j+1 (15.360)

and

Pr(m)
e,S,G(�1, u) =

j

Ns
for u(m)

S,G,j < u < u(m)
S,G,j+1 (15.361)



15.25 Kolmogorov’s test 699

Kolmogorov’s test

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 15.13 Kolmogorov’s test is applied to points xj taken from Gauss’s
distribution PG(x, 0, 1) and from Gosset’s Student’s distribution PS(x, 3, 1)
to see whether the xj came from PG(x, 0, 1). The thick smooth curve is
Kolmogorov’s universal cumulative probability distribution K(u) defined
by (15.358). The thin jagged curve that clings to K(u) is the cumulative

probability distribution Pr(4)e,G,G(�1, u) made (15.360) from points taken

from PG(x, 0, 1). The other curves Pr(m)
e,S,G(�1, u) for m = 2 and 3 are

made (15.361) from 10m points taken from PS(x, 3, 1).

for Ns = 100 sets of 10m points.
I plotted these cumulative probabilities in Fig. 15.13. The thick smooth

curve is Kolmogorov’s universal cumulative probability distribution K(u)
defined by (15.358). The thin jagged curve that clings to K(u) is the cu-

mulative probability distribution Pr(4)e,G,G(�1, u) made from 100 sets of 104

points taken from PG(x, 0, 1). As the number of sets increases beyond 100
and the number of points 10m rises further, the probability distributions
Pr(m)

e,G,G(�1, u) converge to the universal cumulative probability distribu-
tion K(u) and provide a numerical verification of Kolmogorov’s theorem.
Such curves make poor figures, however, because they hide beneath K(u).

The curves labeled Pr(m)
e,S,G(�1, u) for m = 2 and 3 are made from 100 sets

of N = 10m points taken from PS(x, 3, 1) and tested as to whether they
instead come from PG(x, 0, 1). Note that as N = 10m increases from 100 to
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1000, the cumulative probability distribution Pr(m)
e,S,G(�1, u) moves farther

from Kolmogorov’s universal cumulative probability distribution K(u). In

fact, the curve Pr(4)e,S,G(�1, u) made from 100 sets of 104 points lies beyond
u > 8, too far to the right to fit in the figure. Kolmogorov’s test gets more
conclusive as the number of points N ! 1.

Warning, mathematical hazard: While binned data are ideal for chi-
squared fits, they ruin Kolmogorov tests. The reason is that if the data are
in bins of width w, then the empirical cumulative probability distribution
Pr(N)

e (�1, x) is a staircase function with steps as wide as the bin-width w
even in the limit N ! 1. Thus even if the data come from the the-
oretical distribution, the limiting value D1 of the Kolmogorov distance
will be positive. In fact, one may show (exercise 15.41) that when the data
do come from the theoretical probability distribution Pt(x) assumed to be
continuous, then the value of D1 is

D1 ⇡ sup
�1<x<1

wPt(x)

2
. (15.362)

Thus in this case, the quantity
p
N DN would diverge as

p
N D1 and lead

one to believe that the data had not come from Pt(x).

Suppose we have made some changes in our experimental apparatus and
our software, and we want to see whether the new data x01, x

0
2, . . . , x

0
N 0 we

took after the changes are consistent with the old data x1, x2, . . . , xN we
took before the changes. Then following equations (15.353–15.355), we can

make two empirical cumulative probability distributions—one Pr(N)
e (�1, x)

made from the N old points xj and the other Pr(N
0)

e (�1, x) made from the
N 0 new points x0j . Next, we compute the distances

D+
N,N 0 = sup

�1<x<1

⇣
Pr(N)

e (�1, x)� Pr(N
0)

e (�1, x)
⌘

DN,N 0 = sup
�1<x<1

���Pr(N)
e (�1, x)� Pr(N

0)
e (�1, x)

��� .
(15.363)

Smirnov (Smirnov 1939; Gnedenko 1968, p. 453) has shown that as N,N 0 !
1 the probabilities that

u+N,N 0 =

r
NN 0

N +N 0 D
+
N,N 0 and uN,N 0 =

r
NN 0

N +N 0 DN,N 0 (15.364)
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are less than u are

lim
N,N 0!1

Pr(u+N,N 0 < u) = 1� e�2u2

lim
N,N 0!1

Pr(uN,N 0 < u) = K(u)
(15.365)

in which K(u) is Kolmogorov’s distribution (15.358).

Further reading

Students can learn about quantum probability and statistics in the book
Quantum Detection and Estimation Theory (Helstrom, 1976). They can
learn more about classical probability and statistics in these books: Mathe-
matical Methods for Physics and Engineering (Riley et al., 2006), An Intro-
duction to Probability Theory and Its Applications I, II (Feller, 1968, 1966),
Theory of Financial Risk and Derivative Pricing (Bouchaud and Potters,
2003), and Probability and Statistics in Experimental Physics (Roe, 2001).

Exercises

15.1 Find the probabilities that two thrown fair dice give 4, 5, or 6.
15.2 Redo the three-door example for the case in which there are 100 doors,

and 98 are opened to reveal empty rooms after one picks a door. Should
one switch? What are the odds?

15.3 Show that the zeroth moment µ0 and the zeroth central moment ⌫0
always are unity, and that the first central moment ⌫1 always vanishes.

15.4 Compute the variance of the uniform distribution on (0, 1).
15.5 In the formulas (15.25 & 15.31) for the variances of discrete and con-

tinuous distributions, show that E[(x� hxi)2] = µ2 � µ2.
15.6 (a) Show that the covariance h(x� x)(y� y)i is equal to hx yi � hxihyi

as asserted in (15.42). (b) Derive (15.46) for the variance V [ax+ by].
15.7 Derive expression (15.47) for the variance of a sum of N variables.
15.8 Find the range of pq = p(1� p) for 0  p  1.
15.9 Show that the variance of the binomial distribution (15.50) is given by

(15.54).
15.10 Suppose we ask three likely voters if they will vote for Michael Hein-

rich, and two say ”Yes.” What is the probability that he will be re-
elected? Hint: Imitate example (15.4).

15.11 Redo the polling example (15.18–15.20) for the case of a slightly better
poll in which 16 likely voters were asked and 13 said they’d vote for
Nancy Pelosi. What’s the probability that she’ll win the election? (You
may use Maple or some other program to do the tedious integral.)
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15.12 Without using the fact that the Poisson distribution is a limiting
form of the binomial distribution, show from its definition (15.65) and
its mean (15.67) that its variance is equal to its mean, as in (15.69).

15.13 Show that Gauss’s approximation (15.82) to the binomial distribution
is a normalized probability distribution with mean hxi = µ = pN and
variance V [x] = pqN .

15.14 Derive the approximations (15.96 & 15.97) for binomial probabilities
for large N .

15.15 Compute the central moments (15.30) of the gaussian (15.83).
15.16 Derive formula (15.92) for the probability that a gaussian random

variable falls within an interval.
15.17 Show that the expression (15.99) for P (y|600) is negligible on the

interval (0, 1) except for y near 3/5.
15.18 Determine the constant A of the homogeneous solution hv(t)igh and

derive expression (15.165) for the general solution hv(t)i to (15.163).
15.19 Derive equation (15.166) for the variance of the position r about its

mean hr(t)i. You may assume that hr(0)i = hv(0)i = 0 and that
h(v � hv(t)i)2i = 3kT/m.

15.20 Derive equation (15.198) for the ensemble average hr2(t)i for the case
in which hr2(0)i = 0 and dhr2(0)i/dt = 0.

15.21 Use (15.221) to derive the lower moments (15.223) of the binomial
distribution and those of Gauss and Poisson.

15.22 Find the third and fourth moments µ3 and µ4 for the distributions of
Poisson (15.216) and Gauss (15.211).

15.23 Derive formula (15.227) for the first five cumulants of an arbitrary
probability distribution.

15.24 Show that like the characteristic function, the moment-generating
function M(t) for an average of several independent random variables
factorizes M(t) = M1(t/N)M2(t/N) . . . MN (t/N).

15.25 Derive formula (15.234) for the moments of the log-normal probability
distribution (15.233).

15.26 Why doesn’t the log-normal probability distribution (15.233) have a
sensible power-series about x = 0? What are its derivatives there?

15.27 Compute the mean and variance of the exponential distribution (15.235).
15.28 Show that the chi-square distribution P3,G(v,�) with variance �2 =

kT/m is the Maxwell-Boltzmann distribution (15.117).
15.29 Compute the inverse Fourier transform (15.210) of the characteristic

function (15.240) of the symmetric Lévy distribution for ⌫ = 1 and 2.
15.30 Show that the integral that defines P (2)(y) gives formula (15.280) with

two Heaviside step functions. Hint: keep x1 and x2 in the interval (0, 1).
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15.31 Derive the normal distribution (15.262) in the variable (15.261) from
the central limit theorem (15.259) for the case in which all the means
and variances are the same.

15.32 Show that Fisher’s matrix (15.298) is symmetric Fk` = F`k and non-
negative (1.43), and that when it is positive (1.44), it has an inverse.

15.33 Derive the integral equations (15.301 & 15.303) from the normaliza-
tion condition

R
P (x;✓) dNx = 1.

15.34 Show that the variance V [u(N)
�2 ] of Bessel’s estimator (15.295) is given

by (15.322).
15.35 Compute the fourth central moment (15.30) of Gauss’s probability

distribution PG(x;µ,�2).
15.36 Show that when the real N ⇥M matrix G has rank M , the matrices

P = GG+ and P? = 1� P are projection operators that are mutually
orthogonal P (I � P ) = (I � P )P = 0.

15.37 Show that Kolmogorov’s distance DN is bounded, 0  DN  1.
15.38 Show that Kolmogorov’s distanceDN is the greater of the two Smirnov

distances

D+
N = sup

�1<x<1

⇣
Pr(N)

e (�1, x)� Prt(�1, x)
⌘

D�
N = sup

�1<x<1

⇣
Prt(�1, x)� Pr(N)

e (�1, x)
⌘
.

(15.366)

15.39 Derive the formulas

D+
N = sup

1jN

✓
j

N
� Prt(�1, xj)

◆

D�
N = sup

1jN

✓
Prt(�1, xj)�

j � 1

N

◆ (15.367)

for D+
N and D�

N .
15.40 Compute the exact limiting value D1 of the Kolmogorov distance

between PG(x, 0, 1) and PS(x, 3, 1). Use the cumulative probabilities
(15.359 & 15.231) to find the value of x that maximizes their di↵erence.
Using Maple or some other program, you should find x = 0.6276952185
and then D1 = 0.0868552356.

15.41 Show that when the data do come from the theoretical probability
distribution (assumed to be continuous) but are in bins of width w,
then the limiting value D1 of the Kolmogorov distance is given by
(15.362).

15.42 Suppose in a poll of 1000 likely voters, 510 have said they would vote
for Nancy Pelosi. Redo example 15.17.
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15.43 Suppose a hamiltonian has a quadratic term H = ap2 + bq2. Show
that the mean energy at temperature T

hEi =
Z

He��Hdpdq

�Z
e��Hdpdq (15.368)

is kT/2 if a > 0 and b = 0, kT/2 if a = 0 and b > 0, and kT if a > 0
and b > 0.


